1. Rechnerzahlen, Kondition, Stabilität

Größe: px
Ab Seite anzeigen:

Download "1. Rechnerzahlen, Kondition, Stabilität"

Transkript

1 1. Rechnerzahlen, Kondition, Stabilität Rechnerzahlen Kondition Stabilität 1. Rechnerzahlen, Kondition, Stabilität 1 / 18

2 1.1. Rechnerzahlen allgemeine Zahlendarstellung zur Basis b: jedes x R hat eine exakte (ggf. unendliche) Darstellung ( x = s a k b k) b e k=1 wobei s { 1, +1} Vorzeichen a k {0, 1,..., b 1} Ziffern b 2 Basis (z.b. 10, 2, 16) e Z Exponent 1. Rechnerzahlen, Kondition, Stabilität 2 / 18

3 normalisierte Gleitpunktzahlen Definition (1.1) Menge der normalisierten Gleitpunktzahlen (Rechnerzahlen) G = G(b, l, E min, E max ) zur Basis b, mit Mantissenlänge l und Exponentenschranken E min < 0 < E max ist definiert als Menge aller Zahlen x mit der Darstellung x = s ( l a k b k) b e mit s { 1, +1}, a k {0,..., b 1}, a 1 0, k=1 und der Zahl 0. E min e E max, e Z Schreibweise: (0.a 1 a 2... a l ) b := l k=1 a kb k 1. Rechnerzahlen, Kondition, Stabilität 3 / 18

4 Das Gitter der Rechnerzahlen!! Auf jedem Rechner kann man nur endlich viele Zahlen darstellen!! darstellbarer Bereich D (sei B := b 1) x = a b e > 0 x min = ( ) b b E min = b E min 1 x max = (0.BB... B) b b Emax = b Emax (1 b l ) also G D := [ x max, x min ] {0} [x min, x max ] Beispiel : double precision numbers (IEEE-Standard) G = G(b, l, E min, E max ) = G(2, 53, 1021, 1024) Eine Rechnerzahl x G beansprucht 64 Bit = 8 Byte. x min , x max Rechnerzahlen, Kondition, Stabilität 4 / 18

5 relative Genauigkeit der Gleitpunkt-Darstellung Theorem (1.2.) Voraussetzung: G = G(b, l, E min, E max ) x R, x min x x max Behauptung: x x min 1 x G x 2 b1 l =: ε Beispiel: relative Maschinengenauigkeit ε beim IEEE-Standard b = 2, l = 53 ε = e 16 Man beachte: ε Matlab-Konstante eps = 2 52 = Abstand zwischen 1 und der nächst größeren Rechnerzahl 1. Rechnerzahlen, Kondition, Stabilität 5 / 18

6 Die Rundung Ziel: zu jeder Zahl x R eine Rechnerzahl rd(x) G finden mit x rd(x) = min x x x G Intervallschachtelung: betrachten nur den Fall x > 0 sei e so dass x [b e 1, b e [ sei x 1 = a b e so dass x [ x 1, x 1 + b l b e [, a = (0.a 1 a 2... a l ) b x = ( (0.a 1... a l z l+1... ) b ) b e z l+1 erste wegfallende Ziffer a b e, falls z l+1 < 1 2 b (abrunden) (a + b l )b e, falls z l rd(x) := b (aufrunden) 0, falls x < x min (underflow) NaN, falls x > x max (overflow) 1. Rechnerzahlen, Kondition, Stabilität 6 / 18

7 Rundungsfehler Definition (relative Rundungsgenauigkeit) Zu gegebenem x R mit x 0 heißt ε x := rd(x) x x relative Rundungsgenauigkeit von x. Für x = 0 sei ε x := 0, da 0 G. Genauigkeit der Rundung: Theorem 1.2 ε x ε = 1 2 b1 l beim IEEE-Standard Bemerkung: ε x = 0.12 bedeutet 12 % Rundungsfehler 1. Rechnerzahlen, Kondition, Stabilität 7 / 18

8 Maschinenoperationen auf dem Computer wird jede arithmetische Grundoperation {+,,, /} mit : R R R durch eine entsprechende Maschinenoperation ersetzt: {,,, } mit : G G G Realisierung durch: { rd(a b), falls a b xmax a b := NaN (not a number), falls a b > x max Man beachte: i.a. sind Rechengesetze verletzt, d.h. (a b) c a (b c) und (a b) c a c b c 1. Rechnerzahlen, Kondition, Stabilität 8 / 18

9 Realisierung mathematischer Funktionen auf dem Computer werden auch elementare math. Funktionen f : R R, z.b f (x) = sin(x), f (x) = e x, f (x) = x näherungsweise dargestellt durch: f f : G G Realisierung durch: { rd(f (x)), f (x) := falls f (x) xmax NaN (not a number), falls f (x) > x max + endliche Stellengenauigkeit 1. Rechnerzahlen, Kondition, Stabilität 9 / 18

10 1.2. Kondition eines Problems Definition (Problem) Unter einem Problem verstehen wir im folgenden die Aufgabe, aus einem gegebenen Vektor von Daten x R n ein Resultat y R nach einer Vorschrift f : R n R, d.h. y = f (x), zu berechnen. Beispiele: f : R 2 R, y = f (x 1, x 2 ) = x 1 x 2 f : R 2 R, y = f (x 1, x 2 ) = x 1 x1 2 x 2 f : R 2 R, y = f (x 1, x 2 ) = 1 0 sin(x 1t 2 + x 2 ) dt 1. Rechnerzahlen, Kondition, Stabilität 10 / 18

11 Fehlerquellen Eingangsdaten berechne Lsg. x R n y = f (x) Eingangsfehler x = x x exakte Lsg. y R Resultatsfehler y = y ỹ Beispiele: Messfehler Rundung von x j R auf Rechnerzahl x j = rd(x j ) G Bsp. : x j = 1 3 = }{{... 3 } = x j x j = l l - Stellen 1. Rechnerzahlen, Kondition, Stabilität 11 / 18

