Stetigkeit, Konvergenz, Topologie

Größe: px
Ab Seite anzeigen:

Download "Stetigkeit, Konvergenz, Topologie"

Transkript

1 Ferienkurs Seite 1 Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Wintersemester 2011/12 Stetigkeit, Konvergenz, Topologie Inhaltsverzeichnis 1 Stetigkeit und Konvergenz I 2 2 Einschub zur Topologie 4 3 Stetigkeit II 6 4 Grenzwerte 7

2 Ferienkurs Seite 2 1 Stetigkeit und Konvergenz I (1) Definition. Stetigkeit. Seien (X, d x ) und (Y, d y ) metrische Räume. Eine Funktion f : X Y heißt stetig an der Stelle x 0 X, wenn gilt: ɛ > 0 δ > 0 x X : d x (x, x 0 ) < δ d y (f(x), f(x 0 )) < ɛ f heißt stetig (auf X), wenn f stetig ist an jeder Stelle x 0 X. (2) Definition. Lipschitz-Stetigkeit. Eine Funktion f : X Y heißt Lipschitzstetig, wenn gilt: L > 0 x 0, x 1 X : d y (f(x 0 ), f(x 1 )) L d x (x 0, x 1 ) (3) Rechenregeln. Seien (X, d x ), (Y, d y ) und (M, d m ) metrische Räume und f, h : X M stetig in x X und g : Y M stetig in f(x). Dann gelten: f + h und f h sind stetig. g f : X M, (g f)(x) := g(f(x)) ist stetig in x. f, f : X C, Re f, Im f : X R sind stetig in x. Sei X 0 := {x X h(x) 0}. Dann ist für x 0 X 0 die Funktion f h : X 0 Y stetig. (4) Lemma. Sei f : X Y und x 0 X. Dann sind äquivalent: (i) f ist stetig an der Stelle x 0 (ii) Für jede Folge (x n ) in X gilt: x n x 0 f(x n ) f(x 0 ) (5) Definition. Punktweise und gleichmäßige Konvergenz. Seien (X, d x ), (Y, d y ) metrische Räume, f n : X Y eine Folge von Abbildungen und f : X Y. (i) Die Folge (f n ) heißt punktweise konvergent gegen f, wenn gilt: x X ɛ > 0 N N n N, n N : d y (f n (x), f(x)) < ɛ d.h. x X : f n (x) f(x)

3 Ferienkurs Seite 3 (ii) Die Folge (f n ) heißt gleichmäßig konvergent gegen f, wenn gilt: ɛ > 0 N N n N, n N x X : d y (f n (x), f(x)) < ɛ Bemerkung: Der Unterschied zwischen den beiden Definitionen liegt in der Stellung des x X. Bei der punktweisen Konvergenz reicht es, für jedes x ein eigenes N zu finden. Für gleichmäßige Konvergenz gibt es N, so dass für alle x die Bedingung d y (f n (x), f(x)) < ɛ erfüllt ist. Aus der gleichmäßigen Konvergenz folgt die punktweise Konvergenz (Umkehrung gilt nicht). (6) Satz. Sei f n : X Y eine Folge an der Stelle x 0 stetiger Abbildungen, welche gleichmäßig gegen die Funktion f : X Y konvergiert. Dann ist auch die Grenzfunktion f stetig an der Stelle x 0. (7) Definition. Norm. Sei V ein R-(C-)Vektorraum. Die Abbildung : V R + 0 heißt Norm, wenn gilt: v = 0 v = 0 für alle v V λv = λ v für alle v V, λ R(C) v + w v + w für alle v, w V (Dreiecksungleichung) Bemerkung: Jede Norm auf V induziert eine Metrik auf V durch d (v, w) := v w. (8) Wichtige Beispiele. (i) Ein wichtiges Beispiel ist die euklidische Norm auf R n (C n ). Sie ist definiert als v := ( v v n 2) 1 2. (ii) Ebenfalls wichtig ist die Supremums-Norm auf F b (x) := {Funktionen f : X C f beschränkt}. Diese ist definiert durch f x := sup f(x). x X (9) Definition. Beschränktheit. f : X C heißt beschränkt : c > 0 : f(x) c x X (10) Definition. Normale Konvergenz. Eine Reihe f n von Funktionen f n : X C heißt normal konvergent, wenn f n beschränkt ist für alle n und wenn die Reihe f n x konvergiert. n=1 n=1

4 Ferienkurs Seite 4 Bemerkung: Eine auf X normal konvergente Reihe konvergiert dort auch gleichmäßig n gegen eine Grenzfunktion f, also f F (x) mit f f k 0 für n. x (11) Satz. Eine Reihe f = k=1 f n sei normal konvergent auf X mit f n : X C n. n=1 Dann gilt: f n : X C stetig in x 0 n N f : X C stetig in x 0. Beispiel: Sei a k z k eine Potenzreihe mit Konvergenzradius R. Dann ist k=0 f : K R := {z C z < R} C, z f(z) := a k z k stetig. Also ist beispielsweise die Exponentialfunktion auf ganz C stetig. k=0 (12) Zwischenwertsatz. Sei a, b R mit a < b und f : [a, b] R stetig. Sei γ R mit f(a) γ f(b) (bzw. f(a) γ f(b)) c [a, b] : f(c) = γ. Beispiel: Jedes Polynom p : R R ungerader Ordnung besitzt mindestens eine reelle Nullstelle. (13) Fixpunktsatz. Sei f : [a, b] [a, b] stetig f hat einen Fixpunkt, d.h. x [a, b] : f(x) = x. 2 Einschub zur Topologie Sei (X, d) ein metrischer Raum. Man nennt B r (x) := {y X d(y, x) < r} eine offene Kugel um x. (1) Definition. Offen. U X heißt offen, wenn gilt: x U ɛ > 0 : B ɛ (x) U Man kann also um jeden Punkt der Menge U eine offene Kugel finden, die noch vollstängig in U liegt. Beispiele: Die offene Kugel, die leere Menge und die Menge X selber sind offen.

