Faltung und Approximation von Funktionen

Größe: px
Ab Seite anzeigen:

Download "Faltung und Approximation von Funktionen"

Transkript

1 Faltung und Approximation von Funktionen Lisa Bauer und Anja Moldenhauer 9. Juni Die Faltung von Funktionen 1.1 Die Faltung Eine kleine Widerholung mit einem Zusatz: Vergleiche den Vortrag von Benjamin Wieneck zum Approximationssatz von Weierstraß am Definition 1 (Faltung). Es seien f, g L 1 (R n ). Dann gehört wegen der Integrierbarkeit von Tensorprodukten auch (x, y) (f g)(x, y) := f(x) g(y) zu L 1 (R 2n ) (vergleiche z.b. [1] Blatt 5). Da (x, y) (x y, y) eine affine Transformation ist, ist auch (x, y) f(x y) g(y) über R 2n integrierbar. Nach dem Satz von Fubini gibt es dann eine Nullmenge N R n, so dass das Integral R n f(x y)g(y) dy für alle x R n \ N existiert. Dann heiße die Funktion { f(x y)g(y) dy falls x R n \ N R (f g) (x) := n 0 falls x N die Faltung von f und g. 1

2 Satz 1. Die Faltung hat folgende Eigenschaften (i) f g L 1 (R n ) und es gilt R n (f g)(x) dx = f(x) dx R n R n g(y) dy. (ii) Die Faltung ist kommutativ und assoziativ. (iii) Es gilt f g 1 f 1 g 1. (iv) Supp (f g) Supp(f) + Supp(g) Definition 2 (Träger einer Funktion). Unter dem Träger einer Funktion f : R n R versteht man die abgeschlossene Hülle der Menge aller Punkte, in denen die Funktion von Null verschieden ist. Der Träger von f wird mit Supp(f) bezeichnet. Es gilt also Supp(f) = {x R n : f(x) 0} Beweis. Satz 1 (i), (ii) und (iii) siehe Benjamins Vortrag. (iv) Es gilt: Supp(f g) = {x R n : (f g)(x) 0} also ist 0 (f g)(x) = f(x y)g(y)dy. Dieser Fall kann nur dann eintreten, wenn f(x y) 0 und g(y) 0 ist. Es folgt also: x - y Supp(f) x y {k R n f(k) 0} x {k R n f(k) 0} +y, wobei y Supp(g) gilt. x Supp(f) + Supp(g) Supp(f g) Supp(f) + Supp(g) 2

3 1.2 Veranschaulichung der Faltung In diesem Abschnitt möchten wir die Faltung an Hand von zwei Funktionen veranschaulichen: { a x x f(x) = 0 falls 0 x x 0 0 sonst (siehe Skizze 1) und h(x) = { b falls x 1 x x 2 0 sonst (siehe Skizze 2) Kommen wir nun zur Faltung dieser Funktionen (f h)(x) = f(x µ)h(µ)dµ R Wir tragen also die beiden Funktionen über die Integrationskonstante µ auf. Dabei wird die Funktion f an der y-achse gespiegelt und um den Faktor x verschoben. Anschließend zeichnen wir f(x µ) und h(µ) in eine Skizze (siehe Skizze 3). Da x R und x eine unabhängige Variable ist, ist die Lage von f(x µ) in der Skizze 3 Abhängig von dem gewählten x. Es ist die Funktion f(x µ) für den Wert x = µ skiziert. Denn es gilt f(0) = 0 = f(x µ) so folgt 0 = x µ x=µ mit x R + In Skizze 3 überlappen sich die beiden Funktionen noch nicht, das bedeutet, dass der Integrand des Faltungsintegrals f(x µ)h(µ) 0 ist. Somit folgt (f h)(x)=0 Die Funktionen fangen erst an sich zu überlappen, wenn x = x 1 ist und hören auf sich zu überlappen, wenn x = x 2 + x 0 gilt. Somit nimmt (f h)(x) nur Werte an, wenn gilt x 1 x x 2 + x 0 und es gilt (f h)(x) = 0 für alle x 1 größer x und für alle x 2 + x 0 kleiner x. Betrachten wir also die Bereiche bei denen gilt x 1 x x 2 + x 0. Hierbei unterscheiden wir folgende drei Bereiche: 1. Bereich: x 1 x x 1 + x 0 Die beiden Funktionen fangen an sich zu überlappen. 2. Bereich: x 1 + x 0 x x 2 Die beiden Funktionen überlappen sich maximal. 3

4 3. Bereich: x 2 x x 2 + x 0 Die f(x µ) tritt aus der Funktion h(µ) heraus. Betrachtung der drei Bereiche 1.Bereich (Skizze 4): Es ist nun h(µ) = 0 für alle µ < x 1 und f(x µ) = 0 für alle µ > x f(x-µ)h(µ) = 0, x 1 > µ > x (f h) = 0 Es muss also hier in dem Bereich von x 1 µ x integriert werden. Somit folgt: (f h)(x) = R f(x µ)h(µ)dµ = b x a x µ x 1 x 0 dµ = ab 2x 0 (x x 1 ) 2 Der Wert des Intergals entspricht für den in der Skizze 4 angenommenen Wert x der mit dem Faktor b gewichteten, schrafierten Fläche. 2.Bereich (Skizze 5): Die Funktionen überlappen sich in diesem Bereich vollständig. Die Faltung nimmt für alle x 1 + x 0 x x 2 den selben Wert an. Die Integrationsgrenzen setzten sich aus der linken Kante der Funktion f und dem Knickpunkt zusammen. Wir integrieren also wie folgt: (f h)(x) = R f(x µ)h(µ)dµ = b x a x µ dµ = ab x 0 x x 0 x Bereich (Skizze 6): Nun nimmt die Faltung nur noch Werte an, wenn in den Grenzen von x x 0 und x 2 intergriert wird. es folgt also: (f h)(x) = R f(x µ)h(µ)dµ = b a x µ dµ = abx 0 [1 x x 0 x 0 2 (x x ] 2) 2 x2 x 2 0 Schließlich können wir das Ergebniss der Faltung g(x) = (f h)(x) wie in Skizze 7 dargestellt skizzieren. 4

