Fourier-Transformation: Grundlagen

Größe: px
Ab Seite anzeigen:

Download "Fourier-Transformation: Grundlagen"

Transkript

1 Fourier-Transformation: Grundlagen Rebecca Schulz Seminar: Integraltransformationen Dozent: Prof. Dr. Raimar Wulkenhaar WS 01/013 Westfälische Wilhelms-Universität Münster

2 Inhaltsverzeichnis 1 Definition: Fourier-Transformation 3 Eigenschaften der Fourier-Transformation 4 3 Faltung 7 4 inverse Fourier-Transformation/Plancherelformel 8 5 Anhang Literaturverzeichnis

3 1 Definition: Fourier-Transformation Die Fourier-Transformation erlaubt es ein Zeitsignal einer aperiodischen Funktion f(x) in ein Spektrum F (ω) zu zerlegen. Dabei gibt f(x) den Zeitbereich an und F (ω) den Frequenzbereich. Demnach kann angenommen werden, dass x = Zeit ist und ω= Frequenz. Die Fouriertransformation sieht wie folgt aus: Definiton 1.1: Sei f L 1 (R). Dann gilt für alle x, ω R : F f (ω) f(x)e iωx dx bezeichnet die Fourier-Transformation von f. Ist f L 1 (R n ) mit n 1 gilt : 1 F f (ω) = ( ) n f(x)e i<x,ω> dx. Dabei stellt < x, ω > das Skalarprodukt dar. Die Fourier-Transformation ist also eine Abbildung der Form: f(x) F (ω, x). Dabei stellt e iωx beziehungsweise e i<x,ω> den Integrationskern der Fourier-Transformation dar. Bemerkung 1.: Im Weiteren beschäftigen wir uns mit der Fourier-Transformation im L 1 (R). Die Sätze gelten entsprechend im L 1 (R n ). Folgerung 1.3: Sei f L 1 (R) eine gerade Funktion und x R 0, dann gilt: F cos (ω) = f(x) cos(ωx)dx π 0 bezeichnet die Kosinus-Transformation von f. Folgerung 1.4: Sei f L 1 (R) eine ungerade Funktion und x R 0,dann gilt: F sin (ω) = f(x)( sin(ωx))dx π 0 bezeichnet die Sinus-Transformation von f. 3

4 Beweis: (1.3/1.4) Klar, einfach aus F f (ω) herleiten. Eigenschaften der Fourier-Transformation Viele der gelernten Eigenschaften aus Linearer Algebra I & II und Analysis I & II für Funktionen gelten auch für die Fourier-Transformation. Satz.1: Seien f, g L 1 (R) und a,b C. Es gilt: (i) F (ω) ist linear: F af+bg (ω) = af f (ω) + bf g (ω) (ii) F (ω) ist beschränkt: F f (ω) f 1 (iii) Für die komplex konjugierte Fourier-Transformation gilt: F f (ω) = F f ( ω) mit f(x) R. Beweis: (i) Klar, einfach ausrechnen. (ii) F f (ω) = 1 f(x)e iωx dx 1 f(x) = }{{} e iωx =1 f(x) dx f(x) dx = f 1 e iωx dx (iii)f f ( ω) f(x)e i( ω)x dx f(x)eiωx dx f(x)e iωx dx = F f (ω) Satz.: F f (ω) ist eine stetige und konvergente Funktion. Beweis: Die Stetigkeit der Fourier-Transformation beweisen wir über Folgenstetigkeit. Dazu definieren wir uns eine beliebige Folge ω n in R mit ω n ω R für n. Dann gilt: lim n F f (ω n ) = lim n 1 f(x)e iωnx dx 4

5 1 }{{} = f(x)e iωx dx Satz der dominierten Konvergenz = F f (ω) Die Konvergenz folgt aus dem folgenden Lemma. Lemma.3: (Riemann-Lebesgue-Lemma)Sei f L 1 (R). Es gilt: lim ω F f (ω) = 0. lim ω F f (ω) = 0. Beweis: [Vgl. 5, S.96f] Bemerkung.4: Ist f(x) R für alle x R eine gerade Funktion, so ist F f (ω) ebenfalls eine gerade Funktion R. Ist f(x) R für alle x R eine ungerade Funktion, so ist F f (ω) ebenfalls ungerade und rein imaginär. Beweis: Wir beweisen den zweiten Teil, der erste Teil geht analog. F f (ω) f(x)e iωx dx 1 }{{} = f(x)(cos(ωx) isin(ωx))dx Euler = 1 ( f(x)cos(ωx)dx i f(x)sin(ωx)dx) i }{{} = f(x)sin(ωx)dx cos gerade Definition und Satz.5: (n-te Moment)Sei f eine n-mal stetig differenzierbare Funktion und für die k-ten Ableitungen gelte f (k) L 1 (R) für alle k n. Dann gilt: F f (n)(ω) = (iω) n F f (ω) n stellt das n-te Moment dar. Beweis per Induktion: Induktionsanfang bei n = 1: F f (1)(ω) f (1) (x)e iωx dx = }{{} partielle Integration 1 [f(x)e iωx dx] + iω f(x)e iωx dx }{{} = iωf f (ω) lim x +/ f=0 Induktionsschluss: Die Induktionsvoraussetzung F f (n)(ω) = (iω) n F f (ω) gilt für beliebiges n N. 5

6 Induktionsschritt: n n + 1 : F f (n+1)(ω) f (n+1) (x)e iωx dx [f (n) (x)e iωx dx] + iω f ( n)(x)e iωx dx [f (n 1) (x)e iωx dx] + (iω) f (n 1) (x)e iωx dx =... = (iω)n+1 f(x)e iωx dx Bemerkung.6: Die Formel vom n ten M oment wird benötigt, um Differentialgleichungen zu lösen. Satz.7: Sei xn f(x) dx für alle n N konvergent und f L 1 (R). Dann ist F f (ω) n-mal stetig differenzierbar und genügt folgender Gleichung: F x n f(x)(ω) = in d n dω n F f(ω). Beweis der Formel per Induktion: Induktionsanfang für n=1: d F dω f(ω) = d dω f(x)e iωx dx = 1 = i d dω [f(x)e iωx ]dx xf(x)e iωx dx = if xf(x) (ω) id dω F f(ω) = F xf(x) (ω) Induktionsschluss: Die Induktionsvoraussetzung F x n f(x)(ω) = in d n dω n F f (ω) gilt für beliebiges n N. Induktionsschritt: n n + 1 : d n+1 F dω n+1 f (ω) = dn+1 1 dω n+1 f(x)e iωx dx = 1 dn+1 [f(x)e iωx ]dx dω n+1 ( ix)n+1 f(x)e iωx dx = 1 = in+1 xn+1 f(x)e iωx dx in+1 d n+1 dω n+1 F f (ω) = F x n+1 f(x) Korollar.8: Seien f, g L 1 (R) und a, b R mit a 0 und g(x)=f(ax+b) Dann gilt: F g (ω) = 1 b a eiω a Ff ( ω a ). Beweis: F g (ω) f(ax + b)e iωx dx Substituiere z = ax + b x = z b F g (ω) = 1 iω(z b) dz f(z)e a a = e iωb a 1 F a f( ω) a iωz f(z)e a a + iωb a a dz = dz dx = a Daraus folgt nun: 6