5 Ferienkurs Seite 5 (2) Definition. Abgeschlossen. A X heißt abgeschlossen, wenn für alle x X gilt: B ɛ (x) A ɛ > 0 x A Im Gegensatz zur offenen Menge gehört der Rand von A zu A dazu. Beachte: nicht abgeschlossen offen Beispiele: Intervalle [a, b] R, die leere Menge und die Menge X sind abgeschlossen. (3) Äquivalenzen zur Abgeschlossenheit. Sei A X. Folgende Aussagen sind äquivalent: A ist abgeschlossen. X\A ist offen. Sei (x n ) eine Folge in A mit lim n x n = x X x A. (4) Äquivalenzen zur Stetigkeit. Seien (X, d x ), (Y, d y ) metrische Räume, f : X Y eine Abbildung. Dann sind äquivalent: f ist stetig. U Y ist offen f 1 (U) ist offen in X. A Y ist abgeschlossen f 1 (A) ist abgeschlossen in X. (5) Definition. Kompaktheit. Sei (X, d) ein metrischer Raum. K X heißt kompakt, wenn jede Folge (x n ) in K eine konvergente Teilfolge besitzt, deren Grenzwert wieder in K liegt. (6) Aussagen über kompakte Mengen. Seien X, Y metrische Röume. Dann gelten: (i) K X kompakt, f : X Y stetig f(k) kompakt. (ii) K X kompakt K abgeschlossen. (iii) K X kompakt, A K abgeschlossen A kompakt.

6 Ferienkurs Seite 6 (7) Satz von Borel. Sei K R n (C n ) mit euklidischer Metrik und euklidischer Norm. Dann gilt: K kompakt K abgeschlossen und beschränkt. 3 Stetigkeit II (1) Stetigkeit der Umkehrfunktion. Seien (X, d x ), (Y, d y ) metrische Räume. Sei X kompakt und f : X Y stetig und bijektiv. Dann ist f 1 : Y X stetig. (2) Satz vom Minimum und Maximum. Seien (X, d) ein metrischer Raum, K X kompakt und f : K R stetig. x 0, x 1 K : f(x 0 ) f(x) f(x 1 ) x K Stetige, reelle Funktionen auf kompakten Mengen nehmen also ihr Minimum und ihr Maximum an. (3) Definition. Gleichmäßige Stetigkeit. Eine Funktion f : X Y heißt gleichmäßig stetig, wenn gilt: ɛ > 0 δ > 0 x, x X : d x (x, x ) < δ d y (f(x), f(x )) < ɛ Für ein gegebenes ɛ gibt es also ein δ, das für alle x gilt. Bemerkung: Es gilt folgender Zusammenhang: Lipschitz-Stetigkeit gleichmäßige Stetigkeit Stetigkeit (4) Satz. Seien X, Y metrische Räume, X sei kompakt und f : X Y stetig. f ist gleichmäßig stetig. Im Folgenden seien (X, d) ein metrischer Raum, D X, f : D C eine Abbildung und x 0 X. (5) Definition. Stetige Fortsetzung. Eine Funktion F : D {x 0 } C heißt stetige Fortsetzung von f im Punkt x 0, wenn f(x) = F (x) x D\ {x 0 } und F stetig an der Stelle x 0 ist. Beispiel: Stetige Fortsetzung von f(x) = 1 x f(x) := { 1 x 1 x x R\{1}. 1 x = 1 1 x : lim f(x) = 1 x 1

7 Ferienkurs Seite 7 4 Grenzwerte (1) Definition. Häufungspunkt. x 0 X heißt Häufungspunkt der Menge D, wenn gilt: ɛ > 0 : (B ɛ (x 0 )\ {x 0 }) D (2) Definition. Grenzwert. Eine Funktion f : D C hat im Häufungspunkt x 0 den Grenzwert { a, wenn die Abbildung F : D {x 0 } C, f(x) x D\{x 0 } F (x) := a x = x 0 in x 0 stetig ist. Man schreibt lim f(x) = a oder f(x) a für x x 0. x x 0 (3) Folgenkriterium. lim x x 0 f(x) = a x 0 ist ein Häufungspunkt von D und für jede Folge (x n ) in D\{x 0 } mit x n x 0 gilt f(x n ) a. (4) Rechenregeln. Sei (X, d) ein metrischer Raum, D X, x 0 X ein Häufungspunkt von D und f, g : D C. Es gelte f(x) a, g(x) b für x x 0. Dann gilt für x x 0 auch: (f + g)(x) a + b (f g) a b Für b 0 ist x 0 Häufungspunkt von D 0 := {x D g(x) 0} und f g : D 0 C hat in x 0 die stetige Fortsetzung a b, d.h. f g (x) a b. f (x) a, (Re f)(x) Re a, (Im f)(x) Im a (5) Grenzwert bei verknüpften Funktionen. Sei x 0 Häufungspunkt von D. f : D E C, g : E C. Es gelte f(x) a E für x x 0 und g sei stetig in a. Dann gilt: g(f(x)) g(a) für x x 0 (6) Definition. Asymptotische Gleichheit. Sei x 0 Häufungspunkt von D. f, g : D C heißen asymptotisch gleich für x x 0, falls für D 0 := {x D g(x) 0} und f g : D 0 C gilt: f g (x) 1 für x x 0. Man schreibt f(x) = g(x) für x x 0.

