Rundungsfehler und Gleitkommaarithmetik Vorlesung vom

Größe: px
Ab Seite anzeigen:

Download "Rundungsfehler und Gleitkommaarithmetik Vorlesung vom"

Transkript

1 Rundungsfehler und Gleitkommaarithmetik Vorlesung vom Runden und Rundungsfehler: Der absolute Rundungsfehler ist nicht gleichmäßig beschränkt. Der relative Rundungsfehler ist gleichmäßig beschränkt. Obere Schranke: Maschinengenauigkeit eps = eps(q, l). Praktische Realisierung von Gleitkommazahlen: Endlicher Exponentenbereich bewirkt endlichen Zahlenvorrat. Datentypen: double, float. Zahlenmengen statt Zahlen: Menge aller Gleitkomma-Approximationen von x R mit relativem Fehler eps(q, l). Menge aller reellen Zahlen, die auf x G(q,l) gerundet werden. Folgerung: Gleichheitsabfragen von Gleitkommazahlen verboten. Algebraische Eigenschaften: Gleitkommaarithmetik, Verlust von Assoziativität, Distributivität, Invertierbarkeit. Folgerung: Übliche Umformungen sind nicht mehr äquivalent.

2 Kondition Auswirkung von Eingabefehlern auf das Ergebnis

3 Das Landau-Symbol o Definition Sei f : I R mit I = ( a,a) eine Funktion. Wir verabreden die Schreibweise f(ε) lim ε 0 ε = 0 f(ε) = o(ε) (für ε 0). Beispiele: ε 2 = o(ε), ε 28 ε + ε (sin(ε)) i = o(ε),... i=1

4 Relative Kondition der Multiplikation gegeben: x,y R, x, y 0. Approximationen mit relativem Fehler ε: x = x(1 + ε x ), ỹ = y(1 + ε y ), ε = max{ ε x, ε y } Satz: Es gilt (x y) ( x ỹ) x y 2 ε + ε 2.

5 Relative Kondition der Multiplikation gegeben: x,y R, x, y 0. Approximationen mit relativem Fehler ε: x = x(1 + ε x ), ỹ = y(1 + ε y ), ε = max{ ε x, ε y } Satz: Es gilt (x y) ( x ỹ) x y 2 ε + ε 2. Dominierender Fehleranteil: 2ε

6 Relative Kondition der Multiplikation gegeben: x,y R, x, y 0. Approximationen mit relativem Fehler ε: x = x(1 + ε x ), ỹ = y(1 + ε y ), ε = max{ ε x, ε y } Satz: Es gilt (x y) ( x ỹ) x y 2 ε + ε 2. Dominierender Fehleranteil: 2ε Vernachlässigung des Terms höherer Ordnung o(ε) = ε 2

7 Relative Kondition der Multiplikation gegeben: x,y R, x, y 0. Approximationen mit relativem Fehler ε: x = x(1 + ε x ), ỹ = y(1 + ε y ), ε = max{ ε x, ε y } Satz: Es gilt (x y) ( x ỹ) x y 2 ε + ε 2. Dominierender Fehleranteil: 2ε Vernachlässigung des Terms höherer Ordnung o(ε) = ε 2 Die relative Kondition ist der Verstärkungsfaktor κ von ε: κ = 2

8 Relative Kondition der Division und Addition Satz: (Division) Es gilt (x/y) ( x/ỹ) x/y 2 ε + o(ε). relative Kondition der Division: κ = 2.

9 Relative Kondition der Division und Addition Satz: (Division) Es gilt (x/y) ( x/ỹ) x/y 2 ε + o(ε). relative Kondition der Division: κ = 2. Satz: (Addition) Es sei x,y > 0. Dann gilt (x + y) ( x + ỹ) x + y 1ε. relative Kondition der Addition: κ = 1.

10 Relative Kondition der Subtraktion Satz: (Subtraktion) Es sei x,y > 0. Dann gilt (x y) ( x ỹ) x y ( ) x + y x y ε. relative Kondition der Subtraktion: κ = x + y x y Auslöschung: Ist x y, so wird κ = x + y x y beliebig groß!!!

11 Matlab Beispiel >> format long; x = double(pi) x = >> y=double(pi+1e-14) y = >> y-x ans = e-14

12 Nieder mit der Auslöschung Subtraktion fast gleich großer Zahlen vermeiden!

13 Einlochen eines Golfballs f(x) d f(x) π/2 π/2 x x Distanz zum Loch: d, Radius des Lochs: r L, Abschlagswinkel: x minimaler Abstand zum Lochmittelpunkt: f(x) = d sin(x)

14 Einlochen eines Golfballs f(x) d f(x) π/2 π/2 x x Distanz zum Loch: d, Radius des Lochs: r L, Abschlagswinkel: x minimaler Abstand zum Lochmittelpunkt: f(x) = d sin(x) optimal: x 0 = 0, erlaubte Toleranz: x x 0 < arcsin(r L /d)

15 Kondition der Funktionsauswertung gegeben: Intervall I R, f : I R, x 0 I Problem: ( ) Auswertung von f an der Stelle x 0

16 Kondition der Funktionsauswertung gegeben: Intervall I R, f : I R, x 0 I Problem: ( ) Auswertung von f an der Stelle x 0 Definition (Absolute Kondition) Die absolute Kondition κ abs von ( ) ist die kleinste Zahl mit der Eigenschaft f(x 0 ) f(x) κ abs x 0 x + o( x 0 x ). Liegt dies für keine reelle Zahl κ abs vor, so wird κ abs = gesetzt.