7 Folgerung.9: Sei im vorigen Korollar a=1, dann gilt: F g (ω) = e iωb F f (ω). Sei b=0, dann gilt: F g (ω) = 1 a F f( ω a ). Diese Funktion wird auch als eine um a skalierte Funktion bezeichnet. Für a>1 wird von Stauchung gesprochen und für a<1 von Streckung. Beweis: Klar, einfach ausrechnen. Satz.10: (Berechnung F (ω) für rationale Funktionen)Für ω 0 sei C R die untere Hälfte des Einheitskreises und für ω 0 sei C R, die obere Hälfte des Einheitskreises jeweils von der Länge πr. Hat f(x) eine analytische Fortsetzung f(z) mit z C, Definitionslücken bei z a C R und z b C R, ist f absolut integrierbar auf ganz R und gilt lim R max z CR C R f(z) = 0, dann gilt: F (ω) = i b Res[f(z)e iωz ; z b ] für ω 0 für ω 0. F (ω) = i a Res[f(z)e iωz ; z a ] Beweis: Folgt aus dem Residuensatz. 3 Faltung In der Mathematik gibt es viele Rechenoperationen, um aus zwei Funktionen eine neue Funktion zu erstellen. In diesem Kapitel beschäftigen wir uns mit einer neuen Rechenoperation - der sogenannten Faltung. Dieses Kapitel bezieht sich hauptsächlich auf das Buch von Pinkus und Zafrany [5]. Definition 3.1: Seien f, g L 1 (R). Es gilt für fast alle x R : (f g)(x) = f(x y)g(y)dy 7

8 (f g)(x) = f(y)g(x y)dy. Die Forderung, dass f, g L 1 (R) (und nicht in L (R) sein müssen) reicht hier aus. Schließlich wissen wir, dass (x, y) f(x)g(y) über R integrierbar ist. Wenden wir den Transformationssatz ((x) (x y)) an, ist auch f(x y)g(y) über R integrierbar. Nach Fubini existiert das y-integral und die Faltung ist über x integrierbar. Hieraus folgen 3. und 3.3: Folgerung 3.: Die Rechenoperation der Faltung ist kommutativ, das heißt es gilt: f g = g f. Proposition 3.3: Sind f, g L 1 (R), dann existiert f g und ist absolut integrierbar. Satz 3.4: (Faltungssatz)Seien f, g L 1 (R), dann gilt: F f g (ω) = F f (ω)f g (ω). Beweis: Aus der vorigen Proposition folgt, dass f und g absolut integrierbar sind. F f g (ω) = }{{} 1.1 = }{{} 3.1 }{{} = Satz von F ubini (f g)(x)e iωx dx ( (f(x y)g(y)dy))e iωx dx f(x y)e iω(x y) g(y)e iωy dxdy = ( 1 f(x y)e iω(x y) dx)g(y)e iωy dy Substituiere z = x y x = z + y = dx = dz. Dann gilt: F f g (ω) = ( 1 f(z)e iωz dz)g(y)e iωy dy = F f (ω) g(y)e iωy dy = F f (ω) F g (ω) 4 inverse Fourier-Transformation/Plancherelformel Die Fourier-Transformation kann rückgängig gemacht werden, wodurch die ursprüngliche Funktion f(x) wieder erhalten wird. Satz 4.1: (Umkehrformel)Seien f, F f L 1 (R). Dann gilt für fast alle x R : f(x) F f (ω)e iωx dω. 8

9 Beweis: Für λ > 0 definiere g λ (x) F f(ω)e iωx e λ ω dω. Aus.1 wissen wir, dass F f (ω) beschränkt ist. Somit existiert dieses Integral für λ > 0. Es gilt: 1 g λ (x) }{{} = ( 1 f(y)e iωy dy)e iωx e (λω) dω }{{} = dω 1 dyf(y + x)e iωy e (λω) T ransformationssatz y y + x Nun wissen wir, dass (y, ω) f(y)e (λω) über R integrierbar ist. Nach Hölder bleibt dies auch nach der Verschiebung (y y + x) und der Multiplikation mit der L - Funktion e iωy (**). Betrachte die Funktion h(x) = e (λx) und bestimme die Fourier-Transformation F h (ω): F h (ω) e λ x iωx dx = }{{} = }{{} u=x iω λ λ ausklammern,quadr. Ergänzung Nun benutze die Γ-Funktion: Γ(x) = 0 t x 1 e t dt. Schließlich gilt: λ iω e (x λ ) dx e λ u du = = Γ( 1 ) λ = λ. Dann ist F h (ω) = 1 λ e ω λ. 0 e λ u du = Somit gilt mit x ω und ω y : }{{} t= λ u (λω) e t dt 0 e = uλ }{{} u= t e iωy = λ e ω λ λ y e λ. e λ (x iω λ ) dx. t λdt 0 e tλ = λ 0 Setze 1 y e λ λ =: δ λ (y) (Dirac-Folge) Wegen (**) dürfen wir Fubini anwenden und erst das ω-integral berechnen: g λ (x) dy f(y + x)δ λ(y). Zum Einen muss nun noch gezeigt werden, dass gilt: lim λ 0 g λ (x) = f(x) in der L 1-1 Norm. Hierfür verwende, dass gilt: λ e y λ dy }{{} = 1. Gaußsches F ehlerintegral λ dy. λ y Dadurch ergibt sich: f(x) g λ (x) = 1 (f(x) f(x + y)) e Zum Anderen muss bewiesen werden, dass F f (ω)e iωx e (λω) für λ 0 punktweise gegen F f (ω)e iωx konvergiert und F f (ω)e iωx e (λω) durch F f (ω) beschränkt ist. Mit dem Satz der dominierten Konvergenz folgt dann: 1 F f(ω)e iωx dω = lim λ 0 g λ (x). Beides zusammen liefert dann die Behauptung. [Vgl. 9, S. 118ff] Satz 4.: (doppelte Fouriertransformation)Seien f, F f L 1 (R). Dann gilt: F Ff (x) f( x). e t t 1 dt 9