8 Ferienkurs Seite 8 (7) Definition. Uneigentlicher Grenzwert. Sei D C, f : D R und x 0 ein Häufungspunkt von D. Man sagt f geht gegen ( ) bei x 0, wenn C R δ > 0 x D mit x x 0 < δ : f(x) C (bzw. f(x) C). Man schreibt: lim f(x) = oder f(x) x x 0 x x 0 (bzw. lim x x 0 f(x) = ) (8) Definition. Grenzwerte bei ±. Es seien a > 0 und f : D R mit (a, ) D R. Für p R definiert man f(x) p < ɛ. lim f(x) = p : ɛ > 0 R > a x R : x lim f(x) = : C > 0 R > a x R : f(x) C x lim f(x) = : lim x ( f) (x) = x

Ferienkurs Seite 1. Technische Universität München Ferienkurs Analysis 1 Stetigkeit, Konvergenz, Topologie

Ferienkurs Seite 1. Technische Universität München Ferienkurs Analysis 1 Stetigkeit, Konvergenz, Topologie Ferienkurs Seite Technische Universität München Ferienkurs Analysis Hannah Schamoni Stetigkeit, Konvergenz, Topologie Lösung 2.03.202. Gleichmäßige Konvergenz Entscheiden Sie, ob die folgenden auf (0,

Mehr

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1 24 14 Metrische Räume 14.1 R n als euklidischer Vektorraum Die Menge R n = {(x 1,..., x n ) x i R} versehen mit der Addition und der skalaren Multiplikation x + y = (x 1 + y 1,..., x n + y n ) λx = (λx

Mehr

Ferienkurs Stetigkeit und Konvergenz Seite 1. Technische Universität München Ferienkurs Analysis 1. Musterlösung = lim.

Ferienkurs Stetigkeit und Konvergenz Seite 1. Technische Universität München Ferienkurs Analysis 1. Musterlösung = lim. Ferienkurs Stetigkeit und Konvergenz Seite Technische Universität München Ferienkurs Analysis Hannah Schamoni Stetigkeit und Konvergenz Musterlösung 6.03.20. Grenzwerte I Berechnen Sie lim f(), lim f()

Mehr

1 Einleitung. 2 Reelle Zahlen. 3 Konvergenz von Folgen

1 Einleitung. 2 Reelle Zahlen. 3 Konvergenz von Folgen 1 Einleitung Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis 1 aus dem Wintersemester 2008/09

Mehr

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren Ferienkurs Analysis 1 - Wintersemester 2014/15 Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis

Mehr

5 Stetigkeit und Differenzierbarkeit

5 Stetigkeit und Differenzierbarkeit 5 Stetigkeit und Differenzierbarkeit 5.1 Stetigkeit und Grenzwerte von Funktionen f(x 0 ) x 0 Graph einer stetigen Funktion. Analysis I TUHH, Winter 2006/2007 Armin Iske 127 Häufungspunkt und Abschluss.

Mehr

1 Topologie in metrischen Räumen

1 Topologie in metrischen Räumen 1 Topologie in metrischen Räumen 1 1.1 Metrische und normierte Räume Das Ziel dieses Abschnitts ist es, die Erkenntnisse über Folgen (und Reihen) reeller Zahlen aus dem vergangenen Semester zu verallgemeinern.

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen 9 Stetigkeit von Funktionen Definition 9.1 : Sei D R oder C und f : D R, C. f stetig in a D : ε > 0 δ > 0 mit f(z) f(a) < ε für alle z D, z a < δ. f stetig auf D : f stetig in jedem Punkt a D. f(a) ε a

Mehr

Lösungen der Übungsaufgaben von Kapitel 3

Lösungen der Übungsaufgaben von Kapitel 3 Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 3 zu 3.1 3.1.1 Bestimmen Sie den Abschluss, den offenen Kern und den Rand folgender Teilmengen

Mehr

Übungsblatt 2 - Analysis 2, Prof. G. Hemion

Übungsblatt 2 - Analysis 2, Prof. G. Hemion Tutor: Martin Friesen, martin.friesen@gmx.de Übungsblatt 2 - Analysis 2, Prof. G. Hemion Um die hier gestellten Aufgaben zu lösen brauchen wir ein wenig Kentnisse über das Infimum bzw. Supremum einer Menge.

Mehr

Analysis II. Vorlesung 36. stark kontrahierend, wenn es eine nichtnegative reelle Zahl c < 1 gibt mit

Analysis II. Vorlesung 36. stark kontrahierend, wenn es eine nichtnegative reelle Zahl c < 1 gibt mit Prof. Dr. H. Brenner Osnabrück SS 2014 Analysis II Vorlesung 36 Weitere Stetigkeitsbegriffe Wir führen einige weitere Stetigkeitsbegriffe ein. Definition 36.1. Es sei eine Abbildung zwischen den metrischen

Mehr

Wiederholung. Wir wiederholen einige Begriffe und Sätze der Analysis, die in der Maßtheorie eine wichtige Rolle spielen.

Wiederholung. Wir wiederholen einige Begriffe und Sätze der Analysis, die in der Maßtheorie eine wichtige Rolle spielen. Wiederholung Wir wiederholen einige Begriffe und Sätze der Analysis, die in der Maßtheorie eine wichtige Rolle spielen. Definition. Sei X eine Menge und d : X X R eine Abbildung mit den Eigenschaften 1.