17 Absolute Kondition und Ableitung Satz: Ist f differenzierbar in x 0, so gilt κ abs = f (x 0 ).

18 Absolute Kondition und Ableitung Satz: Ist f differenzierbar in x 0, so gilt κ abs = f (x 0 ). Beispiel: Sei f(x) = x 2, x 0 R. Dann ist κ abs = f (x 0 ) = 2 x 0.

19 Kondition und Lipschitz-Stetigkeit Definition: Die Funktion f : I R heißt Lipschitz-stetig mit Lipschitz-Konstante L, falls f(x) f(y) L x y x,y I. Beispiel: f(x) = x ist Lipschitz-stetig mit Lipschitz-Konstante L = 1. Satz: Ist f : I R Lipschitz-stetig mit Lipschitz-Konstante L, so genügt die absolute Kondition κ abs von ( ) der Abschätzung κ abs L.

20 Geschachtelte Funktionen Satz: Geschachtelte Funktionsauswertung: f(x) = g h(x) = g(h(x)). κ abs (h,x 0 ): abs. Kondition der Auswertung von h an der Stelle x 0. κ abs (g,y 0 ): abs. Kondition der Auswertung von g an der Stelle y 0 = h(x 0 ). Dann gilt κ abs κ abs (g,y 0 ) κ abs (h,x 0 ). Ist h differenzierbar in x 0 und g differenzierbar in y 0, so liegt Gleichheit vor. Beispiel: Das Golfproblem f(x) = d sin(x) = h(g(x)), h(y) = y, g(x) = d sin(x), x 0 = 0 κ abs (h,x 0 ) = d, κ abs (h,x 0 ) = 1 = κ abs d

21 Geschachtelte Funktionen Satz: Geschachtelte Funktionsauswertung: f(x) = g h(x) = g(h(x)). κ abs (h,x 0 ): abs. Kondition der Auswertung von h an der Stelle x 0. κ abs (g,y 0 ): abs. Kondition der Auswertung von g an der Stelle y 0 = h(x 0 ). Dann gilt κ abs κ abs (g,y 0 ) κ abs (h,x 0 ). Ist h differenzierbar in x 0 und g differenzierbar in y 0, so liegt Gleichheit vor. Beispiel: Das Golfproblem f(x) = d sin(x) = g(h(x)), g(y) = y, h(x) = d sin(x), x 0 = 0 κ abs (g,h(x 0 )) = d, κ abs (h,x 0 ) 1 = κ abs d

22 Relative Kondition von Funktionsauswertungen gegeben: Intervall I R, f : I R, 0 x 0 I, f(x 0 ) 0 Problem: ( ) Auswertung von f an der Stelle x 0 Definition 3.6 (Relative Kondition) Die relative Kondition κ rel von ( ) ist die kleinste Zahl mit der Eigenschaft f(x 0 ) f(x) f(x 0 ) κ rel x 0 x x 0 + o( x 0 x ). Liegt dies für keine reelle Zahl κ rel vor, so wird κ rel = gesetzt.

23 Relative versus absolute Kondition absolute Kondition f(x 0 ) f(x) κ abs x 0 x + o( x 0 x ) relative Kondition f(x 0 ) f(x) f(x 0 ) κ rel x 0 x x 0 + o( x 0 x ) Satz: Es gilt κ rel = x 0 f(x 0 ) κ abs

24 Relative versus absolute Kondition absolute Kondition f(x 0 ) f(x) κ abs x 0 x + o( x 0 x ) relative Kondition f(x 0 ) f(x) f(x 0 ) κ rel x 0 x x 0 + o( x 0 x ) Satz: Es gilt κ rel = x 0 f(x 0 ) κ abs.