5 1.3 Die Faltung als Mittelung Beispiel 1 (Beispiel aus der Physik). Ist µ eine Funktion auf einem kompakten Intervall [a; b], µ : [a; b] R, so kann µ als eine Massenverteilung aufgefasst werden und entsprechend eine zweite Funktion U(y) als Potential eines in y gelegenen Punktes der Masse 1 relativ zum Nullpunkt. Dann ist das Potential der auf [a; b] verteilten Masse relativ zu einem Punkt x R\ [a; b] gegeben durch: u(x) = b a µ(y)u(x y)dy = (µ U)(x) Man kann die Faltung (f g)(x) als das mit g gewichtete Mittel von f bei x betrachten. Die Funktion g sei hierzu nicht negativ (g 0) und besitze folgende Eigenschaften : (i) Der Träger von g liegt in K r (0), also Supp(g) K r (0) (ii) K r(0) g(x)dx = 1. Aufgrund der Kommutativität gilt: (f g)(x) = (g f)(x) = g(x y)f(y)dy = R n f(y)g(x y)dy R n Nach (i) ist Supp(g) K r (0). Da die Funktion g bei der Faltung noch um x verschoben wird, muss f(y)g(x y)dy über K r (x) integriert werden. Somit gilt also insgesamt: (f g)(x) = f(y)g(x y)dy. K r(x) Somit ist also (f g)(x) der mit g gewichtete Mittelwert von f in K r (x). Wir definieren uns eine Funktion, die (i) und (ii) erfüllt wie folgt: U r (a) := { 1 2r falls r a r 0 sonst (siehe Graphik 1) Für jede Regelfunktion µ, die mit der Funktion U r auf R gefaltet wird gilt: x+r (µ U r )(x) = µ(y)u r (x y)dy = µ(y)u r (x y)dy = 1 x+r µ(y)dy 2r K r(x) 5 x r x r

6 Es gilt, dass die Faltung (µ U r )(x) glatter ist als die Funktion µ,also wenn µ eine C k -Funktion ist, dann ist die Faltung eine stetige C k+1 -Funktion. Beispiel 2. Funktionen f und ihre Faltungen f U r (siehe Graphik 2) 1.4 Der Differentiationssatz der Faltung Wir führen zu nächst die Bezeichnung des Multiindex ein und wiederholen dann den Differentiationssatz. Definition 3 (Multiindex). Man setzt für ein n-tupel α = (α 1,..., α n ), α ν N 0, n N einen sogenannten Multiindex α := α α n, x α := x α x αn n α f := α αn f n Wiederholung 1 (Differentiationssatz). Es sei f : X T C eine Funktion auf dem Produkt eines metrischen Raumes X und der Menge T R p, p N. Für jeden fixierten Parameter x X sei die Funktion t f(x, t) über T integrierbar. Durch Integration entsteht dann eine Funktion F auf X: F (x) := f(x, t)dt T X sei jetzt eine offene Menge im R n und f habe folgende Eigenschaften (i) Für jedes fixierte t T ist x f(x, t) stetig differenzierbar (ii) Es gibt auf T eine integrierbare Funktion Θ mit F x ν (x, t) Θ(t) für alle (x,t) X T und ν = 1,..., n Dann ist F (x) := f(x, t)dt stetig differenzierbar. Für jedes x ist die Funktion t xν f(x, t) integrierbar, und es T gilt F (x, t) x ν = 6 T f x ν (x, t)dt

7 Beweis. Differentiationssatz Siehe Königsberger 2 oder Vorlesung vom (Höhere Analysis/ Mühlich) Satz 2 (Differentiationssatz der Faltung). Es sei g C k (R n ), k = 0, 1,..., eine beschränkte Funktion, deren partielle Ableitungen α g für alle α mit α k ebenfalls beschränkt sind; zum Beispiel sei g C k c (R n ). Dann gilt: Für jede Funktion f L 1 (R n ) ist f g C k (R n ), und für α k gilt α (f g) = f ( α g). Beweis. Zunächst ist wird die Differenzierbarkeit der Faltung mittels des Differentiationssatzes gezeigt. Dazu müssen dessen Voraussetzungen nachgewiesen werden: (i) zu zeigen: Für jedes fixierte y R n ist x f(y)g(x y) stetig differenzierbar: Dies gilt aber, da g C k nach Voraussetzung. (ii) zu zeigen: Es gibt auf R n eine integrierbare Funktion Θ mit α f(y)g(x y) Θ(x) für alle (x, y) R n R n und α k Da g(x) kompakten Träger hat, existiert ein M R mit α g. Weiter ist f integrierbar. Also ist M f(y) eine Funktion mit den gewünschten Eigenschaften. Damit kann man unter dem Integral differenzieren und es gilt: α (f g) = f(y) ( α g(x y)) dy = (f ( α g)) (x) R n 2 Dirac-Folgen und Approximation In diesem Abschnitt werden wir ein Beispiel für eine Dirac-Folge genauer betrachten, anhand dessen Eigenschaften der Faltung von Funktionen und den zugehörigen Approximationssatz wiederholen, und nachweisen, dass die C -Funktionen mit kompaktem Träger dicht in L 1 liegen. 7

8 2.1 Dirac-Folgen Wiederholung 2 (Definition: Dirac-Folge). 1 Eine Folge von integrierbaren Funktionen δ k L 1 (R n ) heißt Dirac-Folge, wenn sie die folgenden Bedingungen erfüllt: (D1) Für alle k N gilt δ k 0. (D2) Für alle k N ist R n δ k dx = 1. (D3) Für alle Bälle B r (0) ist lim k R n \B r(0) δ k dx = 0. Beispiel 3 (Dirac-Folge). Wir betrachten folgende Funktionenfolge (siehe Graphik 3): δ k : R n R, δ k (x) := kn c g( kx ) wobei c := R n g( x )dx und g(r) := { exp( 1 1 r 2 ) für r ( 1; 1) 0 sonst Nachrechnen der Bedingungen für eine Dirac-Folge: (D1) offensichtlich (D2) k n δ k (x)dx = g( kx )dx R g( x )dx n R n R n wobei: g( kx )dx = 1 g( z )dz für z := kx R k n n R n k n 1 δ k (x)dx = g( z )dz = 1 R g( x )dx k n R n n R n 1 vgl. den Vortrag von Benjamin Wieneck zum Approximationssatz von Weierstraß am