12 absoluter und relativer Fehler Definition (absoluter und relativer Fehler) Sei x R n eine Näherung von x R n. Dann heißt ε abs := x x ε rel := x x x absoluter Fehler der Näherung x relativer Fehler der Näherung x (Vor. x 0), wobei x die Norm des Vektors x bezeichnet z.b. x = x 2 := x x n 2 oder x = x := max x j. 1 j n Beispiele: x = 3000, x = 3060 : ε abs = 60 groß, ε rel = % x = 0.003, x = : ε abs = klein, ε rel = % 1. Rechnerzahlen, Kondition, Stabilität 12 / 18

13 Kondition eines Problems Definition (Kondition eines Problems) Die Kondition K f (x) eines Problems y = f (x) ist der größte auftretende Verstärkungsfaktor für den Einfluß des relativen Eingangsfehlers x / x auf den relativen Resultatsfehler y / y mit ỹ = f ( x), d.h. y / y K f (x) := sup x E x / x wobei E = Menge der möglichen Eingangsfehler ( 0) und y := y. Folgerung : y f (x) f ( x) = y f (x) }{{} rel. Resultatsfehler K f (x) }{{} Kondition x x x }{{} rel. Eingangsfehler 1. Rechnerzahlen, Kondition, Stabilität 13 / 18

14 Beispiel für schlechte Kondition Problem : berechne y = f (x) = 2 x für x = 2 δ, wobei 0 < δ < 0.1 klein sei x = x + x fehlerhafter Eingangswert rel. Eingangsfehler e = x < x 2 δ relativer Resultatsfehler y ỹ r = = ( 2 x) ( 2 x) y 2 ( 2 δ) r K f (x) = sup x E e x /δ x = 1 δ = x δ große Fehlerverstärkung für kleines δ ( Auslöschung ) Subtraktion von fast gleichen Zahlen i.a. schlecht konditioniert!! 1. Rechnerzahlen, Kondition, Stabilität 14 / 18

15 Berechnung relativer Konditionszahlen Problem: berechne y = f (x), x = (x 1,..., x n ), f : R n R Frage: wie wirken sich fehlerhafte Eingangsdaten x j = x j + x j, j = 1,..., n aus auf den relativen Resultatsfehler ε rel = Ergebnis: ε rel n x j f (x) f (x) x x j j x j }{{}}{{} =:k j (x) =ε j j=1 f (x + x) f (x) f (x) k j (x) = Verstärkungsfaktor des rel. Eingangsfehlers ε j von x j die k j (x) heißen relative Konditionszahlen des Problems 1. Rechnerzahlen, Kondition, Stabilität 15 / 18

16 Begriff: schlecht konditioniert Definition (Konditionierung eines Problems) Problem berechne y = f (x) heißt schlecht konditioniert, wenn sonst heißt es gut konditioniert. k(x) := max 1 j n {k j(x)} >> 1, 1. Rechnerzahlen, Kondition, Stabilität 16 / 18

17 1.3. Stabilität eines numerischen Verfahrens Definition (1.3) Ein numerisches Verfahren heißt instabil, wenn es die relativen Eingangsfehler wesentlich mehr verstärkt als die Kondition des Problems. Es heißt stabil, wenn die relativen Eingangsfehler in gleicher Größenordnung verstärkt werden wie durch die Kondition des Problems. Man beachte: hat ein Problem eine schlechte Kondition, so kann dies niemals durch ein numerisches Verfahren behoben werden aber: auch bei einem gut konditionierten Problem kann ein numerisches Verfahren eine extreme Fehlerverstärkung aufweisen (siehe folgendes Beispiel... ) 1. Rechnerzahlen, Kondition, Stabilität 17 / 18

18 Beispiel für stabiles und instabiles numer. Verfahren Problem : zu geg. x > 0 berechne y = f (x) := 1 + x 2 1 x 2 Verfahren A : nach Formel y = 1 + x 2 1 x 2 u 1 = x x u 2 = u u 3 = u 2 u 4 = u 3 1 y = u 4 /u 1 Verfahren B : nach äquivalenter Formel y = x 2 v 1 = x x v 2 = v v 3 = v 2 v 4 = v y = 1/v 4 siehe Übungsaufgabe!! 1. Rechnerzahlen, Kondition, Stabilität 18 / 18

Computerarithmetik ( )

Computerarithmetik ( ) Anhang A Computerarithmetik ( ) A.1 Zahlendarstellung im Rechner und Computerarithmetik Prinzipiell ist die Menge der im Computer darstellbaren Zahlen endlich. Wie groß diese Menge ist, hängt von der Rechnerarchitektur

Mehr

2 Rechnen auf einem Computer

2 Rechnen auf einem Computer 2 Rechnen auf einem Computer 2.1 Binär, Dezimal und Hexadezimaldarstellung reeller Zahlen Jede positive reelle Zahl r besitzt eine Darstellung der Gestalt r = r n r n 1... r 1 r 0. r 1 r 2... (1) := (

Mehr

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

Dezimalkomma (decimal point) rechts von Stelle mit Wertigkeit 100 nachfolgende Stellen haben Wertigkeit 10-1, 10-2, etc.

Dezimalkomma (decimal point) rechts von Stelle mit Wertigkeit 100 nachfolgende Stellen haben Wertigkeit 10-1, 10-2, etc. Fixpunktdarstellung Fixed-point numbers Bsp. Dezimaldarstellung Dezimalkomma (decimal point) rechts von Stelle mit Wertigkeit 100 nachfolgende Stellen haben Wertigkeit 10-1, 10-2, etc. Binärdarstellung

Mehr

2 Gleitpunktarithmetik und Fehleranalyse

2 Gleitpunktarithmetik und Fehleranalyse Numerik 47 2 Gleitpunktarithmetik und Fehleranalyse Einführendes Beispiel: Berechnung von π. y (cos(2π/n)/2, π = Umfang eines Kreises mit Radius r = 1 2, U n = Umfang eines einbeschriebenen regelmäßigen

Mehr

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14.