25 Beispiel: f(x) = ax, Relative versus absolute Kondition absolute Kondition: κ abs = f (x 0 ) = a relative Kondition: κ rel = x 0 f(x 0 ) κ abs = x 0 ax 0 a = 1 Folgerung: Relative und absolute Kondition können sich beliebig stark unterscheiden. aus a 1 folgt κ abs κ rel aus a 1 folgt κ abs κ rel

26 Beispiel: f(x) = ax, Relative versus absolute Kondition absolute Kondition: κ abs = f (x 0 ) = a relative Kondition: κ rel = x 0 f(x 0 ) κ abs = x 0 ax 0 a = 1 Folgerung: Relative und absolute Kondition können sich beliebig stark unterscheiden. aus a 1 folgt κ abs κ rel aus a 1 folgt κ abs κ rel

27 Beispiel: f(x) = ax, Relative versus absolute Kondition absolute Kondition: κ abs = f (x 0 ) = a relative Kondition: κ rel = x 0 f(x 0 ) κ abs = x 0 ax 0 a = 1 Folgerung: Relative und absolute Kondition können sich beliebig stark unterscheiden. aus a 1 folgt κ abs κ rel aus a 1 folgt κ abs κ rel weiteres Beispiel: absolute Kondition der Subtraktion

Computer-orientierte Mathematik

Computer-orientierte Mathematik Computer-orientierte Mathematik 3. Vorlesung - Christof Schuette 11.11.16 Memo: Rationale und reelle Zahlen Rationale Zahlen: Rationale Zahlen als Brüche ganzer Zahlen. q-adische Brüche, periodische q-adische

Mehr

Computer-orientierte Mathematik

Computer-orientierte Mathematik Computer-orientierte Mathematik 6. Vorlesung - Christof Schuette 30.11.18 Memo: Relative und Absolute Kondition Relative Kondition der Grundrechenarten: Addition, Multiplikation und Division liefern beruhigende

Mehr

Wiederholung: Kondition (Vorlesung vom )

Wiederholung: Kondition (Vorlesung vom ) Wiederholung: Kondition (Vorlesung vom 17.11.17) Relative Kondition der Grundrechenarten: Addition, Multiplikation und Division liefern beruhigende Resultate. Die Subtraktion ist hingegen beliebig schlecht

Mehr

Wiederholung: Kondition Vorlesung vom

Wiederholung: Kondition Vorlesung vom Wiederholung: Kondition Vorlesung vom 13.11.15 Relative Kondition der Grundrechenarten: Addition, Multiplikation und Division liefern beruhigende Resultate. Die Subtraktion ist hingegen beliebig schlecht

Mehr

Darstellung rationaler und reeller Zahlen Vorlesung vom

Darstellung rationaler und reeller Zahlen Vorlesung vom Darstellung rationaler und reeller Zahlen Vorlesung vom 30.10.15 Rationale Zahlen: Rationale Zahlen als Brüche ganzer Zahlen. q-adische Brüche, periodische q-adische Brüche. Beispiele. Satz: Jede rationale

Mehr

Stabilitätsanalyse des Gaußsche Algorithmus Vorlesung vom

Stabilitätsanalyse des Gaußsche Algorithmus Vorlesung vom Stabilitätsanalyse des Gaußsche Algorithmus Vorlesung vom 26.1.18 Auswirkung von Auswertungsfehlern: Beispiel und Definition der Stabilität. Stabilitätsanalyse in drei verschiedenen Auflösungen. Einfachster

Mehr

Stabilitätsanalyse des Gaußsche Algorithmus Vorlesung vom

Stabilitätsanalyse des Gaußsche Algorithmus Vorlesung vom Stabilitätsanalyse des Gaußsche Algorithmus Vorlesung vom 22.1.16 Auswirkung von Auswertungsfehlern: Beispiel und Definition der Stabilität. Stabilitätsanalyse in drei verschiedenen Auflösungen. Einfachster

Mehr

Computer-orientierte Mathematik

Computer-orientierte Mathematik Computer-orientierte Mathematik 5. Vorlesung - Christof Schuette 25.11.16 Memo: Relative und Absolute Kondition Relative Kondition der Grundrechenarten: Addition, Multiplikation und Division liefern beruhigende

Mehr

Computerorientierte Mathematik II

Computerorientierte Mathematik II Computerorientierte Mathematik II Vorlesungen: Christoph Wehmeyer, Frank Noé Übungszettel: Christoph Wehmeyer Tutorien: Anna Dittus, Felix Mann, Dominik Otto 1. Anmeldung im KVV und im Campus Management!

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 19 Fehlerbetrachtung R. Steuding

Mehr

Grundlagen Kondition Demo. Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang

Grundlagen Kondition Demo. Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

1 Grundlagen der Numerik

1 Grundlagen der Numerik 1 Grundlagen der Numerik 1.1 Gleitpunkt-Arithmetik Es gibt nur endlich viele Zahlen auf dem Computer. Gleitpunktzahl: x = σmb E σ: Vorzeichen B: Basis (feste Zahl >1); M: Mantisse E: Exponent B = 2 : Dualzahl

Mehr

1. Rechnerzahlen, Kondition, Stabilität

1. Rechnerzahlen, Kondition, Stabilität 1. Rechnerzahlen, Kondition, Stabilität 1 1.1. Rechnerzahlen 2 1.2. Kondition 3 1.3. Stabilität 1. Rechnerzahlen, Kondition, Stabilität 1 / 18 1.1. Rechnerzahlen allgemeine Zahlendarstellung zur Basis