9 (D3) Es gilt: Supp (δ k ) = Supp (g( kx )) = { x R n kx 1} = { x R } n x 1 k ɛ > 0 k N : ɛ > 1 k δ k dx = 0 k > 1 ɛ R n \B ɛ(0) Zusätzliche Eigenschaften: (i) δ k C k N, da n δ x n k (x) = kn n g( kx ) = p(x) g( kx ), wobei p(x) eine rationale Funktion mit Definitionsbereich D = {x (R) n kx < 1} c x n außerhalb dessen g(x) = 0. n δ x n k (x) ist stetig, da lim x e x /p(x) = 0 für jedes Polynom p(x). (ii) Supp (δ k ) = B 1 (0) (s.o.) k Beispiel 4 (Faltungseigenschaften und Differetiationssatz der Faltung). Sei δ k wie oben definiert, und f L 1 (R n ) beliebig. Dann gilt: (i) Supp (f δ k ) Supp (f) + B 1 (0) (Satz 1 (iv), und Beispiel 3 (ii)) k (ii) f δ k C k N (Differentiationssatz der Faltung und Beispiel 3 (i)) 2.2 Approximation Definition 4 (Dichte Teilmenge). Sei V ein Vektorraum und eine Halbnorm (d.h. x = 0 x = 0 gilt nicht). Eine Teilmenge A V heißt dicht in V x V, ɛ > 0 a A : x a < ɛ Wiederholung 3 (Approximationssatz). 2 Es sei δ k L 1 (R n ) eine Dirac- Folge. Dann gilt (i) Für jedes f L 1 (R n ) konvergiert die Funktionenfolge f δ k bezüglich der L 1 -Norm gegen f. 2 vgl. den Vortrag von Benjamin Wieneck zum Approximationssatz von Weierstraß am

10 (ii) Für jede gleichmäßig stetige und beschränkte Funktion f : R n R konvergiert die Funktionenfolge f δ k gleichmäßig auf R n gegen f. Satz 3. Für alle U R n, offen, gilt: C C (U) liegt dicht in L 1 (U) Beweis. Aus Analysis 2 ist bekannt, dass die Treppenfunktionen dicht in L 1 (U) liegen. Also genügt es zu zeigen: φ, φ Treppenfunktion, ɛ > 0 h C C (U) : φ h U 1 < ɛ Sei nun (δ k ) wie oben und h = φ δ k. Dann gilt nach dem Approximationssatz: Und aus Beispiel 3 (ii) folgt: lim φ φ δ k 1 = 0 k Supp (φ δ k ) ist kompakt, da Supp (φ) als Träger einer Treppenfunktion kompakt ist. Damit ist der Satz gezeigt. Literatur [1] G. Mülich, Vorlesung Höhere Analysis und Übungen [2] K. Königsberger, Analysis II Springer [3] O. Forster, Analysis III Vieweg [4] Seminar Praktikum : Communication 1, Universität Duisburg-Essen, Prof. Dr.-Ing. A.Czylwik, Author: R.Siebel ( pdf) 10

d(x, z) = z x = y x + z y y x + z y = d(x, y) + d(y, z). d(x, y) = 0, falls x = y.

d(x, z) = z x = y x + z y y x + z y = d(x, y) + d(y, z). d(x, y) = 0, falls x = y. Metrische Räume K bezeichnet entweder den Körper R oder den Körper C. Genauer bedeutet dies: K wird in denjenigen Situationen verwendet, in denen die Ersetzung von K sowohl durch R als auch durch C einen

Mehr

1 Verbandstheorie. Aufgabensammlung. Höhere Mathematik für Physiker III Wintersemester 2014

1 Verbandstheorie. Aufgabensammlung. Höhere Mathematik für Physiker III Wintersemester 2014 Aufgabensammlung Höhere Mathematik für Physiker III Wintersemester 2014 1 Verbandstheorie 1. Aufgabe: (a) Sei f C(R) eine stetige Funktion. Wenn Rf(x)φ(x)dx = 0 für alle Testfunktionen φ Cc (R) gilt, dann

Mehr

Zusammenfassung der Lebesgue-Integrationstheorie

Zusammenfassung der Lebesgue-Integrationstheorie Zusammenfassung der Lebesgue-Integrationstheorie Das Lebesguesche Integral verallgemeinert das Riemannsche Integral. Seine Vorteile liegen für unsere Anwendungen vor allem bei den wichtigen Konvergenzsätzen,

Mehr

15. Bereichsintegrale

15. Bereichsintegrale H.J. Oberle Analysis III WS 212/13 15. Bereichsintegrale 15.1 Integrale über uadern Ziel ist die Berechnung des Volumens unterhalb des Graphen einer Funktion f : R n D R, genauer zwischen dem Graphen von

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel IV SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

Verallgemeinerte Funktionen

Verallgemeinerte Funktionen Verallgemeinerte Funktionen. Der Raum der Grundfunktionen Für den Vektorraum R n, n N, über R betrachten wir die Euklidische Norm kk W R n! R; v x 7! p ux x > x WD t n und bezeichnen eine Menge A R n als

Mehr

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Dr. Gerhard Mülich Christian Maaß 6.Mai 8 Im letzten Vortrag haben wir gesehen, dass das

Mehr

Vorlesung Der Satz von Fubini. 6.2 Der Satz von Beppo Levi 6.1. DER SATZ VON FUBINI 33

Vorlesung Der Satz von Fubini. 6.2 Der Satz von Beppo Levi 6.1. DER SATZ VON FUBINI 33 6.1. DER SATZ VON FUBINI 33 Vorlesung 6 6.1 Der Satz von Fubini Das Lebesgue-Integralkann natürlichauchüber mehrdimensionale Gebiete definiert werden. Wir haben uns hier auf den eindimenionalen Fallbeschränkt.

Mehr

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i 3 Kompaktheit In der Analysis I zeigt man, dass stetige Funktionen f : [a, b] R auf abgeschlossenen, beschränkten Intervallen [a, b] gleichmäßig stetig und beschränkt sind und dass sie ihr Supremum und

Mehr

Die Fourier-Transformierte

Die Fourier-Transformierte Die Fourier-Transformierte Proseminar Analysis Sommersemester 008 Natalia Dück 6.06.08 Inhaltsverzeichnis Einleitung/Fourier-Transformierte. Definition..................................... Beispiele......................................3

Mehr

Schwartz-Raum (Teil 1)

Schwartz-Raum (Teil 1) Schwartz-Raum (Teil 1) Federico Remonda, Robin Krom 10. Januar 2008 Zusammenfassung Der Schwartz-Raum ist ein Funktionenraum, der besondere Regularitätseigenschaften besitzt, die uns bei der Fouriertransformation

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn Stetige Funktionen Eine zentrale Rolle in der Analysis spielen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume). Dabei sind i.a. nicht beliebige

Mehr

Kapitel C. Integrale und Grenzwerte

Kapitel C. Integrale und Grenzwerte Kapitel C Integrale und Grenzwerte Inhalt dieses Kapitels C000 1 Der Satz von Fubini 2 Der Transformationssatz 1 Vertauschen von Integral und eihe 2 Vertauschen von Integral und Limes 3 Vertauschen von

Mehr

L 2 -Theorie und Plancherel-Theorem

L 2 -Theorie und Plancherel-Theorem L -Theorie und Plancherel-Theorem Seminar Grundideen der Harmonischen Analysis bei Porf Dr Michael Struwe HS 007 Vortrag von Manuela Dübendorfer 1 Wiederholung aus der L 1 -Theorie Um die Fourier-Transformation

Mehr

Partielle Differentialgleichungen Kapitel 7

Partielle Differentialgleichungen Kapitel 7 Partielle Differentialgleichungen Kapitel 7 Intermezzo zu Distributionen Die Physik hat der Mathematik die Dirac-δ-Funktion gebracht. Diese δ-funktion soll folgende Eigenschaften haben: n δ (x ϕ (x dx

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

ANALYSIS 3. Carsten Schütt WS 2008/9

ANALYSIS 3. Carsten Schütt WS 2008/9 1. Es sei f : R 3 R 3 durch f 1 (r, φ 1,φ 2 ) = r cos φ 1 f 2 (r, φ 1,φ 2 ) = r sin φ 1 cos φ 2 f 3 (r, φ 1,φ 2 ) = r sin φ 1 sin φ 2 gegeben. Für welche (r, φ 1,φ 2 ) ist f lokal invertierbar? Ist f global

Mehr

A. Maß- und Integrationstheorie

A. Maß- und Integrationstheorie A. Maß- und Integrationstheorie Im folgenden sind einige Ergebnisse aus der Maß- und Integrationstheorie zusammengestellt, die wir im Laufe der Vorlesung brauchen werden. Für die Beweise der Sätze sei

Mehr

5 Stetigkeit und Differenzierbarkeit

5 Stetigkeit und Differenzierbarkeit 5 Stetigkeit und Differenzierbarkeit 5.1 Stetigkeit und Grenzwerte von Funktionen f(x 0 ) x 0 Graph einer stetigen Funktion. Analysis I TUHH, Winter 2006/2007 Armin Iske 127 Häufungspunkt und Abschluss.

Mehr

Übungen zur Funktionalanalysis Lösungshinweise Blatt 2

Übungen zur Funktionalanalysis Lösungshinweise Blatt 2 Übungen zur Funktionalanalysis Lösungshinweise Blatt 2 Aufgabe 5. Beweisen Sie: Ein kompakter Hausdorffraum, welcher dem ersten Abzählbarkeitsaxiom genügt, ist folgenkompakt. Lösung. Es sei X ein kompakter

Mehr

4 Fehlerabschätzungen und Konvergenz der FEM

4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 153 Es sei V der Lösungsraum und V N V ein endlich dimensionaler Unterraum. Weiters sei u V die exakte Lösung und

Mehr

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist:

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist: Musterlösung Aufgabe a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [, ] R, die folgendermaßen definiert ist: f(x) := { für x R \ Q für x Q f ist offensichtlich beschränkt. Wir zeigen,

Mehr

Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung. Lösungen zur Probeklausur 2.

Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung. Lösungen zur Probeklausur 2. Adµ Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung Blatt Probeklausur 2 Lösungen zur Probeklausur 2 Aufgabe 1 1. Formulieren Sie den Satz von Taylor

Mehr

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1 24 14 Metrische Räume 14.1 R n als euklidischer Vektorraum Die Menge R n = {(x 1,..., x n ) x i R} versehen mit der Addition und der skalaren Multiplikation x + y = (x 1 + y 1,..., x n + y n ) λx = (λx

Mehr

Wiederholung. Wir wiederholen einige Begriffe und Sätze der Analysis, die in der Maßtheorie eine wichtige Rolle spielen.

Wiederholung. Wir wiederholen einige Begriffe und Sätze der Analysis, die in der Maßtheorie eine wichtige Rolle spielen. Wiederholung Wir wiederholen einige Begriffe und Sätze der Analysis, die in der Maßtheorie eine wichtige Rolle spielen. Definition. Sei X eine Menge und d : X X R eine Abbildung mit den Eigenschaften 1.

Mehr

1 Definition und Konstruktion vektorwertiger Funktionen und Funktionen mehrerer Variabler

1 Definition und Konstruktion vektorwertiger Funktionen und Funktionen mehrerer Variabler Zusammenfassung Kapitel IV: Funktionen mehrerer Veränderlicher und vektorwertige Funktionen 1 Definition und Konstruktion vektorwertiger Funktionen und Funktionen mehrerer Variabler Definition vektorwertige

Mehr

Lebesgue-Integral und L p -Räume

Lebesgue-Integral und L p -Räume Lebesgue-Integral und L p -Räume Seminar Integraltransformationen, WS 2012/13 1 Treppenfunktionen Grundlage jedes Integralbegriffs ist das geometrisch definierte Integral von Treppenfunktionen. Für A R

Mehr

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte Universität München 22. Juli 29 Topologie und Differentialrechnung mehrerer Veränderlicher, SS 29 Modulprüfung/Abschlussklausur Name: Aufgabe 2 3 4 Punkte Gesamtpunktzahl: Gesamturteil: Schreiben Sie unbedingt

Mehr

10 Der Integralsatz von Gauß

10 Der Integralsatz von Gauß 10 Der Integralsatz von Gauß In diesem Abschnitt beweisen wir den Integralsatz von Gauß, die mehrdimensionale Verallgemeinerung des Hauptsatzes der Differential- und Integralrechnung. Aussage des Satzes

Mehr

Vorlesung Das Fundamentallemma der Variationsrechnung

Vorlesung Das Fundamentallemma der Variationsrechnung 5.. DAS FUNDAMENTALLEMMA DER VARIATIONSRECHNUNG 8 Vorlesung 5 5. Das Fundamentallemma der Variationsrechnung Es sei im Folgenden R n offen, zusammenhängend und beschränkt. Dann ist R n komakt. Wir wollen

Mehr

Analysis 3. Weihnachtsblatt Prof. Dr. H. Koch Dr. F. Gmeineder Besprechung: TBC, Januar Aufgabe 1: (Besonders prüfungsrelevant)

Analysis 3. Weihnachtsblatt Prof. Dr. H. Koch Dr. F. Gmeineder Besprechung: TBC, Januar Aufgabe 1: (Besonders prüfungsrelevant) Analysis 3 04.12.2018 Prof. Dr. H. och Dr. F. Gmeineder Besprechung: TBC, Januar 2019 Weihnachtsblatt Aufgabe 1: (Besonders prüfungsrelevant) Aufgabe 2: Sei Ω eine Menge und Σ eine σ-algebra auf Ω. Seien

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

Fourierreihen und Funktionentheorie. 1 Der Poisson-Kern

Fourierreihen und Funktionentheorie. 1 Der Poisson-Kern Vortrag zum Seminar Fourieranalysis, 7..007 Corinna Schaaf Bisher haben wir Fourierreihen, die auf dem orus {x R : π x < π} definiert sind, betrachtet. Es ist jedoch auch möglich, Fourierreihen auf der

Mehr

Musterlösung Klausur zu Analysis II. Verständnisteil

Musterlösung Klausur zu Analysis II. Verständnisteil Technische Universität Berlin SS 2009 Institut für Mathematik 20.07.2009 Prof. Dr. R. Schneider Fritz Krüger Sebastian Holtz Musterlösung Klausur zu Analysis II Verständnisteil 1. (a) Sei D R n konvex

Mehr

22 KAPITEL 1. GRUNDLAGEN. Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion

22 KAPITEL 1. GRUNDLAGEN. Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion KAPITEL 1. GRUNDLAGEN Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion 1 für 0 x < 1 g 0 (x) = 1 1 für < x 1. Natürlich gibt dies von

Mehr

Wie in der reellen Analysis üblich notiert man Folgen f in der Form

Wie in der reellen Analysis üblich notiert man Folgen f in der Form 2.1.3 Folgen und Konvergenz Viele aus der Analysisvorlesung bekannte Begriffe lassen sich in den Bereich der metrischen Räume verallgemeinern. Diese Verallgemeinerung hat sich als sehr nützliches mathematisches

Mehr

Lösungsvorschlag zur Übungsklausur zur Analysis I

Lösungsvorschlag zur Übungsklausur zur Analysis I Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 NWF I - Mathematik 9..9 Universität Regensburg Lösungsvorschlag zur Übungsklausur zur Analysis I Frage 1 Vervollständigen Sie die folgenden

Mehr

5. Übungsblatt zur Analysis II

5. Übungsblatt zur Analysis II Facbereic Matematik Prof. Dr. R. Farwig C. Komo J. Prasiswa R. Sculz SS 009 8.05.009 5. Übungsblatt zur Analysis II Gruppenübung Aufgabe G (Differenzierbarkeit Gegeben sei die Funktion f : R R mit f(x,

Mehr

Integraldarstellung des Restgliedes; Lagrangesche Restgliedformel;

Integraldarstellung des Restgliedes; Lagrangesche Restgliedformel; Kapitel Der Satz von Taylor. Taylor-Formel und Taylor-Reihe (Taylor-Polynom; Restglied; Integraldarstellung des Restgliedes; Lagrangesche Restgliedformel; die Klasse C ; reell analytische Funktionen) In

Mehr

Serie 2 Lösungsvorschläge

Serie 2 Lösungsvorschläge D-Math Mass und Integral FS 214 Prof. Dr. D. A. Salamon Serie 2 Lösungsvorschläge 1. Seien folgende Mengen gegeben: und für a, b R R := [, ] := R {, }, (a, ] := (a, ) { }, [, b) := (, b) { }. Wir nennen

Mehr

7. Übungsblatt zur Mathematik II für Inf, WInf

7. Übungsblatt zur Mathematik II für Inf, WInf Fachbereich Mathematik Prof. Dr. Streicher Dr. Sergiy Nesenenko Pavol Safarik SS 2010 27.-31.05.10 7. Übungsblatt zur Mathematik II für Inf, WInf Gruppenübung Aufgabe G24 (Grundlegende Definitionen) Betrachten

Mehr

Konvergenz im quadratischen Mittel - Hilberträume

Konvergenz im quadratischen Mittel - Hilberträume CONTENTS CONTENTS Konvergenz im quadratischen Mittel - Hilberträume Contents 1 Ziel 2 1.1 Satz........................................ 2 2 Endlich dimensionale Vektorräume 2 2.1 Defintion: Eigenschaften

Mehr

Implizite Funktionen

Implizite Funktionen Implizite Funktionen Durch die Bedingung F (x, y) = C, C R wird eine bestimmte Teilmenge des R 2 festgelegt, zb durch die Bedingung x y = 4 Dabei können wir obda C = 0 annehmen, da wir stets zur Betrachtung

Mehr

Lösungen der Übungsaufgaben von Kapitel 3

Lösungen der Übungsaufgaben von Kapitel 3 Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 3 zu 3.1 3.1.1 Bestimmen Sie den Abschluss, den offenen Kern und den Rand folgender Teilmengen

Mehr

Ferienkurs in Maß- und Integrationstheorie

Ferienkurs in Maß- und Integrationstheorie Zentrum Mathematik Technische Universität München Dipl. Math. Wolfgang Erb WS 9/ Übungsblatt Ferienkurs in Maß- und Integrationstheorie Aufgabe. (σ-algebren Sei eine Menge und A eine σ-algebra in. Seien

Mehr

10 Der Satz von Fubini

10 Der Satz von Fubini er Satz von Fubini ie Bezeichnungen seien wie in den Paragraphen 8 und 9. Satz. (Satz von Tonelli Es sei f : d [, + ] messbar. (Aus 8 folgt dann, dass f, f y messbar sind, wobei klar ist, dass f, f y sind.

Mehr

Der metrische Raum (X, d) ist gegeben. Zeigen Sie, dass auch

Der metrische Raum (X, d) ist gegeben. Zeigen Sie, dass auch TECHNISCHE UNIVERSITÄT BERLIN SS 07 Institut für Mathematik Stand: 3. Juli 007 Ferus / Garcke Lösungsskizzen zur Klausur vom 6.07.07 Analysis II. Aufgabe (5 Punkte Der metrische Raum (X, d ist gegeben.

Mehr

Lösungen zu Übungsblatt 9

Lösungen zu Übungsblatt 9 Analysis : Camillo de Lellis HS 007 Lösungen zu Übungsblatt 9 Lösung zu Aufgabe 1. Wir müssen einfach das Integral 16 (x + y d(x, y x +y 4 ausrechnen. Dies kann man einfach mittels Polarkoordinaten, da

Mehr

Übungen zu Einführung in die Analysis

Übungen zu Einführung in die Analysis Übungen zu Einführung in die Analysis (Nach einer Zusammengestellung von Günther Hörmann) Sommersemester 2011 Vor den folgenden Aufgaben werden in den ersten Wochen der Übungen noch jene zur Einführung

Mehr

Aufgaben zu Kapitel 0

Aufgaben zu Kapitel 0 Aufgaben zu Kapitel 0 0.1. Seien A und B zwei Mengen. Wie kann man paarweise disjunkte Mengen A 1, A 2 und A 3 so wählen, dass A 1 A 2 A 3 = A B gilt? 0.2. Seien E ein Menge und A eine Teilmengen von E.

Mehr

7 Integralrechnung für Funktionen einer Variablen

7 Integralrechnung für Funktionen einer Variablen 7 Integralrechnung für Funktionen einer Variablen In diesem Kapitel sei stets D R, und I R ein Intervall. 7. Das unbestimmte Integral (Stammfunktion) Es sei f : I R eine Funktion. Eine differenzierbare

Mehr

Integration (handgestrickt)

Integration (handgestrickt) Integration (handgestrickt) C c (R n ) :={f : R n R; f stetig, Träger(f) beschränkt}. B + b (Rn ) := { f : R n R; abei bedeutet f m konvergiert. J (R n ) := {f; a) f beschränkt, b) Träger(f) beschränkt,

Mehr

Mathematik I Herbstsemester 2018 Kapitel 5: Integralrechnung

Mathematik I Herbstsemester 2018 Kapitel 5: Integralrechnung Mathematik I Herbstsemester 208 Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas / 70 5. Integralrechnung Grundbegriffe Das bestimmte Integral als Flächeninhalt Der Fundamentalsatz Partielle

Mehr

Technische Universität München. Aufgaben Mittwoch SS 2012

Technische Universität München. Aufgaben Mittwoch SS 2012 Technische Universität München Andreas Wörfel Ferienkurs Analysis 2 für Physiker Aufgaben Mittwoch SS 2012 Aufgabe 1 Äquivalente Aussagen für Stetigkeit( ) Beweisen Sie folgenden Satz: Seien X und Y metrische

Mehr

Analysis I. 4. Beispielklausur mit Lösungen

Analysis I. 4. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein

Mehr

1 Die direkte Methode der Variationsrechnung

1 Die direkte Methode der Variationsrechnung Die direkte Methode der Variationsrechnung Betrachte inf I(u) = f(x, u(x), u(x)) dx : u u + W,p () wobei R n, u W,p mit I(u ) < und f : R R n R. (P) Um die Existenz eines Minimierers direkt zu zeigen,

Mehr

Folgen und Reihen von Funktionen

Folgen und Reihen von Funktionen Folgen und Reihen von Funktionen Sehr häufig treten in der Mathematik Folgen bzw. Reihen von Funktionen auf. Ist etwa (f n ) eine Folge von Funktionen, dann können wir uns für ein festes x fragen, ob die

Mehr

Eigenschaften stetiger Funktionen Buch Kap. 2.5

Eigenschaften stetiger Funktionen Buch Kap. 2.5 Eigenschaften stetiger Funktionen Buch Kap. 2.5 Satz 2.6: (Nullstellensatz) Ist f : [a, b] R stetig und haben f (a) und f (b) unterschiedliche Vorzeichen, so besitzt f in (a, b) mindestens eine Nullstelle.

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 2 2 Gewöhnliche Differentialgleichungen 2. Einleitung Sei f : D R wobei D R 2. Dann nennt man y = f(x, y) (5) eine (gewöhnliche) Differentialgleichung (DGL) erster Ordnung. Als Lösung von (5) akzeptiert

Mehr

Analysis I. Vorlesung 12. Stetige Funktionen. Den Abstand zwischen zwei reellen (oder komplexen) Zahlen x und x bezeichnen

Analysis I. Vorlesung 12. Stetige Funktionen. Den Abstand zwischen zwei reellen (oder komplexen) Zahlen x und x bezeichnen Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 12 Stetige Funktionen Den Abstand zwischen zwei reellen (oder komplexen) Zahlen x und x bezeichnen wir mit d(x,x ) := x x. Bei einer Funktion

Mehr

Maß- und Integrationstheorie

Maß- und Integrationstheorie Prof. H.C. Grunau E. Sassone 1 15.10.2002 1.1 Aufgabe Maß- und Integrationstheorie WS 2002/03 Gegeben seien diese 4 Operationen über Mengen:,, \ und (symmetrische ifferenz) [A B = (A \ B) (B \ A)] 1 Wenn

Mehr

Merkblatt zur Funktionalanalysis

Merkblatt zur Funktionalanalysis Merkblatt zur Funktionalanalysis Literatur: Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen. Teubner, 986. Knabner, P., Angermann, L.: Numerik partieller Differentialgleichungen.

Mehr

Analysis II - 1. Klausur

Analysis II - 1. Klausur Analysis II -. Klausur Sommersemester 25 Vorname: Name: Aufgabe Aufgabe 2 Aufgabe 3 Aufgabe 4 Aufgabe 5 Aufgabe 6 Aufgabe 7 Aufgabe 8 Aufgabe 9 Summe Analysis II -. Klausur 2.5.25 Aufgabe 2 Punkte Berechnen

Mehr

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0 ANALYSIS FÜR PHYSIK UND VERWANDTE FÄCHER I 81 3. Stetigkeit 3.1. Stetigkeit. Im Folgenden sei D R eine beliebige nichtleere Teilmenge. Typischerweise wird D ein allgemeines Intervall sein, siehe Abschnitt

Mehr

Faltung und Gute Kerne. 1 Faltung

Faltung und Gute Kerne. 1 Faltung Vortrag zum Proseminar zur Analysis, 9.07.200 Lars Grötschel, Elisa Friebel Im ersten Abschnitt Faltung definieren und beschäftigen wir uns mit der Faltung, die die grundliegende Operation des zweiten

Mehr

Lösungsvorschläge zum 14. Übungsblatt.

Lösungsvorschläge zum 14. Übungsblatt. Übung zur Analysis III WS / Lösungsvorschläge zum 4. Übungsblatt. Aufgabe 54 Sei a R\{}. Ziel ist die Berechnung des Reihenwertes k a + k. Definiere dazu f : [ π, π] R, x coshax. Wir entwickeln f in eine

Mehr

u(x) = Notation: Bei Mittelungen über die Kugel oder die Sphäre schreiben wir =

u(x) = Notation: Bei Mittelungen über die Kugel oder die Sphäre schreiben wir = 4.2 Eigenschaften harmonischer Funktionen Die Mittelwerteigenschaft: Eine besondere Eigenschaft harmonischer Funktionen ist, dass der Funktionswert an einer Stelle x stets gleich dem Mittelwert von u über

Mehr

2.6 Der Satz von Fubini

2.6 Der Satz von Fubini 1 2.6 Der Satz von Fubini Unser Ziel ist der Beweis des folgenden Ergebnisses. 6.1. Satz von Fubini Sei f : R n+m R integrierbar. Dann gibt es eine Nullmenge N R m, so dass gilt: 1. Für alle y R m \ N

Mehr

Analysis I. 6. Beispielklausur mit Lösungen

Analysis I. 6. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 6. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Eine Relation zwischen den Mengen X und Y.

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 2. Juli 2018 1/1 Wir geben einige wesentliche Sätze über bestimmte Integrale an, deren Beweise man in den Standardlehrbüchern der Analysis findet.

Mehr

1 Einführung, Terminologie und Einteilung

1 Einführung, Terminologie und Einteilung Zusammenfassung Kapitel V: Differentialgleichungen 1 Einführung, Terminologie und Einteilung Eine gewöhnliche Differentialgleichungen ist eine Bestimmungsgleichung um eine Funktion u(t) einer unabhängigen

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen

Mehr

2. Integration. {x : f(x) <a+ 1 n }

2. Integration. {x : f(x) <a+ 1 n } 9 2.1. Definition. 2. Integration in Maß ist eine nichtnegative, abzählbar additive Mengenfunktion. in Maßraum ist ein Tripel (X,,µ) bestehend aus einem messbaren Raum X mit der -lgebra und einem auf definierten

Mehr

Mehrdimensionale Integration

Mehrdimensionale Integration Kapitel C Mehrdimensionale Integration h s r h h r h r Inhalt dieses Kapitels C000 1 Der Satz von Fubini 3 Aufgaben und Anwendungen 1 Vertauschen von Integral und Reihe Mehrdimensionale Integration #Der

Mehr

x(t) := 1 k definierte Funktion. (a) Berechnen Sie ẋ(t) und ẍ(t). (b) Zeigen Sie, daß die Funktion x = x(t) eine Lösung der Differentialgleichung

x(t) := 1 k definierte Funktion. (a) Berechnen Sie ẋ(t) und ẍ(t). (b) Zeigen Sie, daß die Funktion x = x(t) eine Lösung der Differentialgleichung Übungen (Aufg. u. Lösungen) zu Mathem. u. Lin. Algebra II SS 26 Blatt 7 3.5.26 Aufgabe 33: Die Funktion f : R R sei stetig. Betrachten Sie die durch x(t) : 1 k f(u) sin (k(t u)) du definierte Funktion.

Mehr

Höhere Mathematik III für die Fachrichtung Physik Wintersemester 2016/17. Lösungsvorschlag zu Übungsblatt 5

Höhere Mathematik III für die Fachrichtung Physik Wintersemester 2016/17. Lösungsvorschlag zu Übungsblatt 5 Institut für Analysis Dr. Christoph Schmoeger M.Sc. Jonathan Wunderlich Höhere Mathematik III für die Fachrichtung Physik Wintersemester 6/7..7 Lösungsvorschlag zu Übungsblatt 5 Aufgabe 6: Zeigen Sie mit

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Dietmar A. Salamon ETH-Zürich 23. Februar 2015 1 Topologische Grundbegriffe Sei (X, d) ein metrischer Raum, d.h. X ist eine Menge und d : X X R ist

Mehr

Ferienkurs Seite 1. Technische Universität München Ferienkurs Analysis 1 Stetigkeit, Konvergenz, Topologie

Ferienkurs Seite 1. Technische Universität München Ferienkurs Analysis 1 Stetigkeit, Konvergenz, Topologie Ferienkurs Seite Technische Universität München Ferienkurs Analysis Hannah Schamoni Stetigkeit, Konvergenz, Topologie Lösung 2.03.202. Gleichmäßige Konvergenz Entscheiden Sie, ob die folgenden auf (0,

Mehr

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Kapitel 8 Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Wir hatten im Beispiel 5. gesehen, dass die Wärmeleitungsgleichung t u u = f auf Ω (0, ) (8.1) eine parabolische Differentialgleichung

Mehr

Mathematik 2 für Wirtschaftsinformatik

Mathematik 2 für Wirtschaftsinformatik für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg : Gliederung 1 Folgen und Reihen 2 Komplexe Zahlen 3 Reelle Funktionen 4 Differenzieren 1 5 Differenzieren 2 6 Integration 7 Zinsen 8

Mehr

Übungsblatt 2 - Analysis 2, Prof. G. Hemion

Übungsblatt 2 - Analysis 2, Prof. G. Hemion Tutor: Martin Friesen, martin.friesen@gmx.de Übungsblatt 2 - Analysis 2, Prof. G. Hemion Um die hier gestellten Aufgaben zu lösen brauchen wir ein wenig Kentnisse über das Infimum bzw. Supremum einer Menge.