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14. Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Wintersemester 2009/0 4. Januar 200 Instabilitäten

Mehr

Fehler in numerischen Rechnungen

Fehler in numerischen Rechnungen Kapitel 1 Fehler in numerischen Rechnungen Analyse numerischer Rechnungen: - Welche möglichen Fehler? - Einfluss auf Endergebnis? - Nicht alles in der Comp.Phys./Numerical Analysis dreht sich um Fehler

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SoSe 0 Institut für Informatik Prof Dr Thomas Huckle Dipl-Math Jürgen Bräckle Nikola Tchipev, MSc Numerisches Programmieren, Übungen Musterlösung Übungsblatt: Zahlendarstellung,

Mehr

Gleitkommaarithmetik und Fehleranalyse

Gleitkommaarithmetik und Fehleranalyse Gleitkommaarithmetik und Fehleranalyse Olaf Schenk Departement Informatik, Universität Basel http://informatik.unibas.ch 8 Mai 2003 IEEE Gleitkommaarithmetik und Fehleranalyse 1 IEEE Gleitkommaarithmetik

Mehr

Rechnerarithmetik Ganzzahlen und Gleitkommazahlen Ac 2013

Rechnerarithmetik Ganzzahlen und Gleitkommazahlen Ac 2013 Rechnerarithmetik Ganzzahlen und Gleitkommazahlen Ac 2013 Im folgenden soll ein Überblick über die in Computersystemen bzw. Programmiersprachen verwendeten Zahlen inklusive ausgewählter Algorithmen (in

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java 1 / 34 Einstieg in die Informatik mit Java Zahldarstellung und Rundungsfehler Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 34 1 Überblick 2 Darstellung ganzer Zahlen,

Mehr

Logische Verknüpfungen. while-schleifen. Zahlendarstellung auf dem Computer. Formatierung von Zahlen in MATLAB.

Logische Verknüpfungen. while-schleifen. Zahlendarstellung auf dem Computer. Formatierung von Zahlen in MATLAB. Logische Verknüpfungen. while-schleifen. Zahlarstellung auf dem Computer. Formatierung von Zahlen in MATLAB. Logische Verknüpfungen In der letzten Sitzung haben wir kennengelernt, wie wir Zahlen mit Operationen

Mehr

in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen

in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen Gleitkommazahlen in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen allgemeine Gleitkommazahl zur Basis r

Mehr

Binäre Gleitkommazahlen

Binäre Gleitkommazahlen Binäre Gleitkommazahlen Was ist die wissenschaftliche, normalisierte Darstellung der binären Gleitkommazahl zur dezimalen Gleitkommazahl 0,625? Grundlagen der Rechnerarchitektur Logik und Arithmetik 72

Mehr

Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik

Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik Institut für Computerphysik Universität Stuttgart Wintersemester 2012/13 Wie rechnet ein Computer? Ein Mikroprozessor ist ein Netz von Transistoren,

Mehr

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer?

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer? Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen

Mehr

1 Zahlen. 1.1 Die reellen Zahlen

1 Zahlen. 1.1 Die reellen Zahlen Zahlen Die aus dem Alltagsleben bekannten rationalen Zahlen (Bruchzahlen) reichen nicht aus, um Analysis rigoros betreiben zu können. Die historische Entwicklung zeigt vielmehr, dass für die Belange der

Mehr

1. Stellenwerte im Dualsystem

1. Stellenwerte im Dualsystem 1. a) Definitionen Stellenwertsystem Ein Zahlensystem bei dem der Wert einer Ziffer innerhalb einer Ziffernfolge von ihrer Stelle abhängt, wird Stellenwertsystem genannt. Die Stellenwerte sind also ganzzahlige

Mehr

Binäre Division. Binäre Division (Forts.)

Binäre Division. Binäre Division (Forts.) Binäre Division Umkehrung der Multiplikation: Berechnung von q = a/b durch wiederholte bedingte Subtraktionen und Schiebeoperationen in jedem Schritt wird Divisor b testweise vom Dividenden a subtrahiert:

Mehr

Kapitel 2. Zahlensysteme, Darstellung von Informationen

Kapitel 2. Zahlensysteme, Darstellung von Informationen Kapitel 2 Zahlensysteme, Darstellung von Informationen 1 , Darstellung von Informationen Ein Computer speichert und verarbeitet mehr oder weniger große Informationsmengen, je nach Anwendung und Leistungsfähigkeit.

Mehr

Lektion 1: Von Nullen und Einsen _ Die binäre Welt der Informatik

Lektion 1: Von Nullen und Einsen _ Die binäre Welt der Informatik Lektion 1: Von Nullen und Einsen _ Die binäre Welt der Informatik Helmar Burkhart Departement Informatik Universität Basel Helmar.Burkhart@unibas.ch Helmar Burkhart Werkzeuge der Informatik Lektion 1:

Mehr

Grundlagen der Technischen Informatik Wintersemester 12/13 J. Kaiser, IVS-EOS

Grundlagen der Technischen Informatik Wintersemester 12/13 J. Kaiser, IVS-EOS Gleit komma zahlen Gleitkommazahlen in vielen technischen und wissenschaftlichen Anwendungen wird eine große Dynamik benötigt: sowohl sehr kleine als auch sehr große Zahlen sollen einheitlich dargestellt

Mehr

Programmieren. Kapitel 3: Wie funktioniert ein moderner Computer? Wintersemester 2008/2009. Prof. Dr. Christian Werner

Programmieren. Kapitel 3: Wie funktioniert ein moderner Computer? Wintersemester 2008/2009. Prof. Dr. Christian Werner Institut für Telematik Universität zu Lübeck Programmieren Kapitel 3: Wie funktioniert ein moderner Computer? Wintersemester 8/9 Prof. Dr. Christian Werner 3- Überblick Typische Merkmale moderner Computer

Mehr

1. Einführung. Umwelt-Campus Birkenfeld Numerische Mathematik

1. Einführung. Umwelt-Campus Birkenfeld Numerische Mathematik . Einführung Die numerische Mathematik, kur Numerik genannt, beschäftigt sich als Teilgebiet der Mathematik mit der Konstruktion und Analyse von Algorithmen für technisch-naturwissenschaftliche Probleme..