Mehr

bekannt Analog reduzieren wir die Randwerte im 2d-System. Man erhält dann eine Blocktridia-

bekannt Analog reduzieren wir die Randwerte im 2d-System. Man erhält dann eine Blocktridia- 3.. Jetzt: Eliminiere 1. und 2. wie folgt u 2 + 2u 1 = h 2 f 1 + α }{{} bekannt Nun: Au = b mit A R n,n, b R n, u R n und A hat die Gestalt 2 1 1 2 1 A =......... =: tridiag( 1, 2, 1)...... 1 1 2 Analog

Mehr

Computergestützte Mathematik zur Linearen Algebra

Computergestützte Mathematik zur Linearen Algebra Computergestützte Mathematik zur Linearen Algebra Pivotwahl und Gleitkommaarithmetik Achim Schädle 3. und 20. Dezember 208 Achim Schaedle (HHU) CompLinA 3. und 20. Dezember 208 Instabilitäten bei Gauß-Elimination

Mehr

1. Rechnerarithmetik und. Rundungsfehler

1. Rechnerarithmetik und. Rundungsfehler 1. Rechnerarithmetik und Rundungsfehler 1 Rundung (1) Die natürlichen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk, L. Kronecker Ohne Zahlendarstellung auf einem Rechner wiederholen

Mehr

Lösungen der Übungsaufgaben von Kapitel 3

Lösungen der Übungsaufgaben von Kapitel 3 Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 3 zu 3.1 3.1.1 Bestimmen Sie den Abschluss, den offenen Kern und den Rand folgender Teilmengen

Mehr

Besonderheiten des Numerischen Rechnens

Besonderheiten des Numerischen Rechnens Kapitel 2 Besonderheiten des Numerischen Rechnens 2.1 Zahlendarstellung Jede reelle Zahl x 0 lässt sich folgendermaßen darstellen: x = ± ( α m 10 m + α m 1 10 m 1 + α m 2 10 m 2 +... ) mit m Z, α i {0,

Mehr

Mathematische Werkzeuge für Computergrafik 2016/17. Gleitkommzahlen

Mathematische Werkzeuge für Computergrafik 2016/17. Gleitkommzahlen Mathematische Werkzeuge für Computergrafik 2016/17 Gleitkommzahlen 1 Grundlagen 1 Da im Computer nur endliche Ressourcen zur Verfügung stehen, können reelle Zahlen in vielen Fällen nicht exakt dargestellt

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit 10 Aus der Analysis Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit Zahlenfolgen Ein unendliche Folge reeller Zahlen heißt Zahlenfolge. Im Beispiel 2, 3, 2, 2 2, 2

Mehr

Lineare Gleichungssysteme, Teil 2

Lineare Gleichungssysteme, Teil 2 Lineare Gleichungssysteme, Teil 2 11. Vorlesung 27.1.12 Lineare Gleichungssysteme Problem: Berechne die Lösung x von Ax = b zu gegebenem A R n,n und b R n. Ziele: Konditionsanalyse dieses Problems Stabilitätsanalyse

Mehr

Lösungsvorschlag zur Übungsklausur zur Analysis I

Lösungsvorschlag zur Übungsklausur zur Analysis I Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 NWF I - Mathematik 9..9 Universität Regensburg Lösungsvorschlag zur Übungsklausur zur Analysis I Frage 1 Vervollständigen Sie die folgenden

Mehr

Injektiv, Surjektiv, Bijektiv

Injektiv, Surjektiv, Bijektiv Injektiv, Surjektiv, Bijektiv Aufgabe 1. Geben Sie einen ausführlichen Beweis für folgende Aussage: Wenn f A B surjektiv ist und R A A A eine reflexive Relation auf A ist, dann ist R B = {( f(x), f(y)

Mehr

Vektor und Matrixnormen Vorlesung vom

Vektor und Matrixnormen Vorlesung vom Vektor und Matrixnormen Vorlesung vom 18.12.15 Grundlagen: Matrix Vektor und Matrixprodukt. Lineare Räume. Beispiele. Problem: Berechne die Lösung x von Ax = b zu gegebenem A R n,n und b R n. Ziele: Konditionsanalyse

Mehr

Numerische Mathematik

Numerische Mathematik Michael Knorrenschild Mathematik-Studienhilfen Numerische Mathematik Eine beispielorientierte Einführung 6., aktualisierte und erweiterte Auflage 1.1 Grundbegriffe und Gleitpunktarithmetik 15 second, also

Mehr

Analysis I. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I 7. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching April 26, 207 Erinnerung Satz. (Zwischenwertsatz) Sei f : [a, b] R stetig mit f(a) f(b). Dann gibt es zu jedem

Mehr

Computerorientierte Mathematik I WiSe

Computerorientierte Mathematik I WiSe Fachbereich Mathematik & Informatik Freie Universität Berlin Prof. Dr. Ralf Kornhuber, Tobias Kies 12. Übung zur Vorlesung Computerorientierte Mathematik I WiSe 2017 http://numerik.mi.fu-berlin.de/wiki/ws_2017/comai.php