10 Beweis: F Ff (ω)(x) F f(ω)e iωx dω F f(ω)e iω( x) dω f( x) Satz 4.3: (Satz von Plancherel)Seien f, g L (R), dann gilt: f(x)g(x)dx = F f (ω)f g (ω)dω. Beweis: Wir wissen, da f & g L (R), dass f(x)g(x) L 1 (R) ist nach Hölder. Zudem ist e iωx integrierbar, sodass wir den Satz von Fubini anwenden dürfen. f(x)g(x)dx }{{} = 1 ( F f(ω)e iωx dω)g(x)dx 4.1 = 1 F f(ω)g(x)e iωx dx dω = F f(ω)( 1 g(x)e iωx dx)dω }{{} = F f(ω)f g (ω)dω 1.1 Satz 4.4: (Energieerhaltungsformel)Sei f L (R), dann gilt: f(x) dx = F f (ω) dω. Die linke Seite stellt das Energiesignal in Abhängigkeit von der Zeit dar. Die rechte Seite repräsentiert die Energie abhängig von der Frequenz. Beweis: Die Formel folgt aus dem Satz von Plancherel mit f=g 10

11 5 Anhang 5.1 Literaturverzeichnis Die Literaturangaben sind alphabetisch nach dem Namen der Autoren angeordnet. Bei der Angabe mehrerer Autoren, ist der Name des ersten Autors berücksichtigt. [1] B. Forster, Fourier- und Laplace-Transformation, Vorlesungsskript TU München, (Stand September 01) [] O. Forster, J. Wehler, Fourier-Transformation und Wavelets, Vorlesungskript LMU München, (Stand Oktober 01) [3] K. Gerhardt, Lehrbuch der Mathematik, Analysis I, =8hm6ZdsdA0QC&pg=&lpg=PA86&dq=beweis++absolut+integrierbar&source =bl&ots=djtsfibjmf&sig=nybv-snwembbtvkppmx3oipv8o&hl=de&sa=x&ei =MBR5UJ-lAozDtAag1IDgBA&ved=0CCQQ6AEwAAv=onepage&q=beweis (Stand Oktober 01) [4] K. Königsberger,Analysis II, Springer,. Auflage, 1997 [5] A.Pinkus & S.Zafrany, Fourier Series and Integral Transforms, Cambridge University Press, 1997 [6] A.D. Poularikas (ed), The Transforms and Applications Handbook, CRC Press, 000. K. B. Howl, Fourier Transforms. (Stand September 01) [7] I. Sneddon, The Use of Integral Transforms, McGraw-Hill, 197 [8] R. Wulkenhaar, Lebesgue-Integral und L p Räume, Seminar Integraltransformationen 01, WS1/Integraltransformationen/ Lebesgue.pdf (Stand Oktober 01) [9] R. Wulkenhaar, Mathematik für Physiker, Vorlesungsskript WWU Münster, 3.pdf (Stand Oktober 01) 11

Fourier-Transformation: Anwendung

Fourier-Transformation: Anwendung Fourier-Transformation: Anwendung Sebastian Krieter Seminar: Integraltransformationen Dozent: Prof. Dr. Raimar Wulkenhaar WS 0/3 Westfälische Wilhelms-Universität Münster 06..0 Inhaltsverzeichnis Berechnung

Mehr

L 2 -Theorie und Plancherel-Theorem

L 2 -Theorie und Plancherel-Theorem L -Theorie und Plancherel-Theorem Seminar Grundideen der Harmonischen Analysis bei Porf Dr Michael Struwe HS 007 Vortrag von Manuela Dübendorfer 1 Wiederholung aus der L 1 -Theorie Um die Fourier-Transformation

Mehr

Die Fourier-Transformierte

Die Fourier-Transformierte Die Fourier-Transformierte Proseminar Analysis Sommersemester 008 Natalia Dück 6.06.08 Inhaltsverzeichnis Einleitung/Fourier-Transformierte. Definition..................................... Beispiele......................................3

Mehr

Kapitel C. Integrale und Grenzwerte

Kapitel C. Integrale und Grenzwerte Kapitel C Integrale und Grenzwerte Inhalt dieses Kapitels C000 1 Der Satz von Fubini 2 Der Transformationssatz 1 Vertauschen von Integral und eihe 2 Vertauschen von Integral und Limes 3 Vertauschen von

Mehr

exp(z) := k=0 sin(z) := k=0 cos(z) := k=0

exp(z) := k=0 sin(z) := k=0 cos(z) := k=0 Die komplexen Zahlen und komplexe Exponentialfunktion In diesem Vortrag sollen die komplexen Zahlen eingeführt werden, und wichtige Eigenschaften wiederholt und bewiesen werden. Wir definieren die komplexen

Mehr

Lösungsvorschläge zum 14. Übungsblatt.

Lösungsvorschläge zum 14. Übungsblatt. Übung zur Analysis III WS / Lösungsvorschläge zum 4. Übungsblatt. Aufgabe 54 Sei a R\{}. Ziel ist die Berechnung des Reihenwertes k a + k. Definiere dazu f : [ π, π] R, x coshax. Wir entwickeln f in eine

Mehr

Lösungsvorschlag zur Übungsklausur zur Analysis I

Lösungsvorschlag zur Übungsklausur zur Analysis I Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 NWF I - Mathematik 9..9 Universität Regensburg Lösungsvorschlag zur Übungsklausur zur Analysis I Frage 1 Vervollständigen Sie die folgenden

Mehr

Klausur Höhere Mathematik I für die Fachrichtung Physik

Klausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 4.3.3 Klausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((4+3+3 Punkte a Welche

Mehr

Fourier-Transformation

Fourier-Transformation ANHANG A Fourier-Transformation In diesem Anhang werden einige Definitionen Ergebnisse über die Fourier-Transformation dargestellt. A. Definition Theorem & Definition: Sei f eine integrable komplexwertige

Mehr

Analysis I. 6. Beispielklausur mit Lösungen

Analysis I. 6. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 6. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Eine Relation zwischen den Mengen X und Y.