Mehr

2 Darstellung von Zahlen und Zeichen

2 Darstellung von Zahlen und Zeichen 2.1 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw. Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, d.h. Y = f

Mehr

Kapitel 1. Zahlendarstellung. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik

Kapitel 1. Zahlendarstellung. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Kapitel 1 Zahlendarstellung Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Zahlensystemkonvertierung Motivation Jede nichtnegative Zahl z lässt

Mehr

Kapitel 2 Grundlegende Konzepte. Xiaoyi Jiang Informatik I Grundlagen der Programmierung

Kapitel 2 Grundlegende Konzepte. Xiaoyi Jiang Informatik I Grundlagen der Programmierung Kapitel 2 Grundlegende Konzepte 1 2.1 Zahlensysteme Römisches System Grundziffern I 1 erhobener Zeigefinger V 5 Hand mit 5 Fingern X 10 steht für zwei Hände L 50 C 100 Centum heißt Hundert D 500 M 1000

Mehr

Technische Grundlagen der Informatik Kapitel 8. Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt

Technische Grundlagen der Informatik Kapitel 8. Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt Technische Grundlagen der Informatik Kapitel 8 Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt Kapitel 8: Themen Zahlensysteme - Dezimal - Binär Vorzeichen und Betrag Zweierkomplement Zahlen

Mehr

Zahlensysteme. Formale Methoden der Informatik WiSe 2010/2011 Folie 1 (von 71)

Zahlensysteme. Formale Methoden der Informatik WiSe 2010/2011 Folie 1 (von 71) Zahlensysteme Formale Methoden der Informatik WiSe / Folie (von 7) Teil I: Zahlensysteme. Einführung und Zahlensysteme. Zahlensysteme / Algorithmik. Zahlendarstellung im Rechner. Gleitkommazahlen / Fließpunktzahlen

Mehr

Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1

Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 vorzeichenlose Zahl: 15 vorzeichenlose Zahl: 18 vorzeichenlose Zahl: 13 Zweierkomplement: - 1

Mehr

Grundstrukturen: Speicherorganisation und Zahlenmengen

Grundstrukturen: Speicherorganisation und Zahlenmengen Zahlendarstellung Zahlen und ihre Darstellung in Digitalrechnern Grundstrukturen: Speicherorganisation und Zahlenmengen Linear organisierter Speicher zu einer Adresse gehört ein Speicher mit 3 Bit-Zellen

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Ausgabe: 2005-02-21 Abgabe: 2005-02-21 Technische Informatik - Eine

Mehr

Technische Informatik I

Technische Informatik I Technische Informatik I Vorlesung 2: Zahldarstellung Joachim Schmidt jschmidt@techfak.uni-bielefeld.de Übersicht Geschichte der Zahlen Zahlensysteme Basis / Basis-Umwandlung Zahlsysteme im Computer Binärsystem,

Mehr

3 Rechnen und Schaltnetze

3 Rechnen und Schaltnetze 3 Rechnen und Schaltnetze Arithmetik, Logik, Register Taschenrechner rste Prozessoren (z.b. Intel 4004) waren für reine Rechenaufgaben ausgelegt 4 4-Bit Register 4-Bit Datenbus 4 Kbyte Speicher 60000 Befehle/s

Mehr

Rechnerstrukturen WS 2012/13

Rechnerstrukturen WS 2012/13 Rechnerstrukturen WS 2012/13 Repräsentation von Daten Repräsentation natürlicher Zahlen (Wiederholung) Repräsentation von Texten Repräsentation ganzer Zahlen Repräsentation rationaler Zahlen Repräsentation

Mehr

183.580, WS2012 Übungsgruppen: Mo., 22.10.

183.580, WS2012 Übungsgruppen: Mo., 22.10. VU Grundlagen digitaler Systeme Übung 2: Numerik, Boolesche Algebra 183.580, WS2012 Übungsgruppen: Mo., 22.10. Aufgabe 1: Binäre Gleitpunkt-Arithmetik Addition & Subtraktion Gegeben sind die Zahlen: A

Mehr

Prof. Dr. Oliver Haase Karl Martin Kern Achim Bitzer. Programmiertechnik Zahlensysteme und Datendarstellung

Prof. Dr. Oliver Haase Karl Martin Kern Achim Bitzer. Programmiertechnik Zahlensysteme und Datendarstellung Prof. Dr. Oliver Haase Karl Martin Kern Achim Bitzer Programmiertechnik Zahlensysteme und Datendarstellung Zahlensysteme Problem: Wie stellt man (große) Zahlen einfach, platzsparend und rechnergeeignet

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik

Mehr

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1 Musterlösung 2 Mikroprozessor & Eingebettete Systeme 1 WS2014/2015 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den Einstieg

Mehr

1. 4-Bit Binärzahlen ohne Vorzeichen 2. 4-Bit Binärzahlen mit Vorzeichen 3. 4-Bit Binärzahlen im 2er Komplement 4. Rechnen im 2er Komplement