Mehr

Rundungsfehler-Problematik bei Gleitpunktzahlen

Rundungsfehler-Problematik bei Gleitpunktzahlen Rundungsfehler-Problematik bei Gleitpunktzahlen 1 Rechnerzahlen 2 Die Rundung 3 Fehlerverstärkung bei der Addition Rundungsfehler-Problematik 1 1. Rechnerzahlen allgemeine Zahlendarstellung zur Basis b

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

Lösung zu Kapitel 5 und 6

Lösung zu Kapitel 5 und 6 Lösung zu Kapitel 5 und 6 (1) Sei f eine total differenzierbare Funktion. Welche Aussagen sind richtig? f ist partiell differenzierbar f kann stetig partiell differenzierbar sein f ist dann immer stetig

Mehr

Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript

Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript Janko Latschev Fachbereich Mathematik Universität Hamburg www.math.uni-hamburg.de/home/latschev Hamburg,

Mehr

KAPITEL 2. Fehleranalyse: Kondition, Rundungsfehler, Stabilität. Datenfehler. Dahmen-Reusken Kapitel 2 1

KAPITEL 2. Fehleranalyse: Kondition, Rundungsfehler, Stabilität. Datenfehler. Dahmen-Reusken Kapitel 2 1 KAPITEL 2 Fehleranalyse: Kondition, Rundungsfehler, Stabilität Datenfehler Fehler im Algorithmus Fehler im Resultat Dahmen-Reusken Kapitel 2 1 Kondition eines Problems Analyse der Fehlerverstärkung bei

Mehr

3 Folgen, Reihen und stetige Funktionen

3 Folgen, Reihen und stetige Funktionen Höhere Mathematik 101 3 Folgen, Reihen und stetige Funktionen 3.1 Folgen und Reihen: Definitionen und Beispiele Eine reelle oder komplexe Zahlenfolge ist eine Abbildung, die jeder natürlichen Zahl n eine

Mehr

1 Fehleranalyse, Kondition, Stabilität

1 Fehleranalyse, Kondition, Stabilität Fehleranalyse, Kondition, Stabilität Fehlerquellen: Modellierungsfehler z.b. Ohmsches Gesetz u = Ri berücksichtigt nicht die Temperaturabhängigkeit des Widerstandes Messfehler z.b. digitaler Temperatursensor

Mehr

1 Einleitung. 2 Reelle Zahlen. 3 Konvergenz von Folgen

1 Einleitung. 2 Reelle Zahlen. 3 Konvergenz von Folgen 1 Einleitung Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis 1 aus dem Wintersemester 2008/09

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} Ganze Zahlen : Aus

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn Stetige Funktionen Eine zentrale Rolle in der Analysis spielen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume). Dabei sind i.a. nicht beliebige

Mehr

Mitschrift Mathematik, Vorlesung bei Dan Fulea, 2. Semester

Mitschrift Mathematik, Vorlesung bei Dan Fulea, 2. Semester Mitschrift Mathematik, Vorlesung bei Dan Fulea, 2. Semester Christian Nawroth, Erstellt mit L A TEX 23. Mai 2002 Inhaltsverzeichnis 1 Vollständige Induktion 2 1.1 Das Prinzip der Vollstandigen Induktion................

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

Eigenschaften stetiger Funktionen Buch Kap. 2.5

Eigenschaften stetiger Funktionen Buch Kap. 2.5 Eigenschaften stetiger Funktionen Buch Kap. 2.5 Satz 2.6: (Nullstellensatz) Ist f : [a, b] R stetig und haben f (a) und f (b) unterschiedliche Vorzeichen, so besitzt f in (a, b) mindestens eine Nullstelle.

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Wintersemester 2008/2009 Übung 11 Einleitung Es wird eine 15-minütige Mikroklausur geschrieben. i) Sei D R oderd C. Wann heißt

Mehr

5 Stetigkeit und Differenzierbarkeit

5 Stetigkeit und Differenzierbarkeit 5 Stetigkeit und Differenzierbarkeit 5.1 Stetigkeit und Grenzwerte von Funktionen f(x 0 ) x 0 Graph einer stetigen Funktion. Analysis I TUHH, Winter 2006/2007 Armin Iske 127 Häufungspunkt und Abschluss.