Mehr

Westfälische Wilhelms-Universität Münster. Seminararbeit. Fourier-Reihen. vorgelegt von. Stefan Marczinzik

Westfälische Wilhelms-Universität Münster. Seminararbeit. Fourier-Reihen. vorgelegt von. Stefan Marczinzik Westfälische Wilhelms-Universität Münster Seminararbeit Fourier-Reihen vorgelegt von Stefan Marczinzik Fachbereich Mathematik und Informatik Seminar: Integraltransformationen (WS /3) Seminarleiter: Prof.

Mehr

Kapitel 10 Die Fourier Transformation. Disclaimer

Kapitel 10 Die Fourier Transformation. Disclaimer Kapitel 10 Die Fourier Transformation Paul Bergold 7. Januar 2016 Disclaimer Dies ist meine persönliche Vortragsvorbereitung für das Seminar Early Fourier Analysis im Wintersemester 2015/16 an der TUM.

Mehr

Grundlagen der Fourier Analysis

Grundlagen der Fourier Analysis KAPITEL A Grundlagen der Fourier Analysis Wir definieren wie üblich die L p -Räume { ( } 1/p L p (R) = f : R C f(x) dx) p =: f p < 1. Fourier Transformation in L 1 (R) Definition A.1. (Fourier Transformation,

Mehr

10 Der Satz von Fubini

10 Der Satz von Fubini er Satz von Fubini ie Bezeichnungen seien wie in den Paragraphen 8 und 9. Satz. (Satz von Tonelli Es sei f : d [, + ] messbar. (Aus 8 folgt dann, dass f, f y messbar sind, wobei klar ist, dass f, f y sind.

Mehr

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben.

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben. Modellfall Anwendungen: Fragen: Digitalisierung / digitale Darstellung von Funktionen, insbesondere für Ton- und Bilddaten Digitale Frequenzfilter Datenkompression: Abspeichern der unteren Frequenzen Lösung

Mehr

Fouriertransformation und Unschärfeprinzip

Fouriertransformation und Unschärfeprinzip Information, Codierung, Komplexität 2 SS 2007 24. April 2007 Das berühmte von Heisenberg in der Quantentheorie beruht, rein mathematisch betrachtet, auf einer grundlegenden Eigenschaft der der Dichtefunktionen

Mehr

Faltung und Approximation von Funktionen

Faltung und Approximation von Funktionen Faltung und Approximation von Funktionen Lisa Bauer und Anja Moldenhauer 9. Juni 2008 1 Die Faltung von Funktionen 1.1 Die Faltung Eine kleine Widerholung mit einem Zusatz: Vergleiche den Vortrag von Benjamin

Mehr

Teil III. Fourieranalysis

Teil III. Fourieranalysis Teil III Fourieranalysis 3 / 3 Fourierreihen Ziel: Zerlegung einer gegebenen Funktion in Schwingungen Konkret: f : (, L) R gegebene Funktion Gesucht: Darstellung der Form ( f (x) = a + a n cos ( n L x)

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung WS 17/18: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung WS 17/18: Woche vom Übungsaufgaben 3. Übung WS 17/18: Woche vom 3. 10. - 7. 10. 017 Fourierreihen: 16. b,c,e,o), 16.3 a, b), 16.4 a) auch reelle Fourierreihe) Klausureinsicht zu Mathematik II 11.8. 017): 30.10.17, 7.00-8.30

Mehr

Höhere Mathematik III für die Fachrichtung Physik Wintersemester 2016/17. Lösungsvorschlag zu Übungsblatt 5

Höhere Mathematik III für die Fachrichtung Physik Wintersemester 2016/17. Lösungsvorschlag zu Übungsblatt 5 Institut für Analysis Dr. Christoph Schmoeger M.Sc. Jonathan Wunderlich Höhere Mathematik III für die Fachrichtung Physik Wintersemester 6/7..7 Lösungsvorschlag zu Übungsblatt 5 Aufgabe 6: Zeigen Sie mit

Mehr

1 Die direkte Methode der Variationsrechnung

1 Die direkte Methode der Variationsrechnung Die direkte Methode der Variationsrechnung Betrachte inf I(u) = f(x, u(x), u(x)) dx : u u + W,p () wobei R n, u W,p mit I(u ) < und f : R R n R. (P) Um die Existenz eines Minimierers direkt zu zeigen,

Mehr

Fourierreihen und -transformation

Fourierreihen und -transformation Kapitel Fourierreihen und -transformation. Fourierreihen 8 postulierte Fourier (ohne stichhaltige Beweise: Jede beliebige Funktion f(x mit Periode, d. h. f(x = f(x +, lässt sich in eine Reihe der Gestalt

Mehr

Konvergenz im quadratischen Mittel - Hilberträume

Konvergenz im quadratischen Mittel - Hilberträume CONTENTS CONTENTS Konvergenz im quadratischen Mittel - Hilberträume Contents 1 Ziel 2 1.1 Satz........................................ 2 2 Endlich dimensionale Vektorräume 2 2.1 Defintion: Eigenschaften

Mehr

Vortragsübung am 25. April 2014

Vortragsübung am 25. April 2014 Seite von 6 Termin: 5. April 04 Vortragsübung am 5. April 04.. Berechnen Sie den Grenzwert lim n ( n + + n + + + ), n indem Sie ihn als Riemann-Summe eines Integrals auffassen... Bestimmen Sie folgende

Mehr

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0 ANALYSIS FÜR PHYSIK UND VERWANDTE FÄCHER I 81 3. Stetigkeit 3.1. Stetigkeit. Im Folgenden sei D R eine beliebige nichtleere Teilmenge. Typischerweise wird D ein allgemeines Intervall sein, siehe Abschnitt

Mehr

f(x ϱz) f(x) p dx dz Im letzten Integral geht der Integrand punktweise gegen Null mit ϱ 0 nach Lemma 11.1(ii). Außerdem gilt die Abschätzung

f(x ϱz) f(x) p dx dz Im letzten Integral geht der Integrand punktweise gegen Null mit ϱ 0 nach Lemma 11.1(ii). Außerdem gilt die Abschätzung 11 Faltung und Fouriertransformation 109 Beweis: Durch Substitution sieht man η ϱ L 1 = η L 1, daher gilt f η ϱ L p ( ) und f η ϱ L p f L p η L 1 nach Satz 11.. Weiter folgt mit der Substitution y = ϱz

Mehr

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C Kapitel 5. Die trigonometrischen Funktionen 5.1. Die komplexen Zahlen 5.. Folgen und Reihen in C 5.10. Definition. Eine Folge (c n n N komplexer Zahlen heißt konvergent gegen c C, falls zu jedem ε > 0

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel IV SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C.