1. 4-Bit Binärzahlen ohne Vorzeichen 2. 4-Bit Binärzahlen mit Vorzeichen 3. 4-Bit Binärzahlen im 2er Komplement 4. Rechnen im 2er Komplement Kx Binäre Zahlen Kx Binäre Zahlen Inhalt. Dezimalzahlen. Hexadezimalzahlen. Binärzahlen. -Bit Binärzahlen ohne Vorzeichen. -Bit Binärzahlen mit Vorzeichen. -Bit Binärzahlen im er Komplement. Rechnen im

Mehr

Noch für heute: primitive Datentypen in JAVA. Primitive Datentypen. Pseudocode. Dezimal-, Binär- und Hexadezimalsystem. der logische Typ boolean

Noch für heute: primitive Datentypen in JAVA. Primitive Datentypen. Pseudocode. Dezimal-, Binär- und Hexadezimalsystem. der logische Typ boolean 01.11.05 1 Noch für heute: 01.11.05 3 primitie Datentypen in JAVA Primitie Datentypen Pseudocode Name Speichergröße Wertgrenzen boolean 1 Byte false true char 2 Byte 0 65535 byte 1 Byte 128 127 short 2

Mehr

Ein erstes Java-Programm

Ein erstes Java-Programm Ein erstes Java-Programm public class Rechnung { public static void main (String [] arguments) { int x, y; x = 10; y = -1 + 23 * 33 + 3 * 7 * (5 + 6); System.out.print ("Das Resultat ist "); System.out.println

Mehr

Softwareentwicklung in der Wissenschaft

Softwareentwicklung in der Wissenschaft Softwareentwicklung in der Wissenschaft Eine Einführung Sandra Schröder Department Informatik Arbeitsbereich Wissenschaftliches Rechnen Universität Hamburg 9.12.2010 Seminar: Softwareentwicklung in der

Mehr

Wozu wird ein Rechensystem genutzt? Informationsverarbeitung Information. Information. Interpretation, Abstraktion. Repräsentation.

Wozu wird ein Rechensystem genutzt? Informationsverarbeitung Information. Information. Interpretation, Abstraktion. Repräsentation. Wozu wird ein Rechensystem genutzt? Wunsch: Informationsverarbeitung Information Repräsentation Daten Informationsverarbeitung Datenverarbeitung Wirklichkeit: Datenverarbeitung Information Daten Interpretation,

Mehr

Beispiel: e x. Fehler

Beispiel: e x. Fehler Beispiel: e x Computerintensive Methoden Friedrich Leisch Institut für Statistik Ludwig-Maximilians-Universität München WS 2010/2011 2 Maschinenzahlen & Computerarithmetik Reihendarstellung: Funktioniert

Mehr

Aufbau und Funktionsweise eines Computers

Aufbau und Funktionsweise eines Computers Aufbau und Funktionsweise eines Computers Thomas Röfer Hardware und Software von Neumann Architektur Schichtenmodell der Software Zahlsysteme Repräsentation von Daten im Computer Hardware Prozessor (CPU)

Mehr

Einführung in die Numerische Mathematik

Einführung in die Numerische Mathematik Einführung in die Numerische Mathematik Thomas Richter thomas.richter@iwr.uni-heidelberg.de Thomas Wick thomas.wick@iwr.uni-heidelberg.de Universität Heidelberg 30. Oktober 2012 Inhaltsverzeichnis Literaturverzeichnis

Mehr

TOTAL DIGITAL - Wie Computer Daten darstellen

TOTAL DIGITAL - Wie Computer Daten darstellen TOTAL DIGITAL - Wie Computer Daten darstellen Computer verarbeiten Daten unter der Steuerung eines Programmes, das aus einzelnen Befehlen besteht. Diese Daten stellen Informationen dar und können sein:

Mehr

Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754. Berechnung von Gleitkommazahlen aus Dezimalzahlen. HSLU T&A Informatik HS10

Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754. Berechnung von Gleitkommazahlen aus Dezimalzahlen. HSLU T&A Informatik HS10 Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754 Berechnung von Gleitkommazahlen aus Dezimalzahlen Die wissenschaftliche Darstellung einer Zahl ist wie folgt definiert: n = f * 10 e. f ist

Mehr

Binärdarstellung von Fliesskommazahlen

Binärdarstellung von Fliesskommazahlen Binärdarstellung von Fliesskommazahlen 1. IEEE 754 Gleitkommazahl im Single-Format So sind in Gleitkommazahlen im IEEE 754-Standard aufgebaut: 31 30 24 23 0 S E E E E E E E E M M M M M M M M M M M M M

Mehr

Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen

Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen Kapitel 4: Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen Einführung in die Informatik Wintersemester 2007/08 Prof. Bernhard Jung Übersicht Codierung von rationalen Zahlen Konvertierung

Mehr

Numerische Datentypen. Simon Weidmann

Numerische Datentypen. Simon Weidmann Numerische Datentypen Simon Weidmann 08.05.2014 1 Ganzzahlige Typen 1.1 Generelles Bei Datentypen muss man immer zwei elementare Eigenschaften unterscheiden: Zuerst gibt es den Wertebereich, zweitens die

Mehr

Algorithmische Mathematik

Algorithmische Mathematik Algorithmische Mathematik Skript zur Vorlesung im Wintersemester 2007/8 und Sommersemster 2008 Helmut Harbrecht Stand: 14. Oktober 2008 3 Vorwort Diese Mitschrift kann und soll nicht ganz den Wortlaut

Mehr

Gleitkomma-Arithmetik führt zu ungenauen Ergebnissen in Excel

Gleitkomma-Arithmetik führt zu ungenauen Ergebnissen in Excel 1 von 5 26.09.2008 13:03 Gleitkomma-Arithmetik führt zu ungenauen Ergebnissen in Excel Produkte anzeigen, auf die sich dieser Artikel beziehtdieser Artikel wurde zuvor veröffentlicht unter D38732 Artikel

Mehr

5. Übung: Binäres Rechnen und Fließkommazahlen Abteilung Verteilte Systeme, Universität Ulm

5. Übung: Binäres Rechnen und Fließkommazahlen Abteilung Verteilte Systeme, Universität Ulm 5. Übung: Binäres Rechnen und Fließkommazahlen Aufgabe 1: Binäres Rechnen a) Berechnen Sie: x = 01100101b*(0101101b-10110100b)+10101b. Alle Zahlen sind 8 Bit breit und in Zweierkomplement-Notation angegeben.