Mehr

Folgen, Reihen, Potenzreihen, Exponentialfunktion

Folgen, Reihen, Potenzreihen, Exponentialfunktion Ferienkurs Seite 1 Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Wintersemester 2011/12 Folgen, Reihen, Potenzreihen, Exponentialfunktion 20.03.2012 Inhaltsverzeichnis 1 Folgen 2

Mehr

Kommutativität. De Morgansche Regeln

Kommutativität. De Morgansche Regeln 1. Formale Logik Proposition 1.1. Die logischen Elementarverknüpfungen gehorchen folgenden Äquivalenzen: (1.1) (1.2) p p p p p p Idempotenz (1.3) (1.4) p q q p p q q p Kommutativität (1.5) (1.6) (p q)

Mehr

Zusammenfassung Analysis 2

Zusammenfassung Analysis 2 Zusammenfassung Analysis 2 1.2 Metrische Räume Die Grundlage metrischer Räume bildet der Begriff des Abstandes (Metrik). Definition 1.1 Ein metrischer Raum ist ein Paar (X, d), bestehend aus einer Menge

Mehr

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i 3 Kompaktheit In der Analysis I zeigt man, dass stetige Funktionen f : [a, b] R auf abgeschlossenen, beschränkten Intervallen [a, b] gleichmäßig stetig und beschränkt sind und dass sie ihr Supremum und

Mehr

Polynome, Stetigkeit, Dierenzierbarkeit

Polynome, Stetigkeit, Dierenzierbarkeit Polynome, Stetigkeit, Dierenzierbarkeit Inhaltsverzeichnis 1 Polynome 1 1.1 Denitionen...................................................... 1 1.2 Nullstellen.......................................................

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Ferienkurs Analysis 1

Ferienkurs Analysis 1 TECHNISCHE UNIVERSITÄT MÜNCHEN Ferienurs Analysis 1 Potenzreihen, Exponentialfuntion, Stetigeit, Konvergenz, Grenzwert Henri Thoma 1.03.014 Inhaltsverzeichnis 1. Potenzreihen:... 1. Exponentialfuntion...

Mehr

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0 ANALYSIS FÜR PHYSIK UND VERWANDTE FÄCHER I 81 3. Stetigkeit 3.1. Stetigkeit. Im Folgenden sei D R eine beliebige nichtleere Teilmenge. Typischerweise wird D ein allgemeines Intervall sein, siehe Abschnitt

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Wintersemester 2008/2009 Übung 11 Einleitung Es wird eine 15-minütige Mikroklausur geschrieben. i) Sei D R oderd C. Wann heißt

Mehr

n 1, n N \ {1}, 0 falls x = 0,

n 1, n N \ {1}, 0 falls x = 0, IV.1. Stetige Funktionen 77 IV. Stetigkeit IV.1. Stetige Funktionen Stetige Funktionen R R sind vielen sicher schon aus der Schule bekannt. Dort erwirbt man sich die naive Vorstellung, dass eine stetige

Mehr

J.M. Sullivan, TU Berlin B: Metrische Räume Analysis II, WS 2008/09

J.M. Sullivan, TU Berlin B: Metrische Räume Analysis II, WS 2008/09 B. METRISCHE RÄUME B1. Definition Definition B1.1. Sei X eine Menge. Eine Funktion oder Abbildung d : X X R heißt dann eine Metrik auf X, falls für alle x, y, z X die folgenden (axiomatischen) Bedingungen

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel IV SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

Ferienkurs Analysis 1

Ferienkurs Analysis 1 Skript Ferienkurs Analysis 1 Fabian Hafner und Thomas Baldauf TUM Wintersemester 2016/17 04.04.2017 Das Skript wurde teilweise übernommen vom Skript des Ferienkurses WS 2014, verfasst von Andreas Wörfel.

Mehr

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) 1 Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) Kapitel 4: Konvergenz und Stetigkeit Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 22. November 2007) Folgen Eine Folge

Mehr

(c) (a) X ist abgeschlossen. X = A,wobeiderDurchschnittüberalleabgeschlossenenMengengebildet wird, die X enthalten. (d) (e)

(c) (a) X ist abgeschlossen. X = A,wobeiderDurchschnittüberalleabgeschlossenenMengengebildet wird, die X enthalten. (d) (e) 27 15. Metrische Räume Mit Hilfe einer Norm können wir den Abstand x y zweier Punkte x, y messen. Eine Metrik ist eine Verallgemeinerung dieses Konzepts: 15.1. Metriken. Es sei M eine beliebige Menge.

Mehr

Klausur - Analysis I Lösungsskizzen

Klausur - Analysis I Lösungsskizzen Klausur - Analysis I Lösungsskizzen Aufgabe 1.: 5 Punkte Entscheiden Sie, ob folgende Aussagen wahr oder falsch sind. Kennzeichnen Sie wahre Aussagen mit W und falsche Aussagen mit F. Es sind keine Begründungen

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 5: Konvergenz Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Dezember 2011) Folgen Eine Folge x 0, x 1,

Mehr

Vollständigkeit. Andreas Schmitt. Ausarbeitung zum Proseminar zur Topologie im WS 2012/13

Vollständigkeit. Andreas Schmitt. Ausarbeitung zum Proseminar zur Topologie im WS 2012/13 Vollständigkeit Andreas Schmitt Ausarbeitung zum Proseminar zur Topologie im WS 2012/13 1 Einleitung Bei der Konvergenz von Folgen im Raum der reellen Zahlen R trifft man schnell auf den Begriff der Cauchy-Folge.

Mehr

Inhaltsverzeichnis. 6 Topologische Grundlagen. 6.1 Normierte Räume

Inhaltsverzeichnis. 6 Topologische Grundlagen. 6.1 Normierte Räume Inhaltsverzeichnis 6 Topologische Grundlagen 1 6.1 Normierte Räume................................ 1 6.2 Skalarprodukte................................. 2 6.3 Metrische Räume................................

Mehr

Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript

Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript Janko Latschev Fachbereich Mathematik Universität Hamburg www.math.uni-hamburg.de/home/latschev Hamburg,

Mehr

θ für alle n n 0, 0, dann divergiert a n. θ n, also die mit a n0 θ n 0

θ für alle n n 0, 0, dann divergiert a n. θ n, also die mit a n0 θ n 0 6 REIHEN 6. Konvergenzkriterien - 19 - Wenn man im Majorantenkriterium die geometrische Reihe als Majorante nimmt, erhält man das (6..18) Quotientenkriterium : Sei (a n ) n N0 eine Folge in C. Es gebe

Mehr

22 KAPITEL 1. GRUNDLAGEN. Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion

22 KAPITEL 1. GRUNDLAGEN. Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion KAPITEL 1. GRUNDLAGEN Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion 1 für 0 x < 1 g 0 (x) = 1 1 für < x 1. Natürlich gibt dies von

Mehr

Die Topologie von R, C und R n

Die Topologie von R, C und R n Die Topologie von R, C und R n Für R haben wir bereits eine Reihe von Strukturen kennengelernt: eine algebraische Struktur (Körper), eine Ordnungsstruktur und eine metrische Struktur (Absolutbetrag, Abstand).

Mehr

ANALYSIS 1 Kapitel 6: Stetige Funktionen

ANALYSIS 1 Kapitel 6: Stetige Funktionen ANALYSIS 1 Kapitel 6: Stetige Funktionen MAB.01012UB MAT.101UB Vorlesung im WS 2017/18 Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen Karl-Franzens-Universität Graz 6.1 Grundbegrie

Mehr

Wie in der reellen Analysis üblich notiert man Folgen f in der Form

Wie in der reellen Analysis üblich notiert man Folgen f in der Form 2.1.3 Folgen und Konvergenz Viele aus der Analysisvorlesung bekannte Begriffe lassen sich in den Bereich der metrischen Räume verallgemeinern. Diese Verallgemeinerung hat sich als sehr nützliches mathematisches

Mehr

8.1. DER RAUM R N ALS BANACHRAUM 17

8.1. DER RAUM R N ALS BANACHRAUM 17 8.1. DER RAUM R N ALS BANACHRAUM 17 Beweis. Natürlich ist d 0 und d(x, y) = 0 genau dann, wenn x = y. Wegen (N2) ist x = x und damit d(x, y) = d(y, x). Die letzte Eigenschaft einer Metrik schließt man

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 1 Definition: Sei M R, alsom

Mehr

Analysis I. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I 7. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching April 26, 207 Erinnerung Satz. (Zwischenwertsatz) Sei f : [a, b] R stetig mit f(a) f(b). Dann gibt es zu jedem

Mehr

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 92

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 92 Kapitel 4 Funktionen und Stetigkeit In diesem Kapitel beginnen wir Funktionen f : Ê Ê systematisch zu untersuchen. Dazu bauen wir auf den Begriff des metrischen Raumes auf und erhalten offene und abgeschlossene

Mehr

Funktionsgrenzwerte, Stetigkeit

Funktionsgrenzwerte, Stetigkeit Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

Stetigkeit. Definitionen. Beispiele

Stetigkeit. Definitionen. Beispiele Stetigkeit Definitionen Stetigkeit Sei f : D mit D eine Funktion. f heißt stetig in a D, falls für jede Folge x n in D (d.h. x n D für alle n ) mit lim x n a gilt: lim f x n f a. Die Funktion f : D heißt

Mehr

34 Äquivalenz von Normen; Stetigkeit und Kompaktheit in endlich-dimensionalen

34 Äquivalenz von Normen; Stetigkeit und Kompaktheit in endlich-dimensionalen 34 Äquivalenz von Normen; Stetigkeit und Kompaktheit in endlich-dimensionalen R-Vektorräumen 34.1 Äquivalenz von Normen 34.3 Stetigkeit und Normen linearer Abbildungen 34.4 Äquivalente Normen sind gegeneinander

Mehr

Analysis 2. Contents. Torsten Wedhorn. June 12, Notation. Es bezeichne K immer den Körper R der reellen Zahlen oder den Körper C der komplexen

Analysis 2. Contents. Torsten Wedhorn. June 12, Notation. Es bezeichne K immer den Körper R der reellen Zahlen oder den Körper C der komplexen Analysis 2 Torsten Wedhorn June 12, 2012 Notation Es bezeichne K immer den Körper R der reellen Zahlen oder den Körper C der komplexen Zahlen. Contents 12 Metrische Räume 2 (A) Definition metrischer Räume........................

Mehr

30 Metriken und Normen

30 Metriken und Normen 31 Metriken und Normen 153 30 Metriken und Normen Lernziele: Konzepte: Metriken, Normen, Skalarprodukte, Konvergenz von Folgen Frage: Versuchen Sie, möglichst viele verschiedene Konvergenzbegriffe für

Mehr

Vorlesungen Analysis von B. Bank

Vorlesungen Analysis von B. Bank Vorlesungen Analysis von B. Bank vom 23.4.2002 und 26.4.2002 Zunächst noch zur Stetigkeit von Funktionen f : D(f) C, wobei D(f) C. (Der Text schliesst unmittelbar an die Vorlesung vom 19.4.2002 an.) Auf

Mehr

Analysis I. Guofang Wang Universität Freiburg

Analysis I. Guofang Wang Universität Freiburg Universität Freiburg 30.11.2016 5. Teilmengen von R und von R n Der R n ist eine mathematische Verallgemeinerung: R n = {x = (x 1,..., x n ) : x i R} = } R. {{.. R }. n mal Für x R ist x der Abstand zum

Mehr

Thema 4 Limiten und Stetigkeit von Funktionen

Thema 4 Limiten und Stetigkeit von Funktionen Thema 4 Limiten und Stetigkeit von Funktionen Wir betrachten jetzt Funktionen zwischen geeigneten Punktmengen. Dazu wiederholen wir einige grundlegende Begriffe und Schreibweisen aus der Mengentheorie.

Mehr

Kapitel 6 Grenzwerte von Funktionen und Stetigkeit

Kapitel 6 Grenzwerte von Funktionen und Stetigkeit Kapitel 6 Grenzwerte von Funktionen und Stetigkeit 225 Relle Funktionen Im Folgenden betrachten wir reelle Funktionen f : D R, mit D R. Wir suchen eine formale Definition für den folgenden Sachverhalt.

Mehr

15 Hauptsätze über stetige Funktionen

15 Hauptsätze über stetige Funktionen 15 Hauptsätze über stetige Funktionen 15.1 Extremalsatz von Weierstraß 15.2 Zwischenwertsatz für stetige Funktionen 15.3 Nullstellensatz von Bolzano 15.5 Stetige Funktionen sind intervalltreu 15.6 Umkehrfunktionen

Mehr

Klausur - Analysis I Lösungsskizzen

Klausur - Analysis I Lösungsskizzen Klausur - Analysis I Lösungsskizzen Aufgabe 1.: 5 Punkte Entscheiden Sie, ob folgende Aussagen wahr oder falsch sind. Kennzeichnen Sie wahre Aussagen mit und falsche Aussagen mit. Es sind keine Begründungen

Mehr

Ultrametrik. Christian Semrau Metrische Räume

Ultrametrik. Christian Semrau Metrische Räume Ultrametrik Christian Semrau 05.11.2002 Inhaltsverzeichnis 1 Metrische Räume 1 1.1 Definition der Metrik.................................. 1 1.2 Offene und abgeschlossene Mengen..........................

Mehr

c < 1, (1) c k x k0 c k = x k0

c < 1, (1) c k x k0 c k = x k0 4.14 Satz (Quotientenkriterium). Es sei (x k ) Folge in K. Falls ein k 0 existiert, so dass für k k 0 gilt x k 0 und x k+1 x k c < 1, (1) so ist x k absolut konvergent. Beweis. Aus (1) folgt mit vollständiger

Mehr

Wir beginnen mit der Definition eines metrischen Raumes, der in diesem Kapitel von zentraler Bedeutung ist. x, y, z X (Dreiecksungleichung).

Wir beginnen mit der Definition eines metrischen Raumes, der in diesem Kapitel von zentraler Bedeutung ist. x, y, z X (Dreiecksungleichung). Kapitel 4 Metrische Räume und Stetigkeit 4.1 Metrische und normierte Räume 4.2 Folgen in metrischen Räumen 4.3 Offene und abgeschlossene Mengen 4.4 Stetige Funktionen 4.5 Grenzwerte von Funktionen 4.6

Mehr

Stetigkeit. Kapitel 4. Stetigkeit. Peter Becker (H-BRS) Analysis Sommersemester / 543

Stetigkeit. Kapitel 4. Stetigkeit. Peter Becker (H-BRS) Analysis Sommersemester / 543 Kapitel 4 Stetigkeit Peter Becker (H-BRS) Analysis Sommersemester 2016 254 / 543 Inhalt Inhalt 4 Stetigkeit Eigenschaften stetiger Funktionen Funktionenfolgen und gleichmäßige Konvergenz Umkehrfunktionen

Mehr

Cauchy-Folgen und Kompaktheit. 1 Cauchy-Folgen und Beschränktheit

Cauchy-Folgen und Kompaktheit. 1 Cauchy-Folgen und Beschränktheit Vortrag zum Seminar zur Analysis, 10.05.2010 Michael Engeländer, Jonathan Fell Dieser Vortrag stellt als erstes einige Sätze zu Cauchy-Folgen auf allgemeinen metrischen Räumen vor. Speziell wird auch das

Mehr

Das höhere Mathematikon

Das höhere Mathematikon Das höhere Mathematikon Christian Huber Diese Zusammenfassung ist ein Mix aus dem Skript von Herr Dr. Peer Kunstmann, der allseits beliebten Wikipedia, diversen anderen Onlinequellen und letztendlich meiner

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Auf dem R n gibt es sehr viele verschiedene Normen, allerdings hängen sehr viele wichtige Begriffe wie die Konvergenz

Mehr

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert.

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. SS 6 Höhere Mathematik für s Studium der Physik. Juli 6 Probeklausur Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. Fragen Sei (X, d) ein metrischer Raum. Beantworten Sie die nachfolgenden

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn Stetige Funktionen Eine zentrale Rolle in der Analysis spielen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume). Dabei sind i.a. nicht beliebige

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2018 Lineare Algebra und analytische Geometrie II Vorlesung 52 Auf dem R n gibt es sehr viele verschiedene Normen, allerdings hängen sehr viele wichtige Begriffe wie die

Mehr

Kapitel 5. Stetige Funktionen 5.1. Stetigkeit

Kapitel 5. Stetige Funktionen 5.1. Stetigkeit Kapitel 5. Stetige Funktionen 5.1. Stetigkeit Reelle Zahlen sind ideale Objekte, die es uns ermöglichen, eine transparente und leistungsfähige Theorie aufzubauen. Ein Computer kann jedoch nur mit Approximationen

Mehr

Definition Eine Metrik d auf der Menge X ist eine Abbildung d : X X IR

Definition Eine Metrik d auf der Menge X ist eine Abbildung d : X X IR 0 Inhaltsverzeichnis 1 Metrik 1 1.1 Definition einer Metrik............................. 1 1.2 Abstand eines Punktes von einer Menge................... 1 1.3 Einbettung eines metrischen Raumes in einen

Mehr

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Dietmar A. Salamon ETH-Zürich 23. Februar 2015 1 Topologische Grundbegriffe Sei (X, d) ein metrischer Raum, d.h. X ist eine Menge und d : X X R ist

Mehr

Übungsklausur Höhere Mathematik I für die Fachrichtung Physik

Übungsklausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT) Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 6..3 Übungsklausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((3++5) Punkte)

Mehr

Analysis I. Vorlesung 13. Gleichmäßige Stetigkeit

Analysis I. Vorlesung 13. Gleichmäßige Stetigkeit Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 13 Gleichmäßige Stetigkeit Die Funktion f: R + R +, x 1/x, ist stetig. In jedem Punkt x R + gibt es zu jedem ǫ > 0 ein δ > 0 mit f(u (x,δ))

Mehr

Übungen zur Funktionalanalysis Lösungshinweise Blatt 2

Übungen zur Funktionalanalysis Lösungshinweise Blatt 2 Übungen zur Funktionalanalysis Lösungshinweise Blatt 2 Aufgabe 5. Beweisen Sie: Ein kompakter Hausdorffraum, welcher dem ersten Abzählbarkeitsaxiom genügt, ist folgenkompakt. Lösung. Es sei X ein kompakter

Mehr

Analysis II. 8. Klausur mit Lösungen

Analysis II. 8. Klausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis II 8. Klausur mit en 1 2 Aufgabe 1. Definiere die folgenden kursiv gedruckten) Begriffe. 1) Eine Metrik auf einer Menge M. 2) Die Kurvenlänge

Mehr

24. Stetigkeit in metrischen Räumen

24. Stetigkeit in metrischen Räumen 34 Andreas Gathmann 24. Stetigkeit in metrischen Räumen Wie im eindimensionalen Fall kommen wir nach unserem Studium von Grenzwerten von Folgen im letzten Kapitel jetzt zur Stetigkeit, also zu Grenzwerten

Mehr

Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an.

Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an. Analysis I, WiSe 2013/14, 04.02.2014 (Iske), Version A 1 Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an. a) Welche der folgenden Aussagen über Folgen sind sinnvoll und

Mehr

7 Stetige Funktionen. Grenzwerte

7 Stetige Funktionen. Grenzwerte 7 Stetige Funktionen. Grenzwerte 7.1 Stetigkeit Deinition: Eine Funktion : D heißt stetig im Punkt x D, wenn es zu jedem ein gibt derart, daß gilt: x x ür alle x D mit x x. Deinition: : D heißt Lipschitz-s

Mehr

Etwas Topologie. Handout zur Vorlesung Semi-Riemannsche Geometrie, SS 2004 Dr. Bernd Ammann

Etwas Topologie. Handout zur Vorlesung Semi-Riemannsche Geometrie, SS 2004 Dr. Bernd Ammann Etwas Topologie Handout zur Vorlesung Semi-Riemannsche Geometrie, SS 2004 Dr. Bernd Ammann Literatur Abraham, Marsden, Foundations of Mechanics, Addison Wesley 1978, Seiten 3 17 Definition. Ein topologischer

Mehr

Analysis I. Guofang Wang , Universität Freiburg

Analysis I. Guofang Wang , Universität Freiburg Universität Freiburg 10.1.2017, 11.1.2017 Definition 1.1 (Ableitung) Die Funktion f : I R n hat in x 0 I die Ableitung a R n (Notation: f (x 0 ) = a), falls gilt: f(x) f(x 0 ) lim = a. (1.1) x x 0 x x

Mehr

Analysis I. Vorlesung 13. Der Zwischenwertsatz

Analysis I. Vorlesung 13. Der Zwischenwertsatz Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 13 Der Zwischenwertsatz Wir interessieren uns dafür, was unter einer stetigen Abbildung f: R R mit einem Intervall passiert. Der Zwischenwertsatz

Mehr

Die reellen Zahlen. Analysis I. Teil I. 1 Die Körperaxiome. 2 Die Anordnungsaxiome. 3 Die natürlichen Zahlen. Satz 1.1 (Kürzungsregel der Addition)

Die reellen Zahlen. Analysis I. Teil I. 1 Die Körperaxiome. 2 Die Anordnungsaxiome. 3 Die natürlichen Zahlen. Satz 1.1 (Kürzungsregel der Addition) Analysis I Mitschrift der Vorlesung Analysis I im WS 2012/13 bei Prof. Gudlaugur Thorbergsson von Dario Antweiler an der Universität zu Köln. Kann Fehler enthalten. Stand: 31.01.2013 Veröentlicht unter

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Mathematische Grundlagen 1 Einführung Bei diesen Notizen soll es sich um eine Übersicht der mathematischen Grundlagen handeln, die wir im Kurs benötigen werden. Einiges hiervon wird vielen schon bekannt

Mehr

11 Stetige Funktionen

11 Stetige Funktionen $Id: stetig.tex,v 1.24 2015/01/30 13:12:37 hk Exp $ 11 Stetige Funktionen 11.3 Stetige Funktionen Im letzten Abschitt hatten wir gesehen, dass bei einer Potenzreihe f über K = R oder K = C in jedem Punkt

Mehr

d(x, z) = z x = y x + z y y x + z y = d(x, y) + d(y, z). d(x, y) = 0, falls x = y.

d(x, z) = z x = y x + z y y x + z y = d(x, y) + d(y, z). d(x, y) = 0, falls x = y. Metrische Räume K bezeichnet entweder den Körper R oder den Körper C. Genauer bedeutet dies: K wird in denjenigen Situationen verwendet, in denen die Ersetzung von K sowohl durch R als auch durch C einen

Mehr

Analysis 1. Vorlesungsausarbeitung zum WS 2000/01. von Prof. Dr. Klaus Fritzsche. Inhaltsverzeichnis

Analysis 1. Vorlesungsausarbeitung zum WS 2000/01. von Prof. Dr. Klaus Fritzsche. Inhaltsverzeichnis Bergische Universität Gesamthochschule Wuppertal Fachbereich Mathematik Analysis 1 Kapitel 2 Stetigkeit Vorlesungsausarbeitung zum WS 2000/01 von Prof Dr Klaus Fritzsche Inhaltsverzeichnis 1 Metrische

Mehr

Konversatorium zu Lineare Algebra und Analysis Analysis - Übungsbeispiele

Konversatorium zu Lineare Algebra und Analysis Analysis - Übungsbeispiele Univ.-Prof. Dr. Radu Ioan Boţ, Axel Böhm Konversatorium zu Lineare Algebra und Analysis Analysis - Übungsbeispiele SS18 A1. Sei f : [, + ) R so, dass und dass ein M existiert mit Zeigen Sie, dass f(s +

Mehr

Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version A)

Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version A) Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, 10.1.009 (Version A) Kennwort: Übungsgruppe: (Sie können ein beliebiges Kennwort wählen, um Ihre Anonymität zu wahren! Da die Probeklausur

Mehr

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen Topologische Grundbegriffe I Vortrag zum Proseminar Analysis, 26.04.2010 Nina Neidhardt und Simon Langer Im Folgenden soll gezeigt werden, dass topologische Konzepte, die uns schon für die Reellen Zahlen

Mehr

Eigenschaften stetiger Funktionen Buch Kap. 2.5

Eigenschaften stetiger Funktionen Buch Kap. 2.5 Eigenschaften stetiger Funktionen Buch Kap. 2.5 Satz 2.6: (Nullstellensatz) Ist f : [a, b] R stetig und haben f (a) und f (b) unterschiedliche Vorzeichen, so besitzt f in (a, b) mindestens eine Nullstelle.

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 2. Folgen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen Mathematik

Mehr

Höhere Mathematik für Physiker II

Höhere Mathematik für Physiker II Universität Heidelberg Sommersemester 2013 Wiederholungsblatt Übungen zur Vorlesung Höhere Mathematik für Physiker II Prof Dr Anna Marciniak-Czochra Dipl Math Alexandra Köthe Fragen Machen Sie sich bei

Mehr

Normierte, metrische und topologische Räume Stetige und gleichmäßig stetige Abbildungen

Normierte, metrische und topologische Räume Stetige und gleichmäßig stetige Abbildungen Kapitel VIII Normierte, metrische und topologische Räume Stetige und gleichmäßig stetige Abbildungen 33 Normierte und metrische Räume 34 Äquivalenz von Normen; Stetigkeit und Kompaktheit in endlichdimensionalen

Mehr

12 Biholomorphe Abbildungen

12 Biholomorphe Abbildungen 12 Biholomorphe Abbildungen 2 Funktionenräume Wir erinnern zunächst an den Weierstraßschen Konvergenzsatz : 2.1 Satz. Sei G C ein Gebiet, (f n ) eine Folge holomorpher Funktionen auf G, die auf G kompakt

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. R. König Dr. M. Prähofer Zentralübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Z7.1. Komposition stetiger Funktionen Mathematik für Physiker (Analysis 1) MA90 Wintersem. 017/18 Lösungsblatt

Mehr

Topologische Grundbegriffe II. Inhaltsverzeichnis

Topologische Grundbegriffe II. Inhaltsverzeichnis Vortrag zum Seminar zur Analysis, 03.05.2010 Dennis Joswig, Florian Goy Aufbauend auf den Resultaten des Vortrages Topologische Grundbegriffe I untersuchen wir weitere topologische Eigenschaften von metrischen

Mehr

Analysis I. 3. Beispielklausur mit Lösungen

Analysis I. 3. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 3. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine Abbildung F von einer Menge L in eine

Mehr

Analysis I. 6. Beispielklausur mit Lösungen

Analysis I. 6. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 6. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Eine Relation zwischen den Mengen X und Y.

Mehr

3 Folgen, Reihen und stetige Funktionen

3 Folgen, Reihen und stetige Funktionen Höhere Mathematik 101 3 Folgen, Reihen und stetige Funktionen 3.1 Folgen und Reihen: Definitionen und Beispiele Eine reelle oder komplexe Zahlenfolge ist eine Abbildung, die jeder natürlichen Zahl n eine

Mehr

MIA Analysis einer reellen Veränderlichen WS 06/07. Kapitel VI. Differenzierbare Funktionen in einer Veränderlichen

MIA Analysis einer reellen Veränderlichen WS 06/07. Kapitel VI. Differenzierbare Funktionen in einer Veränderlichen Version 01.02. Januar 2007 MIA Analysis einer reellen Veränderlichen WS 06/07 Kurzfassung Martin Schottenloher Kapitel VI. Differenzierbare Funktionen in einer Veränderlichen In diesem Kapitel werden differenzierbare

Mehr

Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version C)

Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version C) Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, 14..009 (Version C Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen aus der Vorlesung

Mehr

Technische Universität München. Thema des heutigen Tages ist im Wesentlichen Topologie und ein kleiner Abschnitt zu Mannigfaltigkeiten

Technische Universität München. Thema des heutigen Tages ist im Wesentlichen Topologie und ein kleiner Abschnitt zu Mannigfaltigkeiten Technische Universität München Andreas Wörfel Ferienkurs Analysis 2 für Physiker Vorlesung Mittwoch SS 2012 Thema des heutigen Tages ist im Wesentlichen Topologie und ein kleiner Abschnitt zu Mannigfaltigkeiten

Mehr