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C. Die omplexen Zahlen und Salarprodute Kurze Wiederholung des Körpers der omplexen Zahlen C. Erinnerung an die Definition von exp, sin, cos als Potenzreihen C C Herleitung der Euler Formel Definition eines

Mehr

Nachklausur zur Analysis 2, SoSe 2017

Nachklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 18.9.17 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Nachklausur zur Analysis 2, SoSe 217 Aufgabe

Mehr

Faltung und Gute Kerne. 1 Faltung

Faltung und Gute Kerne. 1 Faltung Vortrag zum Proseminar zur Analysis, 9.07.200 Lars Grötschel, Elisa Friebel Im ersten Abschnitt Faltung definieren und beschäftigen wir uns mit der Faltung, die die grundliegende Operation des zweiten

Mehr

Lösungen zu Übungsblatt 9

Lösungen zu Übungsblatt 9 Analysis : Camillo de Lellis HS 007 Lösungen zu Übungsblatt 9 Lösung zu Aufgabe 1. Wir müssen einfach das Integral 16 (x + y d(x, y x +y 4 ausrechnen. Dies kann man einfach mittels Polarkoordinaten, da

Mehr

Die Wärmeleitungsgleichung

Die Wärmeleitungsgleichung Die Wärmeleitungsgleichung In einem Stab der Länge 1 wird die Temperaturverteilung gegeben durch die Funktion u : ([0,1] [0, )) R, u(x,t) ist die Temperatur am Punkt x zum Zeitpunkt t. Die Funktion erfüllt

Mehr

1 Verbandstheorie. Aufgabensammlung. Höhere Mathematik für Physiker III Wintersemester 2014

1 Verbandstheorie. Aufgabensammlung. Höhere Mathematik für Physiker III Wintersemester 2014 Aufgabensammlung Höhere Mathematik für Physiker III Wintersemester 2014 1 Verbandstheorie 1. Aufgabe: (a) Sei f C(R) eine stetige Funktion. Wenn Rf(x)φ(x)dx = 0 für alle Testfunktionen φ Cc (R) gilt, dann

Mehr

9. Übung zur Maß- und Integrationstheorie, Lösungsskizze Aufgaben

9. Übung zur Maß- und Integrationstheorie, Lösungsskizze Aufgaben 9. Übung zur aß- und Integrationstheorie, Lösungsskizze Aufgaben A 50 (Eine Flächenberechnung mit dem Cavalierischen Prinzip). Es seien a, b > 0 und : { (x, y) R 2 : (x/a) 2 + (y/b) 2 1 }. (a) Skizzieren

Mehr

3 Produktmaße und Unabhängigkeit

3 Produktmaße und Unabhängigkeit 3 Produktmaße und Unabhängigkeit 3.1 Der allgemeine Fall Im Folgenden sei I eine beliebige Indexmenge. i I sei (Ω i, A i ein messbarer Raum. Weiter sei Ω : i I Ω i ein neuer Ergebnisraum. Wir definieren

Mehr

3.2 Die Fouriertransformierte

3.2 Die Fouriertransformierte 5 3.2 Die Fouriertransformierte Eine Funktion f : R C heißt absolut integrabel, falls sie stückweise stetig und fx dx < ist. Definition: Sei f : R C absolut integrabel. Dann bezeichnen wir die durch fω

Mehr

Einführung in die Fourier-Reihen. 1 Fourier-Reihen: Definitionen

Einführung in die Fourier-Reihen. 1 Fourier-Reihen: Definitionen Vortrag zum Seminar zur Analysis, 05.07.2010 André Stollenwerk, Eva-Maria Seifert Die Fourieranalysis beschäftigt sich mit dem Problem, inwiefern sich Funktionen mittels Sinus und Cosinus, das heißt periodischen

Mehr

Harmonische Analysis

Harmonische Analysis Seminar Harmonische Analysis Vortrag von Reidar Janssen 2. & 27. Oktober 211 Diese Übersetzung des ersten Kapitels von Anton Deitmars A First Course in Harmonical Analysis [] dient als Grundlage für meinen

Mehr

5 Potenzreihenansatz und spezielle Funktionen

5 Potenzreihenansatz und spezielle Funktionen 5 Potenzreihenansatz und spezielle Funktionen In diesem Kapitel betrachten wir eine Methode zur Lösung linearer Differentialgleichungen höherer Ordnung, die sich anwenden läßt, wenn sich alle Koeffizienten

Mehr

Übungsklausur Höhere Mathematik I für die Fachrichtung Physik

Übungsklausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT) Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 6..3 Übungsklausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((3++5) Punkte)

Mehr

Fourier-Reihen und Fourier-Transformation

Fourier-Reihen und Fourier-Transformation Fourier-Reihen und Fourier-Transformation Matthias Dreÿdoppel, Martin Koch, Bernhard Kreft 25. Juli 23 Einleitung Im Folgenden sollen dir und die Fouriertransformation erläutert und mit Beispielen unterlegt

Mehr

Analysis I. 3. Beispielklausur mit Lösungen

Analysis I. 3. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 3. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine Abbildung F von einer Menge L in eine

Mehr

7. Die Funktionalgleichung der Zetafunktion

7. Die Funktionalgleichung der Zetafunktion 7. Die Funktionalgleichung der Zetafunktion 7.. Satz (Poissonsche Summenformel. Sei f : R C eine stetig differenzierbare Funktion mit und sei f(x = O( x und f (x = O( x für x ˆf(t := f(xe πixt dx. die

Mehr

Institut für Analysis WS 2014/15 PD Dr. Peer Christian Kunstmann Dipl.-Math. Leonid Chaichenets

Institut für Analysis WS 2014/15 PD Dr. Peer Christian Kunstmann Dipl.-Math. Leonid Chaichenets Institut für Analysis WS 4/5 PD Dr. Peer Christian Kunstmann 9..4 Dipl.-Math. Leonid Chaichenets Höhere Mathematik III für die Fachrichtung Physik Lösungsvorschläge zum 5. Übungsblatt Aufgabe : (a) Sei

Mehr

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi Funktionentheorie, Woche 7 Eigenschaften holomorpher Funktionen 7.1 Ganze Funktionen Definition 7.1 Eine Funktion f : C C, die holomorph ist auf C, nennt man eine ganze Funktion. Bemerkung 7.1.1 Als Folge

Mehr

10 Der Integralsatz von Gauß

10 Der Integralsatz von Gauß 10 Der Integralsatz von Gauß In diesem Abschnitt beweisen wir den Integralsatz von Gauß, die mehrdimensionale Verallgemeinerung des Hauptsatzes der Differential- und Integralrechnung. Aussage des Satzes

Mehr

e x e x x e x + e x (falls die Grenzwerte existieren), e x e x 1 e 2x = lim x 1

e x e x x e x + e x (falls die Grenzwerte existieren), e x e x 1 e 2x = lim x 1 Aufgabe a Hier kann man die Regel von de l Hospital zweimal anwenden (jeweils und die Ableitung des Nenners ist für hinreichend große x ungleich. Dies führt auf e x e x e x + e x e x + e x e x e x e x

Mehr

Lösungsvorschlag zur Nachklausur zur Analysis

Lösungsvorschlag zur Nachklausur zur Analysis Prof Dr H Garcke, D Depner SS 09 NWF I - Mathematik 080009 Universität Regensburg Lösungsvorschlag zur Nachklausur zur Analysis Aufgabe Untersuchen Sie folgende Reihen auf Konvergenz und berechnen Sie

Mehr

Inverse Fourier Transformation

Inverse Fourier Transformation ETH Zürich HS 27 Departement Mathematik Seminararbeit Inverse Fourier Transformation Patricia Hinder Sandra König Oktober 27 Prof. M. Struwe Im Vortrag der letzten Woche haben wir gesehen, dass die Faltung

Mehr

Die Cesàro- und Abelsummation. Vortrag zum Seminar zur Fourieranalysis für Lehramtskandidaten WS 09/10, Christian Bohnen (273212)

Die Cesàro- und Abelsummation. Vortrag zum Seminar zur Fourieranalysis für Lehramtskandidaten WS 09/10, Christian Bohnen (273212) Die Cesàro- und Abelsummation Vortrag zum Seminar zur Fourieranalysis für Lehramtskandidaten WS 09/0,.2.2009 Christian Bohnen (27322) Inhaltsverzeichnis Inhaltsverzeichnis Motivation 3 2 Grundlagen 3 3

Mehr

30 Die Gammafunktion und die Stirlingsche Formel

30 Die Gammafunktion und die Stirlingsche Formel 3 Die Gammafunktion und die Stirlingsche Formel 35 Charakterisierung der Gammafunktion 36 Darstellung der Gammafunktion 38 Beziehung zwischen der Gammafunktion und der Zetafunktion 3 Stirlingsche Formel

Mehr

Wiederholungsklausur zur Analysis I

Wiederholungsklausur zur Analysis I Wiederholungsklausur zur Analysis I Prof. Dr. C. Löh/M. Blank 5. Oktober 2011 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob Sie alle Seiten erhalten

Mehr

53 Die Parsevalsche Gleichung

53 Die Parsevalsche Gleichung 53 Die Parsevalsche Gleichung 53 Die Parsevalsche Gleichung 5 53. Skalarprodukte auf Räumen quadratintegrierbarer Funktionen. a) Die Orthogonalitätsrelationen (5.5) legen die Interpretation des Ausdrucks

Mehr

Liste wichtiger Stammfunktionen

Liste wichtiger Stammfunktionen Liste wichtiger Stammfunktionen Funktion Stammfunktion x n, x ln(x) n R \ { } n + xn+ ln( x ) x ln(x) x a x, a > sin(x) cos(x) sin 2 (x) cos 2 (x) x 2 x 2 a x ln(a) cos(x) sin(x) (x sin(x) cos(x)) 2 (x

Mehr

Übungsaufgaben zu den mathematischen Grundlagen von KM

Übungsaufgaben zu den mathematischen Grundlagen von KM TUM, Institut für Informatik WS 2003/2004 Prof Dr Thomas Huckle Andreas Krahnke, MSc Dipl-Inf Markus Pögl Übungsaufgaben zu den mathematischen Grundlagen von KM 1 Bestimmen Sie die Darstellung von 1 4

Mehr

Fourier-Transformation

Fourier-Transformation Fourier-Transformation Existiert zu einer Funktion f das Parameterintegral ˆf (y) = f (x)e iyx dx für alle y R, so heißt f Fourier-transformierbar und die Funktion ˆf Fourier-Transformierte von f. Fourier-Transformation

Mehr

Folgen und Reihen von Funktionen

Folgen und Reihen von Funktionen Folgen und Reihen von Funktionen Sehr häufig treten in der Mathematik Folgen bzw. Reihen von Funktionen auf. Ist etwa (f n ) eine Folge von Funktionen, dann können wir uns für ein festes x fragen, ob die

Mehr

Höhere Mathematik II. Variante A

Höhere Mathematik II. Variante A Lehrstuhl II für Mathematik Prof Dr E Triesch Höhere Mathematik II SoSe 5 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 2. Juli 2018 1/1 Wir geben einige wesentliche Sätze über bestimmte Integrale an, deren Beweise man in den Standardlehrbüchern der Analysis findet.

Mehr

Analysis I. 2. Beispielklausur mit Lösungen

Analysis I. 2. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Die Produktmenge aus zwei Mengen L und M.

Mehr

Analysis II - 1. Klausur

Analysis II - 1. Klausur Analysis II -. Klausur Sommersemester 25 Vorname: Name: Aufgabe Aufgabe 2 Aufgabe 3 Aufgabe 4 Aufgabe 5 Aufgabe 6 Aufgabe 7 Aufgabe 8 Aufgabe 9 Summe Analysis II -. Klausur 2.5.25 Aufgabe 2 Punkte Berechnen

Mehr

Übungen zu Analysis, SS 2015

Übungen zu Analysis, SS 2015 Übungen zu Analysis, SS 215 Ulisse Stefanelli 15. Juni 215 1 Wiederholung 1. Untersuchen Sie das Verhalten der folgenden Folgen a n = n 2 cosh(1/n), b n = ln(ln(n))/n, c n = (2 n n 2 )/n!, 2. Stellen Sie

Mehr

15. Bereichsintegrale

15. Bereichsintegrale H.J. Oberle Analysis III WS 212/13 15. Bereichsintegrale 15.1 Integrale über uadern Ziel ist die Berechnung des Volumens unterhalb des Graphen einer Funktion f : R n D R, genauer zwischen dem Graphen von