Mehr

bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke

bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke Rechnerarithmetik Rechnerarithmetik 22 Prof. Dr. Rainer Manthey Informatik II Übersicht bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke in diesem

Mehr

Arithmetik. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck

Arithmetik. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Arithmetik Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Übersicht Zahlendarstellung Addition und Subtraktion Multiplikation Division Fest- und Gleitkommazahlen

Mehr

Zur Universalität der Informatik. Gott ist ein Informatiker. Die Grundordnung der Welt läßt sich mathematisch formulieren:

Zur Universalität der Informatik. Gott ist ein Informatiker. Die Grundordnung der Welt läßt sich mathematisch formulieren: Daten und ihre Codierung Seite: 1 Zur Universalität der Informatik Gott ist ein Informatiker Die Grundordnung der Welt läßt sich mathematisch formulieren: Naturgesetze, wie wir sie in der Physik, Chemie

Mehr

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten:

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten: KAPITEL 4 Lineare Ausgleichsrechnung Beispiel 41 Das Ohmsche Gesetz: Eine Meßreihe von Daten: U = RI (U i, I i ) (Spannung, Stromstärke), i = 1,, m Aufgabe: man bestimme aus diesen Meßdaten den Widerstand

Mehr

Das Rechnermodell - Funktion

Das Rechnermodell - Funktion Darstellung von Zahlen und Zeichen im Rechner Darstellung von Zeichen ASCII-Kodierung Zahlensysteme Dezimalsystem, Dualsystem, Hexadezimalsystem Darstellung von Zahlen im Rechner Natürliche Zahlen Ganze

Mehr

Darstellung von Informationen

Darstellung von Informationen Darstellung von Informationen Bit, Byte, Speicherzelle und rbeitsspeicher Boolesche Operationen, Gatter, Schaltkreis Bit Speicher (Flipflop) Binär- Hexadezimal und Dezimalzahlensystem, Umrechnungen Zweierkomplement

Mehr

Zahlendarstellungen und Rechnerarithmetik*

Zahlendarstellungen und Rechnerarithmetik* Zahlendarstellungen und Rechnerarithmetik* 1. Darstellung positiver ganzer Zahlen 2. Darstellung negativer ganzer Zahlen 3. Brüche und Festkommazahlen 4. binäre Addition 5. binäre Subtraktion *Die Folien

Mehr

a) Da die Zahlen im IEEE-32Bit-Format dargestellt werden sollen, ist der Bias = 127.

a) Da die Zahlen im IEEE-32Bit-Format dargestellt werden sollen, ist der Bias = 127. Übung 2, Aufgabe 4) a) Da die Zahlen im IEEE-32Bit-Format dargestellt werden sollen, ist der Bias = 127. 1,125 in IEEE 754 (32Bit) 0,125 2 = 0,25 0,25 2 = 0,5 0,5 2 = 1 1,125 10 = 1,001 2 Da die Zahl bereits

Mehr

Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme

Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme Grundlagen der Informatik 2 Grundlagen der Digitaltechnik 1. Zahlensysteme Prof. Dr.-Ing. Jürgen Teich Dr.-Ing. Christian Haubelt Lehrstuhl für Hardware-Software Software-Co-Design Grundlagen der Digitaltechnik

Mehr

In diesem Abschnitt werden die verschiedenen (diskreten) Zahldarstellungen im Computer diskutiert, insbesondere die floating point Darstellung.

In diesem Abschnitt werden die verschiedenen (diskreten) Zahldarstellungen im Computer diskutiert, insbesondere die floating point Darstellung. 2 Zahlen und Fehler Literatur zu diesem Teil: Zu Zahlen und Fehlern: Numerical Recipes [1], Stoer [2], Hamming [3]. Zum Benfordschen Gesetz: Hamming [3], Kapitel 2.8, und [4-7]. 2.1 Zahldarstellungen In

Mehr

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1 Musterlösung 2 Mikroprozessor & Eingebettete Systeme 1 WS2013/2014 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den Einstieg

Mehr

Inhalt: Binärsystem 7.Klasse - 1 -

Inhalt: Binärsystem 7.Klasse - 1 - Binärsystem 7.Klasse - 1 - Inhalt: Binärarithmetik... 2 Negative Zahlen... 2 Exzess-Darstellung 2 2er-Komplement-Darstellung ( two s complement number ) 2 Der Wertebereich vorzeichenbehafteter Zahlen:

Mehr

Inhalt 1 Natürliche Zahlen 2 Addition und Subtraktion natürlicher Zahlen 3 Multiplikation und Division natürlicher Zahlen

Inhalt 1 Natürliche Zahlen 2 Addition und Subtraktion natürlicher Zahlen 3 Multiplikation und Division natürlicher Zahlen Inhalt 1 Natürliche Zahlen 1.1 Der Zahlbegriff... 6 1.2 Das Zehnersystem... 7 1.3 Andere Stellenwertsysteme... 8 1.4 Römische Zahlen... 10 1.5 Große Zahlen... 11 1.6 Runden... 13 1.7 Rechnen mit Einheiten...