Mehr

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 23. Bemerkung Integralbegriffe für Funktionen f : R d R (i) Lebesgue-Integral (Vorlesung Analysis IV). Spezialfall: (ii) Uneigentliches Riemann-Integral

Mehr

Übungen zu Grundlagen der Mathematik 2 Lösungen Blatt 12 SS 14. Aufgabe 44. Bestimmen Sie die Taylor-Polynome der Funktion.

Übungen zu Grundlagen der Mathematik 2 Lösungen Blatt 12 SS 14. Aufgabe 44. Bestimmen Sie die Taylor-Polynome der Funktion. Übungen zu Grundlagen der Mathematik Lösungen Blatt 1 SS 14 Prof. Dr. W. Decker Dr. M. Pleger Aufgabe 44. Bestimmen Sie die Taylor-Polynome der Funktion f : U R, (x, y) x y x + y, im Punkt (1, 1) bis einschließlich.

Mehr

1. Übungsblatt zur Analysis 3

1. Übungsblatt zur Analysis 3 Hannover, den 2. Oktober 23 Aufgabe. Übungsblatt zur Analysis 3 Abgabe am 27./28. Oktober 23 vor den Stundenübungen (je 5 Punkte) Man zeige: a) Die Funktion f : N N N, f(m, n) := 2 (m + n)(m + n + ) +

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Fakultät II Institut für Mathematik WS /5 G. Bärwol, A. Gündel-vom-Hofe..5 Februar Klausur Analysis II für Ingenieurswissenschaften Lösungsskizze. Aufgabe 6Punkte Bestimmen

Mehr

Zusammenfassung Analysis 2

Zusammenfassung Analysis 2 Zusammenfassung Analysis 2 1.2 Metrische Räume Die Grundlage metrischer Räume bildet der Begriff des Abstandes (Metrik). Definition 1.1 Ein metrischer Raum ist ein Paar (X, d), bestehend aus einer Menge

Mehr

Fourierreihen und -transformation

Fourierreihen und -transformation Kapitel Fourierreihen und -transformation. Fourierreihen 8 postulierte Fourier (ohne stichhaltige Beweise: Jede beliebige Funktion f(x mit Periode, d. h. f(x = f(x +, lässt sich in eine Reihe der Gestalt

Mehr

4 Messbare Funktionen

4 Messbare Funktionen 4 Messbare Funktionen 4.1 Definitionen und Eigenschaften Definition 4.1. Seien X eine beliebige nichtleere Menge, M P(X) eine σ-algebra in X und µ ein Maß auf M. Das Paar (X, M) heißt messbarer Raum und

Mehr

Fourier-Transformation

Fourier-Transformation ANHANG A Fourier-Transformation In diesem Anhang werden einige Definitionen Ergebnisse über die Fourier-Transformation dargestellt. A. Definition Theorem & Definition: Sei f eine integrable komplexwertige

Mehr

Differentiation und Taylorentwicklung. Thomas Fehm

Differentiation und Taylorentwicklung. Thomas Fehm Differentiation und Taylorentwicklung Thomas Fehm 4. März 2009 1 Differentiation in R 1.1 Grundlagen Definition 1 (Ableitung einer Funktion) Es sei f eine Funktion die auf dem Intervall I R definiert ist.

Mehr

2 Allgemeine Integrationstheorie

2 Allgemeine Integrationstheorie 2 Allgemeine Integrationstheorie In diesem Abschnitt ist (,S,µ) ein Maßraum, und wir betrachten R immer mit der σ Algebra B(R). Ziel ist es, messbare Funktionen f : R zu integrieren. Das Maß µ wird uns

Mehr

Stetigkeit, Konvergenz, Topologie

Stetigkeit, Konvergenz, Topologie Ferienkurs Seite 1 Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Wintersemester 2011/12 Stetigkeit, Konvergenz, Topologie 21.03.2012 Inhaltsverzeichnis 1 Stetigkeit und Konvergenz

Mehr

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi Funktionentheorie, Woche 7 Eigenschaften holomorpher Funktionen 7.1 Ganze Funktionen Definition 7.1 Eine Funktion f : C C, die holomorph ist auf C, nennt man eine ganze Funktion. Bemerkung 7.1.1 Als Folge

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. R. König Dr. M. Prähofer Zentralübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Z7.1. Komposition stetiger Funktionen Mathematik für Physiker (Analysis 1) MA90 Wintersem. 017/18 Lösungsblatt

Mehr

Analysis II. 8. Klausur mit Lösungen

Analysis II. 8. Klausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis II 8. Klausur mit en 1 2 Aufgabe 1. Definiere die folgenden kursiv gedruckten) Begriffe. 1) Eine Metrik auf einer Menge M. 2) Die Kurvenlänge

Mehr

DIFFERENTIATION PARAMETERABHÄNGIGER INTEGRALE

DIFFERENTIATION PARAMETERABHÄNGIGER INTEGRALE DIFFERENTIATION PARAMETERABHÄNGIGER INTEGRALE Zusammenfassung. Ergänzend zur Übung vom 06.06.203 soll hier die Leibnizregel für die Differentiation parameterabhängiger Integrale formuliert und bewiesen

Mehr

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2 Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II Wiederholungsblatt: Analysis Sommersemester 2011 W. Werner, F. Springer erstellt von: Max Brinkmann Aufgabe 1: Untersuchen Sie, ob die

Mehr