Mehr

Lebesgue-Integral und L p -Räume

Lebesgue-Integral und L p -Räume Lebesgue-Integral und L p -Räume Seminar Integraltransformationen, WS 2012/13 1 Treppenfunktionen Grundlage jedes Integralbegriffs ist das geometrisch definierte Integral von Treppenfunktionen. Für A R

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie KIT SS 203 Institut für Analysis 504203 Prof Dr Tobias Lamm Dr Patrick Breuning Aufgabe Höhere Mathematik II für die Fachrichtung Physik Übungsblatt Bestimmen Sie die

Mehr

D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. Lösung 11

D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. Lösung 11 D-MATH, D-PHYS, D-CHAB Analysis II FS 218 Prof. Manfred Einsiedler Lösung 11 Hinweise 1. Kehren Sie die Integrationsreihenfolge um. Um dabei die korrekten Grenzen zu finden, skizzieren Sie den Integrationsbereich.

Mehr

Fagnano-Integral und Weierstraß sche σ-funktion. 1 Bekannte Definitionen

Fagnano-Integral und Weierstraß sche σ-funktion. 1 Bekannte Definitionen Vortrag zum Seminar zur Funktionentheorie II, 7..23 Jonas Gallenkämper Ziel dieses Seminarbeitrags ist, das Fagnano-Integral zu berechnen und dessen Zusammenhang zu speziellen Gittern, sowie weitere entsprechende

Mehr

Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I

Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I Staatsexamen Herbst 17 Differential- und Integralrechnung, Thema I 1. a) Die Aussage ist wahr! Sei s R der Reihenwert der Reihe k=1 Da a n = s n s n 1 für n, ist also b) Die Aussage ist falsch! a k, also

Mehr

Partielle Differentialgleichungen Kapitel 7

Partielle Differentialgleichungen Kapitel 7 Partielle Differentialgleichungen Kapitel 7 Intermezzo zu Distributionen Die Physik hat der Mathematik die Dirac-δ-Funktion gebracht. Diese δ-funktion soll folgende Eigenschaften haben: n δ (x ϕ (x dx

Mehr

Konversatorium zu Lineare Algebra und Analysis Analysis - Übungsbeispiele

Konversatorium zu Lineare Algebra und Analysis Analysis - Übungsbeispiele Univ.-Prof. Dr. Radu Ioan Boţ, Axel Böhm Konversatorium zu Lineare Algebra und Analysis Analysis - Übungsbeispiele SS18 A1. Sei f : [, + ) R so, dass und dass ein M existiert mit Zeigen Sie, dass f(s +

Mehr

Analysis I. 4. Beispielklausur mit Lösungen

Analysis I. 4. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein

Mehr

Höhere Mathematik I für die Fachrichtung Physik. Lösungsvorschläge zum 12. Übungsblatt

Höhere Mathematik I für die Fachrichtung Physik. Lösungsvorschläge zum 12. Übungsblatt Institut für Analysis WS07/8 Prof. Dr. Dirk Hundertmark 6..08 Dr. Michal Je Höhere Mathematik I für die Fachrichtung Physik Lösungsvorschläge zum. Übungsblatt Aufgabe 68: a Es sei c irgendeine Zahl zwischen

Mehr

Musterlösung Klausur zu Analysis II. Verständnisteil

Musterlösung Klausur zu Analysis II. Verständnisteil Technische Universität Berlin SS 2009 Institut für Mathematik 20.07.2009 Prof. Dr. R. Schneider Fritz Krüger Sebastian Holtz Musterlösung Klausur zu Analysis II Verständnisteil 1. (a) Sei D R n konvex

Mehr

Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie. Tobias Ried

Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie. Tobias Ried Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie Tobias Ried. März 2 2 Aufgabe (Messbarkeit der Komposition zweier Abbildungen). Seien (X, A), (Y, B) und (Z, C) Messräume und f : (X,

Mehr

Parseval-Identität: Seien zwei Funktionen v. mit Fourier-Reihen: dann gilt: Parseval-Identität. Speziell:

Parseval-Identität: Seien zwei Funktionen v. mit Fourier-Reihen: dann gilt: Parseval-Identität. Speziell: Parseval-Identität: Seien zwei Funktionen v. mit Fourier-Reihen: dann gilt: (kühnes Vertauschen von Integral und Summe!) Parseval-Identität Speziell: Anmerkung: beide Seiten kann man als Skalarprodukt

Mehr

Probeklausur Höhere Mathematik II für Elektrotechniker

Probeklausur Höhere Mathematik II für Elektrotechniker I. Bouw.7.8 U. Hackstein Probeklausur Höhere Mathematik II für Elektrotechniker Es gibt 5 Punkte pro Teilaufgabe, also insgesamt 7 Punkte. Aufgabe. Skizzieren Sie folgenden Bereich: D = {(x, y) R x + y

Mehr

3.3 Das Abtasttheorem

3.3 Das Abtasttheorem 17 3.3 Das Abtasttheorem In der Praxis kennt man von einer zeitabhängigen Funktion f einem Signal meist nur diskret abgetastete Werte fn, mit festem > und ganzzahligem n. Unter welchen Bedingungen kann

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

Das Volumen und die Oberfläche einer n-dimensionalen Kugel

Das Volumen und die Oberfläche einer n-dimensionalen Kugel Das Volumen und die Oberfläche einer n-dimensionalen Kugel Alois Temmel 6. Februar 14 c 14, A. Temmel Inhaltsverzeichnis 1 Die Volumenformel 3 1.1 Die n-dimensionale Kugel.................... 3 1.1.1 Die

Mehr

T2 Quantenmechanik Lösungen 1

T2 Quantenmechanik Lösungen 1 T Quantenmechanik Lösungen 1 LMU München, WS 17/18 1.1. Gaußsche Normalverteilung Prof. D. Lüst / Dr. A. Schmidt-May version: 18. 1. Die Gaußsche Normalverteilung ist eine kontinuierliche Verteilungsfunktion

Mehr

(a) Welche der folgenden Funktionen ist injektiv, surjektiv beziehungsweise bijektiv? x 1 + x

(a) Welche der folgenden Funktionen ist injektiv, surjektiv beziehungsweise bijektiv? x 1 + x Aufgabe Injektiv und Surjektiv) a) Welche der folgenden Funktionen ist injektiv, surjektiv beziehungsweise bijektiv?. f : Z N; x x 2. 2. f : R R; x x x.. f : R [, ]; x sin x. 4. f : C C; z z 4. b) Zeigen

Mehr

2.6 Der Satz von Fubini

2.6 Der Satz von Fubini 1 2.6 Der Satz von Fubini Unser Ziel ist der Beweis des folgenden Ergebnisses. 6.1. Satz von Fubini Sei f : R n+m R integrierbar. Dann gibt es eine Nullmenge N R m, so dass gilt: 1. Für alle y R m \ N

Mehr

Aufgaben zur Analysis I aus dem Wiederholungskurs

Aufgaben zur Analysis I aus dem Wiederholungskurs Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 Hilfskräfte: A. Weiß, W. Thumann 6.3.29 NWF I - Mathematik Universität Regensburg Aufgaben zur Analysis I aus dem Wiederholungskurs Die folgenden

Mehr

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1 24 14 Metrische Räume 14.1 R n als euklidischer Vektorraum Die Menge R n = {(x 1,..., x n ) x i R} versehen mit der Addition und der skalaren Multiplikation x + y = (x 1 + y 1,..., x n + y n ) λx = (λx

Mehr

Beispiel: Die Sägezahnfunktion.

Beispiel: Die Sägezahnfunktion. Beispiel: Die Sägezahnfunktion. Betrachte die Sägezahnfunktion : für t = oder t = π S(t) := 1 (π t) : für < t < π Die Sägezahnfunktion ist ungerade, also gilt (mit ω = 1) a k = und b k = π π und damit

Mehr

d(x, z) = z x = y x + z y y x + z y = d(x, y) + d(y, z). d(x, y) = 0, falls x = y.

d(x, z) = z x = y x + z y y x + z y = d(x, y) + d(y, z). d(x, y) = 0, falls x = y. Metrische Räume K bezeichnet entweder den Körper R oder den Körper C. Genauer bedeutet dies: K wird in denjenigen Situationen verwendet, in denen die Ersetzung von K sowohl durch R als auch durch C einen

Mehr

3.5 Glattheit von Funktionen und asymptotisches Verhalten der Fourierkoeffizienten

3.5 Glattheit von Funktionen und asymptotisches Verhalten der Fourierkoeffizienten Folgerung 3.33 Es sei f : T C in einem Punkt x T Hölder stetig, d.h. es gibt ein C > und ein < α 1 so, dass f(x) f(x ) C x x α für alle x T. Dann gilt lim N S N f(x ) = f(x ). Folgerung 3.34 Es f : T C

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I... ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Mathematik III. Vorlesung 74. Folgerungen aus dem Satz von Fubini. (( 1 3 x3 1 2 x2 y +2y 3 x) 1 2)dy. ( y +2y y +4y3 )dy

Mathematik III. Vorlesung 74. Folgerungen aus dem Satz von Fubini. (( 1 3 x3 1 2 x2 y +2y 3 x) 1 2)dy. ( y +2y y +4y3 )dy Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 74 Folgerungen aus dem Satz von Fubini Beispiel 74.1. Wir wollen das Integral der Funktion f :R 2 R, (x,y) x 2 xy +2y 3, über dem Rechteck

Mehr

Brückenkurs Rechentechniken

Brückenkurs Rechentechniken Brückenkurs Rechentechniken Dr. Jörg Horst Technische Universität Dortmund Fakultät für Mathematik SS 2014 1 Vollständige Induktion Vollständige Induktion 2 Funktionenfolgen Punktweise Konvergenz Gleichmäßige

Mehr

H. Schmidli Mathematik für Physiker WS 10/11. Lösung der Klausur

H. Schmidli Mathematik für Physiker WS 10/11. Lösung der Klausur H. Schmidli Mathematik für Physiker WS / Lösung der Klausur. a) Zähler und Nenner konvergieren gegen. Somit verwenden wir die Regel von L Hospital e sin x x x e cos x (cos x)e sin x x (sin x)e cos x x

Mehr

Musterlösungen zur 10. Serie: Fourier-Reihen

Musterlösungen zur 10. Serie: Fourier-Reihen Musterlösungen zur. Serie: Fourier-Reihen. Aufgabe Bestimmen Sie die Fourier-Koeffizienten der Funktionen fx) x, gx) x und hx) e x a) auf [, ] bzgl., cosx, sinx, cosx,,sinx..., b) auf [, ] bzgl. c) auf

Mehr

Ferienkurs in Maß- und Integrationstheorie

Ferienkurs in Maß- und Integrationstheorie Zentrum Mathematik Technische Universität München Dipl. Math. Wolfgang Erb WS 9/ Übungsblatt Ferienkurs in Maß- und Integrationstheorie Aufgabe. (σ-algebren Sei eine Menge und A eine σ-algebra in. Seien

Mehr

(y ) 2 0 bis t, so erhalten wir 1 y (t) (t t 0). L sen wir diese Ungleichung nun nach y (t) auf, so folgt

(y ) 2 0 bis t, so erhalten wir 1 y (t) (t t 0). L sen wir diese Ungleichung nun nach y (t) auf, so folgt 0.. Lösung der Aufgabe. Wir nehmen an, es existiere eine nicht-triviale globale L sung y. Dann lesen wir direkt von der Gleichung ab, dass y 0 gilt auf ganz R, das heisst, die Funktion ist konvex. Da wir

Mehr

8.1. DER RAUM R N ALS BANACHRAUM 17

8.1. DER RAUM R N ALS BANACHRAUM 17 8.1. DER RAUM R N ALS BANACHRAUM 17 Beweis. Natürlich ist d 0 und d(x, y) = 0 genau dann, wenn x = y. Wegen (N2) ist x = x und damit d(x, y) = d(y, x). Die letzte Eigenschaft einer Metrik schließt man

Mehr

8. Spezielle Funktionen

8. Spezielle Funktionen H.J. Oberle Differentialgleichungen II SoSe 2013 8. Spezielle Funktionen Spezielle Funktionen (der mathematischen Physik) entstehen zumeist aus Separationsansätzen für PDG bei Vorliegen von Symmetrie-Eigenschaften.

Mehr

Analysis II. Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag

Analysis II. Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag Prof Dr H Garcke, D Depner SS 9 NWF I - Mathematik 1979 Universität Regensburg Aufgabe 1 Analysis II Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag i Erinnern Sie sich an die Konvergenzkriterien

Mehr