Mehr

Das Maschinenmodell Datenrepräsentation

Das Maschinenmodell Datenrepräsentation Das Maschinenmodell Datenrepräsentation Darstellung von Zahlen/Zeichen in der Maschine Bit (0/1) ist die kleinste Informationseinheit Größere Einheiten durch Zusammenfassen mehrerer Bits, z.b. 8 Bit =

Mehr

620.900 Propädeutikum zur Programmierung

620.900 Propädeutikum zur Programmierung 620.900 Propädeutikum zur Programmierung Andreas Bollin Institute für Informatik Systeme Universität Klagenfurt Andreas.Bollin@uni-klu.ac.at Tel: 0463 / 2700-3516 Lösung der Aufgaben (1/2) Lösung Aufgabe

Mehr

Teil II. Schaltfunktionen

Teil II. Schaltfunktionen Teil II Schaltfunktionen 1 Teil II.1 Zahlendarstellung 2 b-adische Systeme Sei b IN mit b > 1 und E b = {0, 1,..., b 1} (Alphabet). Dann ist jede Fixpunktzahl z (mit n Vorkomma und k Nachkommastellen)

Mehr

Leseprobe. Taschenbuch Mikroprozessortechnik. Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-42331-2

Leseprobe. Taschenbuch Mikroprozessortechnik. Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-42331-2 Leseprobe Taschenbuch Mikroprozessortechnik Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-4331- Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-4331-

Mehr

D A T E N... 1 Daten Micheuz Peter

D A T E N... 1 Daten Micheuz Peter D A T E N.....! Symbole, Alphabete, Codierung! Universalität binärcodierter Daten! Elementare Datentypen! Speicherung binärcodierter Daten! Befehle und Programme! Form und Bedeutung 1 Daten Micheuz Peter

Mehr

2 Einfache Rechnungen

2 Einfache Rechnungen 2 Einfache Rechnungen 2.1 Zahlen Computer, auch bekannt als Rechner, sind sinnvoller eingesetzt, wenn sie nicht nur feste Texte ausgeben, sondern eben auch rechnen. Um das Rechnen mit Zahlen zu verstehen,

Mehr

Einführung in die Informatik für Hörer aller Fakultäten II. Andreas Podelski Stephan Diehl Uwe Waldmann

Einführung in die Informatik für Hörer aller Fakultäten II. Andreas Podelski Stephan Diehl Uwe Waldmann Einführung in die Informatik für Hörer aller Fakultäten II Andreas Podelski Stephan Diehl Uwe Waldmann 1 Einführung in die Informatik für Hörer aller Fakultäten II Andreas Podelski Stephan Diehl Uwe Waldmann

Mehr

Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird.

Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird. Zahlensysteme Definition: Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird. In der Informatik spricht man auch von Stellenwertsystem,

Mehr

Zahlen und Zeichen (1)

Zahlen und Zeichen (1) Zahlen und Zeichen () Fragen: Wie werden Zahlen repräsentiert und konvertiert? Wie werden negative Zahlen und Brüche repräsentiert? Wie werden die Grundrechenarten ausgeführt? Was ist, wenn das Ergebnis

Mehr

MATTHIAS GERDTS NUMERISCHE MATHEMATIK I. Universität Würzburg WiSe 2009/2010

MATTHIAS GERDTS NUMERISCHE MATHEMATIK I. Universität Würzburg WiSe 2009/2010 MATTHIAS GERDTS NUMERISCHE MATHEMATIK I Universität Würzburg WiSe 2009/2010 Addresse des Authors: Matthias Gerdts Institut für Mathematik Universität Würzburg Am Hubland 97074 Würzburg E-Mail: gerdts@mathematik.uni-wuerzburg.de

Mehr

Negative Zahlen. Lösung: Ordne in einen Zahlenstrahl ein! 7;5; 3; 6. Das Dezimalsystem

Negative Zahlen. Lösung: Ordne in einen Zahlenstrahl ein! 7;5; 3; 6. Das Dezimalsystem Negative Zahlen Negative Zahlen Ordne in einen Zahlenstrahl ein! 7;5; 3; 6 Das Dezimalsystem Zerlege in Stufen! Einer, Zehner, usw. a) 3.185.629 b) 24.045.376 c) 3.010.500.700 Das Dezimalsystem a) 3M 1HT

Mehr

2.0 Zahlendarstellung, Konvertierungsalgorithmen und arithmetische Algorithmen

2.0 Zahlendarstellung, Konvertierungsalgorithmen und arithmetische Algorithmen 2.0 Zahlendarstellung, Konvertierungsalgorithmen und arithmetische Algorithmen Ziele dieses Kapitels Kennenlernen wesentlicher Zahlensysteme und die Konvertierung von Zahlen zwischen unterschiedlichen

Mehr

Numerische Mathematik

Numerische Mathematik Inhaltsverzeichnis Vorlesungsskript Numerische Mathematik Wintersemester 011/01 Goethe-Universität Frankfurt am Main Prof. Dr. Thomas Gerstner Stand: 7. März 01 1 Fehleranalyse 3 1.1 Zahldarstellung..........................................

Mehr

Wintersemester Maschinenbau und Kunststofftechnik. Informatik. Tobias Wolf http://informatik.swoke.de. Seite 1 von 16

Wintersemester Maschinenbau und Kunststofftechnik. Informatik. Tobias Wolf http://informatik.swoke.de. Seite 1 von 16 Kapitel 5 Arithmetische Operatoren Seite 1 von 16 Arithmetische Operatoren - Man unterscheidet unäre und binäre Operatoren. - Je nachdem, ob sie auf einen Operanden wirken, oder eine Verknüpfung zweier

Mehr

Extremwertverteilungen

Extremwertverteilungen Seminar Statistik Institut für Stochastik 12. Februar 2009 Gliederung 1 Grenzwertwahrscheinlichkeiten 2 3 MDA Fréchet MDA Weibull MDA Gumbel 4 5 6 Darstellung von multivariaten, max-stabilen Verteilungsfunktionen

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Mag. Christian Gürtler Programmierung Grundlagen der Informatik 2011 Inhaltsverzeichnis I. Allgemeines 3 1. Zahlensysteme 4 1.1. ganze Zahlen...................................... 4 1.1.1. Umrechnungen.................................