Mehr

Vektor und Matrixnormen Vorlesung vom

Vektor und Matrixnormen Vorlesung vom Vektor und Matrixnormen Vorlesung vom 20.12.13 Grundlagen: Matrix Vektor und Matrixprodukt. Lineare Räume. Beispiele. Problem: Berechne die Lösung x von Ax = b zu gegebenem A R n,n und b R n. Ziele: Konditionsanalyse

Mehr

Kapitel 1: Fehleranalyse, Kondition, Stabilität

Kapitel 1: Fehleranalyse, Kondition, Stabilität Vorlesung Höhere Mathematik: Numerik (für Ingenieure) Kapitel 1: Fehleranalyse, Kondition, Stabilität Jun.-Prof. Dr. Stephan Trenn AG Technomathematik, TU Kaiserslautern Sommersemester 2015 HM: Numerik

Mehr

Numerik für Informatiker, Elektrotechniker und Naturfreunde von Michael Lehn

Numerik für Informatiker, Elektrotechniker und Naturfreunde von Michael Lehn Numerik für Informatiker, Elektrotechniker und Naturfreunde von Michael Lehn Verfasst von Patrick Schneider E-Mail: Patrick.Schneider@uni-ulm.de Universität Ulm Institut für Numerische Mathematik Sommersemester

Mehr

Computer-orientierte Mathematik

Computer-orientierte Mathematik Computer-orientierte Mathematik 8. Vorlesung - Christof Schuette 16.12.16 Memo: Stabilität Stabilität: Motivation des Stabilitäts- und Algorithmusbegriffs. Abgrenzung zur Kondition. Relative Stabilität

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel IV SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

Wichtige Klassen reeller Funktionen

Wichtige Klassen reeller Funktionen 0 Wichtige Klassen reeller Funktionen Monotone Funktionen sind i.a. unstetig, aber man kann etwas über das Grenzwertverhalten aussagen, wenn man nur einseitige Grenzwerte betrachtet. Definition 0. : Sei

Mehr

Übungsblatt 8 Musterlösung

Übungsblatt 8 Musterlösung NumLinAlg WS1516 Übungsblatt 8 Musterlösung Lösung 9 (Kondition des Eigenwertsproblems) a) Sei λ i (0) = λ i eine einfache Nullstelle vom Polynom p. Wir lassen jetzt den Index i weg. Wir untersuchen die

Mehr

Differenzierbarkeit. Klaus-R. Loeffler. 1 Hinführung, Definition und unmittelbare Folgerungen

Differenzierbarkeit. Klaus-R. Loeffler. 1 Hinführung, Definition und unmittelbare Folgerungen Differenzierbarkeit Klaus-R. Loeffler Inhaltsverzeichnis 1 Hinführung, Definition und unmittelbare Folgerungen 1 1.1 Hinführung.......................................... 1 1.2 Definition der Differenzierbarkeit..............................

Mehr

Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an.

Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an. Analysis I, WiSe 2013/14, 04.02.2014 (Iske), Version A 1 Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an. a) Welche der folgenden Aussagen über Folgen sind sinnvoll und

Mehr

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) 1 Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) Kapitel 4: Konvergenz und Stetigkeit Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 22. November 2007) Folgen Eine Folge

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Differentialrechnung für Funktionen mehrerer

Mehr

Lösung zur Serie 8. x + 2x 2 sin(1/x), falls x 0, f(x) := 0, falls x = 0. = lim

Lösung zur Serie 8. x + 2x 2 sin(1/x), falls x 0, f(x) := 0, falls x = 0. = lim Lösung zur Serie 8 Aufgabe 40 Wir zeigen in dieser Aufgabe, dass die Voraussetzung dass die Funktion in einer kleinen Umgebung injektiv sein muss, beim Satz über die Umkehrfunktion notwendig ist. Hierzu

Mehr

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen:

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen: Klausur zur Analysis I svorschläge Universität Regensburg, Wintersemester 013/14 Prof. Dr. Bernd Ammann / Dr. Mihaela Pilca 0.0.014, Bearbeitungszeit: 3 Stunden 1. Aufgabe [ Punte] Seien X, Y zwei nicht-leere

Mehr

Injektiv, Surjektiv, Bijektiv

Injektiv, Surjektiv, Bijektiv Injektiv, Surjektiv, Bijektiv Aufgabe 1. Geben Sie einen ausführlichen Beweis für folgende Aussage: Wenn f A B surjektiv ist und R A A A eine reflexive Relation auf A ist, dann ist R B = {( f(x), f(y)

Mehr

Nachklausur Analysis I

Nachklausur Analysis I SS 008 Prof. Dr. John M. Sullivan Kerstin Günther Technische Universität Berlin Fakultät II Institut für Mathematik Nachklausur Analysis I 07.0.008 Name: Vorname: Matr.-Nr.: Studiengang: Mit der Veröffentlichung

Mehr

16. Differentialquotient, Mittelwertsatz

16. Differentialquotient, Mittelwertsatz 16. Differentialquotient, Mittelwertsatz Gegeben sei eine stetige Funktion f : R R. Wir suchen die Gleichung der Tangente t an die Kurve y = f(x) im Punkt (x, f(x ), x R. Das Problem dabei ist, dass vorderhand

Mehr

Kommutativität. De Morgansche Regeln

Kommutativität. De Morgansche Regeln 1. Formale Logik Proposition 1.1. Die logischen Elementarverknüpfungen gehorchen folgenden Äquivalenzen: (1.1) (1.2) p p p p p p Idempotenz (1.3) (1.4) p q q p p q q p Kommutativität (1.5) (1.6) (p q)

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 8

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung ( y

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung (

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 1 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 2010 Prof. Dr. Klaus Höllig (IMNG)

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung (

Mehr

3 Numerisches Rechnen

3 Numerisches Rechnen E Luik: Numerisches Rechnen 65 3 Numerisches Rechnen 31 Zahlen und ihre Darstellung Grundlage der Analysis bilden die reellen Zahlen Wir sind heute daran gewöhnt, eine reelle Zahl im Dezimalsystem als

Mehr

Übungsblatt 5. D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. 1. Berechnen Sie die Ableitung v f(x, y) der Funktion

Übungsblatt 5. D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. 1. Berechnen Sie die Ableitung v f(x, y) der Funktion D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler Übungsblatt 5 1. Berechnen Sie die Ableitung v f(x, y) der Funktion ( ) ( ) x f : R 2 R 2 x 3 1 + y, 2 y (1 + e x ) 1. entlang des Vektors

Mehr

15. Bereichsintegrale

15. Bereichsintegrale H.J. Oberle Analysis III WS 212/13 15. Bereichsintegrale 15.1 Integrale über uadern Ziel ist die Berechnung des Volumens unterhalb des Graphen einer Funktion f : R n D R, genauer zwischen dem Graphen von

Mehr

Reelle Zahlen, Gleichungen und Ungleichungen

Reelle Zahlen, Gleichungen und Ungleichungen 9 2. Vorlesung Reelle Zahlen, Gleichungen und Ungleichungen 4 Zahlenmengen und der Körper der reellen Zahlen 4.1 Zahlenmengen * Die Menge der natürlichen Zahlen N = {0,1,2,3,...}. * Die Menge der ganzen

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen

Mehr

Der Satz von Taylor. Kapitel 7

Der Satz von Taylor. Kapitel 7 Kapitel 7 Der Satz von Taylor Wir haben bereits die Darstellung verschiedener Funktionen, wie der Exponentialfunktion, der Cosinus- oder Sinus-Funktion, durch unendliche Reihen kennen gelernt. In diesem

Mehr

7. Übungsblatt zur Mathematik II für Inf, WInf

7. Übungsblatt zur Mathematik II für Inf, WInf Fachbereich Mathematik Prof. Dr. Streicher Dr. Sergiy Nesenenko Pavol Safarik SS 2010 27.-31.05.10 7. Übungsblatt zur Mathematik II für Inf, WInf Gruppenübung Aufgabe G24 (Grundlegende Definitionen) Betrachten

Mehr

Vorlesung Analysis I WS 07/08

Vorlesung Analysis I WS 07/08 Vorlesung Analysis I WS 07/08 Erich Ossa Vorläufige Version 07/12/04 Ausdruck 8. Januar 2008 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Elementare Logik.................................. 1 1.1.A Aussagenlogik................................

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 009 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 5: Konvergenz Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Dezember 2011) Folgen Eine Folge x 0, x 1,

Mehr

Übungsaufgaben zur Vorlesung ANALYSIS I (WS 12/13) Lösungsvorschlag Serie 12

Übungsaufgaben zur Vorlesung ANALYSIS I (WS 12/13) Lösungsvorschlag Serie 12 Humboldt-Universität zu Berlin Institut für Mathematik Prof. A. Griewank Ph.D.; Dr. A. Hoffkamp; Dipl.Math. T.Bosse; Dipl.Math. L. Jansen Übungsaufgaben zur Vorlesung ANALYSIS I (WS 2/3) Lösungsvorschlag

Mehr

Wir wünschen viel Erfolg!

Wir wünschen viel Erfolg! Dr. Felix Schwenninger WS 2018/2019 Bergische Universität Wuppertal Probeklausur Analysis II Name: Vorname: Matrikelnummer: Studiengang: Wichtige Hinweise: Sofern nicht anders angegeben, müssen alle Rechnungen,

Mehr

Technische Universität Berlin. Klausur Analysis I

Technische Universität Berlin. Klausur Analysis I SS 2008 Prof. Dr. John M. Sullivan Kerstin Günther Technische Universität Berlin Fakultät II Institut für Mathematik Klausur Analysis I 4.07.2008 Name: Vorname: Matr.-Nr.: Studiengang: Mit der Veröffentlichung

Mehr

f(x) = x f 1 (x) = x. Aufgabe 2. Welche der folgenden Funktionen sind injektiv, surjektiv, bijektiv?

f(x) = x f 1 (x) = x. Aufgabe 2. Welche der folgenden Funktionen sind injektiv, surjektiv, bijektiv? Umkehrfunktionen Aufgabe 1. Sei A = {1, 2, 3, 4}. Definieren Sie eine bijektive Funktion f A A und geben Sie ihre Umkehrfunktion f 1 an. Lösung von Aufgabe 1. Zum Beispiel f, f 1 A A mit f(x) = x f 1 (x)

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} bzw. N 0 = {0, 1, 2,

Mehr

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren Ferienkurs Analysis 1 - Wintersemester 2014/15 Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis

Mehr

22 KAPITEL 1. GRUNDLAGEN. Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion

22 KAPITEL 1. GRUNDLAGEN. Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion KAPITEL 1. GRUNDLAGEN Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion 1 für 0 x < 1 g 0 (x) = 1 1 für < x 1. Natürlich gibt dies von

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Anwendungen der Logik, SS 2008, Martin Goldstern

Anwendungen der Logik, SS 2008, Martin Goldstern Anwendungen der Logik, SS 2008, Martin Goldstern Total geordnete Körper Ein total geordneter Körper ist ein Körper (K, +,, 0, 1, ) mit einer totalen (=linearen) Ordnung, die mit den Operationen verträglich

Mehr

Inhalt Kapitel I: Nichtlineare Gleichungssysteme

Inhalt Kapitel I: Nichtlineare Gleichungssysteme Inhalt Kapitel I: Nichtlineare Gleichungssysteme I Nichtlineare Gleichungssysteme I. Nullstellenbestimmung von Funktionen einer Veränderlichen I.2 I.3 Newton-Verfahren Kapitel I (UebersichtKapI) 3 Bisektionsverfahren

Mehr

Differentialrechnung

Differentialrechnung KAPITEL 4 Differentialrechnung. Eigenschaften der Ableitung und Differentationsregeln.. Definition der Ableitung. Definition 4.. Ableitung. Die Funktion f sei auf dem Intervall I R deniert und x 0 I. )

Mehr

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist:

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist: Musterlösung Aufgabe a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [, ] R, die folgendermaßen definiert ist: f(x) := { für x R \ Q für x Q f ist offensichtlich beschränkt. Wir zeigen,

Mehr

Analysis I. 6. Beispielklausur mit Lösungen

Analysis I. 6. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 6. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Eine Relation zwischen den Mengen X und Y.

Mehr

Definition: Differenzierbare Funktionen

Definition: Differenzierbare Funktionen Definition: Differenzierbare Funktionen 1/12 Definition. Sei f :]a, b[ R eine Funktion. Sie heißt an der Stelle ξ ]a, b[ differenzierbar, wenn der Grenzwert existiert. f(ξ + h) f(ξ) lim h 0 h = lim x ξ

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SoSe 017 Institut für Informatik Prof Dr Thomas Huckle Michael Obersteiner, Michael Rippl Numerisches Programmieren, Übungen Musterlösung 1 Übungsblatt: Zahlendarstellung,

Mehr

Algorithmen & Programmierung. Reelle Zahlen in C (1) Darstellung reeller Zahlen

Algorithmen & Programmierung. Reelle Zahlen in C (1) Darstellung reeller Zahlen Algorithmen & Programmierung Reelle Zahlen in C (1) Darstellung reeller Zahlen Reelle Zahlen in C Datentyp für reelle Zahlen Eine Möglichkeit, Berechnungen mit reellen Zahlen in C durchzuführen, ist die

Mehr

Topologische Grundbegriffe II. Inhaltsverzeichnis

Topologische Grundbegriffe II. Inhaltsverzeichnis Vortrag zum Seminar zur Analysis, 03.05.2010 Dennis Joswig, Florian Goy Aufbauend auf den Resultaten des Vortrages Topologische Grundbegriffe I untersuchen wir weitere topologische Eigenschaften von metrischen

Mehr

39 Differenzierbare Funktionen und Kettenregel

39 Differenzierbare Funktionen und Kettenregel 192 VI. Differentialrechnung in mehreren Veränderlichen 39 Differenzierbare Funktionen und Kettenregel Lernziele: Konzepte: totale Ableitungen, Gradienten, Richtungsableitungen, Tangentenvektoren Resultate:

Mehr

Der n-dimensionale Raum

Der n-dimensionale Raum Der n-dimensionale Raum Mittels R kann nur eine Größe beschrieben werden. Um den Ort eines Teilchens im Raum festzulegen, werden schon drei Größen benötigt. Interessiert man sich für den Bewegungszustand

Mehr

5 Numerische Iterationsverfahren

5 Numerische Iterationsverfahren In diesem Kapitel besprechen wir numerische Iterationsverfahren (insbesondere Fixpunktverfahren) als eine weitere Lösungsmethode zur Lösung von linearen Gleichungssystemen (Kapitel 4) sowie zur Lösung

Mehr

NEXTLEVEL im WiSe 2011/12

NEXTLEVEL im WiSe 2011/12 Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani NEXTLEVEL im WiSe 2011/12 Vorlesung 5, Teil 2 Linearisierung, einige Eigenschaften differenzierbarer Funktionen Die ins Netz gestellten Kopien

Mehr