Mehr

Tool zur Steuerung & Regelung

Tool zur Steuerung & Regelung Tool zur Steuerung & Regelung Toolsammlung von Konvertierungs-Bausteinen für Datentypumwandlungen Toolsammlung für Konvertierungs-Bausteine Gewährleistung, Haftung und Support Hinweis Funktionsbausteine

Mehr

Modul Einführung in die Informatik : Aufgaben zur Großübung 4 Thema: Python I

Modul Einführung in die Informatik : Aufgaben zur Großübung 4 Thema: Python I Modul Einführung in die Informatik : Aufgaben zur Großübung 4 Thema: Python I 1) Berechnung der Fakultät (von einer ganzen Zahl >= 0) a) Nichtrekursive Berechnung der Fakultät (vgl. Aufg.-komplex Struktogramme,

Mehr

Praktische Mathematik I

Praktische Mathematik I Praktische Mathematik I ausgearbeitet von Sandra Görke und Simon Jörres nach einer Vorlesung von Prof Dr Angela Kunoth im Wintersemester 2002/2003 an der Rheinischen Friedrich Wilhelms Universität Bonn

Mehr

Übung RA, Kapitel 1.2

Übung RA, Kapitel 1.2 Übung RA, Kapitel 1.2 Teil 1: Zahlen und Logik A) Aufgaben zu den ganzen Zahlen 1. Konvertieren Sie die folgenden Zahlen in die Binärform: 1984 Immer durch 2 teilen, der Rest ergibt das Bit. Jeweils mit

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Informatik II. Kodierung. Kodierung. Kodierung Kodierung. Rainer Schrader. 24. Oktober 2008. Ein Alphabet Σ ist eine endliche Menge.

Informatik II. Kodierung. Kodierung. Kodierung Kodierung. Rainer Schrader. 24. Oktober 2008. Ein Alphabet Σ ist eine endliche Menge. Informatik II Rainer Schrader Zentrum für Angewandte Informatik Köln 24. Oktober 2008 1 / 1 2 / 1 Ein Alphabet Σ ist eine endliche Menge. hat mehrere Bedeutungen: (das Erstellen von Programmcode) die Darstellung

Mehr

Übungsaufgaben Java. Vorlesung Cloud Computing SoSe 2009. Cloud Computing SoSe 2009 Dr. M.Kunze 1

Übungsaufgaben Java. Vorlesung Cloud Computing SoSe 2009. Cloud Computing SoSe 2009 Dr. M.Kunze 1 Übungsaufgaben Java Vorlesung Cloud Computing SoSe 2009 Cloud Computing SoSe 2009 Dr. M.Kunze 1 Übung J1 Installieren Sie das Java Software-Entwicklungspaket JDK 6 Update 13 http://java.sun.com/javase/downloads/index.jsp

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 8 Projektive Invarianz und das kanonische Kamerapaar Kanonisches Kamerapaar aus gegebener Fundamentalmatrix Freiheitsgrade

Mehr

1. Grundlegende Konzepte der Informatik

1. Grundlegende Konzepte der Informatik 1. Grundlegende Konzepte der Informatik Inhalt Algorithmen Darstellung von Algorithmen mit Programmablaufplänen Beispiele für Algorithmen Aussagenlogik Zahlensysteme Kodierung Peter Sobe 1 Algorithmen

Mehr

Rechnerarithmetik. Vorlesung im Sommersemester 2008. Eberhard Zehendner. FSU Jena. Thema: Die Standards ANSI/IEEE 754 und 854

Rechnerarithmetik. Vorlesung im Sommersemester 2008. Eberhard Zehendner. FSU Jena. Thema: Die Standards ANSI/IEEE 754 und 854 Rechnerarithmetik Vorlesung im Sommersemester 2008 Eberhard Zehendner FSU Jena Thema: Die Standards ANSI/IEEE 754 und 854 Eberhard Zehendner (FSU Jena) Rechnerarithmetik Die Standards ANSI/IEEE 754 und

Mehr

Vertiefungsstoff zum Thema Darstellung von Zahlen

Vertiefungsstoff zum Thema Darstellung von Zahlen Vertiefungsstoff zum Thema Darstellung von Zahlen Addition von Zahlen in BCD-Kodierung Einerkomplementdarstellung von ganzen Zahlen Gleitpunktdarstellung nach dem IEEE-754-Standard 1 Rechnen mit BCD-codierten

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

1 : Die Rechnungsarten

1 : Die Rechnungsarten 1 von 22 23.10.2006 14:08 0 : Inhalt von Kapitel DAT 1 : Die Rechnungsarten 2 : Die Worte 3 : Hilfsprozessoren 4 : Binäre Zahlendarstellung 5 : Interpretationen 6 : Division mit Rest 7 : Horner Schema

Mehr

6. KLASSE MATHEMATIK GRUNDWISSEN

6. KLASSE MATHEMATIK GRUNDWISSEN 6. KLASSE MATHEMATIK GRUNDWISSEN Thema BRÜCHE Bruchteil - Man teilt das Ganze durch den Nenner und multipliziert das Ergebnis mit dem Zähler von 24 kg = (24 kg : 4) 2 = 6 kg 2 = 12 kg h = von 1 h = (1

Mehr

Einführung in die Java- Programmierung

Einführung in die Java- Programmierung Einführung in die Java- Programmierung Dr. Volker Riediger Der hat die früher handschriftlichen Folien lesbar gemacht. Tassilo Horn riediger horn@uni-koblenz.de WiSe 2012/13 1 Heutige Themen Hello World!

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr