TECHNISCHE UNIVERSITÄT MÜNCHEN

Größe: px
Ab Seite anzeigen:

Download "TECHNISCHE UNIVERSITÄT MÜNCHEN"

Transkript

1 Prof. Dr. R. König Dr. M. Prähofer Zentralübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Z7.1. Komposition stetiger Funktionen Mathematik für Physiker (Analysis 1) MA90 Wintersem. 017/18 Lösungsblatt W ( ) Seien M, N, K metrische Räume, die Funktion f : M N stetig in x 0 M, und die Funktion g : N K stetig in y 0 := f(x 0 ). Zeigen Sie: g f : M K ist stetig in x 0, (a) einmal mit der Definition von Stetigkeit, (b) und mit der Charakterisierung von Stetigkeit mittels konvergenter Folgen. Der Einfachheit halber schreiben wir für die Metriken in den drei Räumen immer d. Es gilt (g f)(x) = g(f(x)). (a) Zu zeigen ist: ɛ > 0 δ > 0 x M : d(x, x 0 ) < δ d(g(f(x)), g(f(x 0 ))) < ɛ. Sei ɛ > 0. Wegen der Stetigkeit von g bei y 0, wählen wir ein η > 0, so dass y N : d(y, y 0 ) < η d(g(y), g(y 0 )) < ɛ gilt. Da f bei x 0 stetig ist, wählen wir zu diesem η ein δ > 0, so dass x M : d(x, x 0 ) < δ d(f(x), f(x 0 )) < η ist. Sei nun x M mit d(x, x 0 ) < δ. Dann ist d(f(x), y 0 ) < η und daher d(g(f(x)), g(y 0 )) < ɛ. (b) Sei ( ) N M mit x 0. Wegen der Stetigkeit von f in x 0 gilt f( ) f(x 0 ) und wegen der Stetigkeit von g in f(x 0 ) gilt g(f( )) g(f(x 0 )). Anders ausgedrückt: lim g f() = lim g(f()) = g( lim f()) = g(f( lim )) = g f( lim ), n n n n n wann immer ( ) konvergent ist. Z7.. Stetigkeit der Wurzelfunktionen Sei n N und f : [0, ) [0, ) gegeben durch f(x) = n x. Zeigen Sie: (a) Für x, y 0 gilt x y n y n. (b) f ist stetig. (a) Ohne Einschränkung nehmen wir x y an. Dann ist (x y) n y n zu zeigen. Sei nun s = x y 0, dann folgt die Ungleichung aus s n (s + y) n y n, was wegen der binomischen Formel und s, y 0 offensichtlich ist. (b) Sei y 0 fest gewählt und ɛ > 0 gegeben. Wähle δ = ɛ n. Dann gilt für alle x 0 mit x y < δ, f(x) f(y) n (a) f(x) n f(y) n = x y < δ = ɛ n. Wegen Monotonie folgt also f(x) f(y) < ɛ. Z7.3. Eine überall unstetige Funktion Zeigen Sie: (a) ist irrational. (b) Für jede rationale Zahl x gibt es eine Folge irrationaler Zahlen, die gegen x konvergiert.

2 (c) Für jede irrationale Zahl x gibt es eine Folge rationaler Zahlen, die gegen x konvergiert. (d) Die Funktion f : R R gegeben durch { 1 falls x Q, f(x) = 0 sonst. ist in jedem Punkt ihres Definitionsbereichs unstetig. (a) Annahme: Q. Wegen > 0 gibt es also p, q N mit = p q. Dann gibt es auch teilerfremde p, q N mit = p q (Kürzen!). Somit gilt q = p. Es muss also p gerade, d.h., p = k mit k N, sein. Damit gilt aber q = k, woraus q gerade folgt. Das ist ein Widerspruch dazu, dass p und q teilerfremd sind. (b) Sei x Q. Dann ist = x + 1 n irrational für alle n N und xn x. (c) Sei x R \ Q, also eine irrationale Zahl. Für die Dezimalbruchapproximation := 10 n x 10 gilt für n N n 0 (i) Q und x < 10 n 0, bzw., x. (d) Für x Q wählen wir ( ) wie in (b). Dann gilt lim f() = 0 1 = f(x) = n f( lim n ). Also ist f für rationale x unstetig. Für x R \ Q wählen wir die Dezimalapproximation ( ) Q wie in (c). Dann gilt lim f() = 1 0 = f(x) = f( lim ). Also ist f auch für irrationale x unstetig. n n Präsenzaufgaben P7.1. Allgemeine Potenz positiver Zahlen Zeigen Sie für a, b > 0 und r, s R: (i) log(a r ) = r log a, (iii) (a r ) s = a r s, (ii) a r+s = a r a s, (iv) a r b r = (ab) r, (v) a r = 1 a r. (vi) a r = ( 1 a )r. Notieren Sie dabei, wo sie welche Eigenschaften von log und exp verwenden. Die Definition der allgemeinen reellen Potenz ist a r = e r log a. (i) log(a r ) = log(e r log a ) ( ) = r log a. (ii) a r+s = e (r+s) log a = er log a+s log a ( ) = e r log a e s log a = a r a s. (iii) (a r ) s = e s log(ar) = e s log(er log a ) ( ) = e s r log a = a s r = a r s. (iv) a r b r = e r log a er log b ( ) = e r log a+r log b = er(log a+log b) ( ) = e r log(ab) = (ab) r. (v) a r = e r log a ( ) 1 = = 1 e r log a a. r (vi) ( 1 a )r = e r log 1 a ( ) = e r log a = a r. ( ) log(exp(x)) = x für alle x R, ( ) Funktionalgleichung des exp, ( ) Funktionalgleichung des log. Bemerkung: Im Komplexen gelten ( ) und ( ) nicht uneingeschränkt, ( ) dagegen schon. P7.. Äquivalenz von Normen

3 (a) Sei V ein K-Vektorraum mit den zwei Normen a, b, für die gilt: es gibt ein c > 0, so dass x a c x b für alle x V. Sei ( ) eine Folge in V, die bezüglich b konvergiert. Dann konvergiert ( ) auch bezüglich a. (b) Skizzieren Sie die Mengen {x R x p = 1} für p = 1,,. (c) Bestimmen Sie für p = 1, jeweils Konstanten c, C, so dass für alle x R gilt: c x x p C x. (d) Sei ( ) R mit x R bezüglich einer der Normen p, p = 1,,. Dann konvergiert ( ) auch bezüglich der anderen beiden Normen gegen x. (a) Konvergenz gegen ein x V bezüglich der Norm b bedeutet einfach x b 0, wobei x eine reelle Folge bildet. Wir wollen zeigen, dass auch ( x a ) n N eine Nullfolge ist: Dies ergibt sich aber sofort wegen und dem Einschließungskriterium. 0 x a c x b 0 (b) Nach Definition ist x 1 = x 1 + x, x = x 1 + x, x = max{ x 1, x }. Die roten Linien sind Kreise mit Radius und. 1.0 p p 0.5 p (c) Auf Grund der Skizze in (b) zeigen wir: Für alle x R gilt: x x 1 x. Beweis: x 1 + x ( x 1 + x ) gilt offensichtlich, da x 1 x 0 ist. Wurzelziehen ergibt die erste Ungleichung. Die zweite Ungleichung erhält man wieder nach Wurzelziehen aus x 1 + x ( x 1 + x ) = x 1 x 1 x + x = ( x 1 x ) 0. Für alle x R 1 gilt: x x x. Sei ohne Einschränkung x 1 x. Dann ist x = x 1 und es gilt zum einen x = x 1 + x x 1 = x und zum anderen x = x 1 x 1 + x = x. (d) Die Abschätzungen in (c) zeigen nach dem Ergebnis in (a), dass die Folge ( ) R genau dann bezüglich der Norm konvergiert, wenn sie auch bezüglich der Norm p, p = 1, konvergiert. P7.3. Unstetigkeitsstellen Gegeben sei die Funktion f : R R, f(x) = x x. (a) Skizzieren Sie den Graphen von f. (b) Entscheiden Sie mit Beweis, an welchen Stellen f stetig ist. (c) Sei nun g := f [ 1,1] : [ 1, 1] R. Wo ist g unstetig? Bestimmen Sie, wenn möglich, Infimum, Supremum, Minimum und Maximum von g.

4 (a) Man erhält f(x) x (b) Für x Z ist f bei x unstetig. Beweis: Sei x = k, k Z. Dann gilt für = k + 1 n, dass x, aber f( ) = 1 1 n 1 0 = f(x) (siehe Graph). Für x R \ Z ist f bei x stetig. Beweis: Es gilt d := min{x x, x x} > 0. Sei ɛ > 0. Wähle δ = min{ɛ, d}. Dann gilt für alle y R mit y x < δ, dass f(y) f(x) = x y ist, somit ist f(y) f(x) = y x < δ ɛ (siehe Graph). (c) g ist bei x = 1 und x = 0 unstetig und sonst überall stetig, mit den gleichen Argumenten, wie in (b). Nur die Stetigkeit bei x = 1 muss noch begründet werden. Anschaulich ist das an Hand des Graphen klar, da g rechts von x = 1 nicht definiert ist. Formal kann man z.b. so argumentieren: Sei ( ) eine beliebige Folge im Definitionsbereich von g, die gegen 1 konvergiert. Zu zeigen ist f( ) f(1). Es gilt immer 1. Es gibt dann ein N, so dass für n N auch > 0 gilt. Hierfür ist f( ) = 1 und somit lim f() = 1 lim = 0 = f(1). n n Hausaufgaben H7.1. Komplexer Logarithmus und allgemeine Potenzgesetze (a) Was ist Log(i), Log( 1), Log( e)? Welchen Betrag hat jeweils x i, i x, (ix) i, i ix für x > 0? (b) Zeigen Sie das im Allgemeinen Log(wz) Log(w) + Log(z) und Log( 1 z ) Log(z) gilt, d.h., für geeignete Wahl von w, z C \ {0}. (c) Für welche w C \ {0} gilt exp Log(w) = w, für welche z C gilt Log exp(z) = z? (d) Welche der Rechenregeln (i) bis (vi) in P7.1 gelten auch für beliebige a, b C \ {0} und r, s C? Finden Sie, wenn möglich, Gegenbeispiele. (a) Log(i) = Log(1 e i π ) = log(1) + i π = i π, Log( 1) = Log(eiπ ) = iπ. Log( e) = Log(e e iπ ) = log(e) + iπ = 1 + iπ. Für x > 0 gilt x i = e i log x = 1, i x = e x Log i = e ix π = 1, (ix) i = e i Log(ix) = e i(log x+i π ) = e π, i ix = e ix Log i = e ixi π = e x π. (b) Log(( 1) ( 1)) = Log(1) = 0, aber Log( 1) + Log( 1) = iπ + iπ = πi 0. Log( 1 1 ) = Log( 1) = iπ iπ = Log( 1).

5 (c) Für alle w C \ {0} gibt es die eindeutige Polardarstellung w = re iφ mit r > 0 und φ ( π, π]. Damit ist Log(w) = Log(re iφ ) = log r + iφ und exp(log(w)) = e log r+iφ = re iφ = w. Nur für z = x + iy mit y ( π, π] gilt Log(exp(z)) = Log(e x e iy ) = log(e x ) + iy = x + iy = z. Für alle anderen z gibt es ein k Z \ {0}, so dass Log(exp(z)) = z + πiki ist. (d) Nur in (ii) und (v) wurde ausschließlich die Funktionalgleichung der Exponentialfunktion verwendet, die auch im komplexen uneingeschränkt gültig ist. Gegenbeispiele: zu (i) Log(i 5 ) = Log(i) = i π 5 Log(i), zu (iii) (i 5 ) 1 5 = i 1 5 = e i π 10 i = i 5 1 5, zu (iv) ( 1) 1 ( 1) 1 = i i = 1 1 = (( 1) ( 1)) 1, zu (vi) ( 1) 1 = e 1 Log( 1) = e i π = i i = ( 1) 1 = ( 1 1 ) 1. H7.. Stetigkeit der Maximums- und Minimumsfunktion (a) Zeigen Sie: Die Betragsfunktion x x ist stetig auf R. (b) Zeigen Sie max{x, y} + x y und min{x, y} x y. (c) Sind f, g : R R stetig, dann ist auch h : x max{f(x), g(x)} stetig. (d) Die Aussage in (c) gilt offenbar nicht nur für zwei, sondern auch für eine beliebige (endliche) Anzahl von stetigen Funktionen. Gilt dies auch für unendlich viele (mit max ersetzt durch sup)? (a) Die Betragsfunktion ist sogar lipstetig mit Konstante : Seien x, y R. 1. Fall 0 x, y, dann ist x y = x y < x y,. Fall x < 0 y, dann gilt x y x + y = x + y x + y < x y, 3. Fall y < 0 x ist analog zum. Fall, 4. Fall x, y < 0, dann ist x y = x ( y) = x y < x y. In jedem Fall gilt x y < x y, also ist die Betragsfunktion lipstetig und damit stetig. (b) 1. Fall x y. Dann ist + x y + x y = x = max{x, y},. Fall x < y. Dann gilt + x y + y x = y = max{x, y}, (c) Wegen (b) gilt h(x) = f(x)+g(x) also auch h stetig. + f(x) g(x) x y x y = y = min{x, y}. x y y x = x = min{x, y}.. Als Kombination stetiger Funktionen ist (d) Betrachte f n (x) = für x [0, 1] und n N. Dann ist F (x) := sup f n (x) für festes n N x das Supremum der Folge ( ). Für 0 x < 1 gilt also F (x) = 0. Für x = 1 erhält man hingegen F (1) = 1. Die Funktion F ist offensichtlich nicht stetig. H7.3. Stetigkeit der reellen Exponentialfunktion Sei E : R R + eine Funktion mit E(x + y) = E(x)E(y) und E(x) 1 + x für alle x, y R. Zeigen Sie (a) E(x) 1 1 x für x < 1. (b) Ist ( ) R eine Nullfolge, dann gilt E( ) 1. (c) Für alle x R ist E in x stetig. (d) Ist ( ) R \ {0} eine Nullfolge, dann gilt E(xn) 1 1. E(x (e) Für jede gegen x R konvergente Folge ( ) R \ {x} gilt lim n) E(x) n x = E(x).

6 (a) Zunächst ist E(0) = E(0 + 0) = E(0). Wegen E(0) R + folgt E(0) = 1. Weiter ist 1 = E(0) = E(x + ( x)) = E(x)E( x), also E(x) = 1 E( x). Für x < 1 gilt E( x) 1 + ( x) > 0, Also folgt 0 < 1 E( x) x, bzw. 1 + x E(x) 1 x. (b) Sei ( ) eine Nullfolge. Sei N N, so dass für alle n N gilt: < 1. Dann folgt mit (a), dass 1+ E( ) 1 1. Nach dem Einschließungskriterium folgt E( ) 1. (c) Sei x R und gelte x R. Dann ist ( x) n N eine Nullfolge. Daher gilt E( ) = E( x + x) = E( x)e(x) (b) E(x). Die Funktion E ist also stetig in x. (d) Sei ( ) R \ {0} eine Nullfolge. Sei N N wieder so, dass für alle n N gilt: < 1. Sei n N. 1. Fall: > 0. Dann gilt (1+) 1 E(xn) xn 1 was gleichbedeutend mit 1 E(xn) 1. Fall: < 0. Dann gilt 1 1 ist. (1+) 1 E(xn) xn 1 was gleichbedeutend mit 1 E(xn) 1 In jedem Fall gilt 1 1 = 1 1+ ist E() 1 1 1, woraus sich nach dem Einschließungsprinzip die Behauptung E(xn) 1 1 ergibt. (e) Sei x R und gelte x R mit 0 für alle n N. Dann ist x eine Nullfolge mit x 0 für alle n N. Unter Verwendung von (d) folgt E( ) E(x) x = E(x) E( x) 1 x (d) E(x). H7.4. ( ) Unstetigkeiten Sei f : R R, f(x) = 1 q, falls x Q mit x = p q wobei p und q teilerfremd sind, f(x) = 0 sonst. Man zeige: In allen rationalen Punkten ist f unstetig. In allen irrationalen Punkten ist f stetig. Für x Q ist f(x) > 0. Es gibt aber eine Folge ( ) in R \ Q mit x. Somit ist f( ) = 0 f(x). f ist also unstetig in Q. Sei x R \ Q. Behauptung: f ist stetig in x. Beweis: Sei ɛ > 0. Die Menge M ɛ := { p q : p Z, q N, q < 1 ɛ } [x 1, x + 1] ist endlich. Für y [x 1, x + 1] \ M ɛ gilt f(y) 1 q < ɛ. Da x M ɛ, gibt es ein δ > 0, so dass B δ (x) M ɛ = ist. Zu jedem ɛ > 0 gibt es also ein δ > 0, so dass für alle y R gilt: aus y x < δ folgt f(y) f(x) = f(y) ɛ. f ist also stetig in x.

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufgabe 45. Polynome sind stets stetig. Höhere Mathematik für Informatiker II (Sommersemester

Mehr

11 Logarithmus und allgemeine Potenzen

11 Logarithmus und allgemeine Potenzen Logarithmus und allgemeine Potenzen Bevor wir uns mit den Eigenschaften von Umkehrfunktionen, und insbesondere mit der Umkehrfunktion der Eponentialfunktion ep : R R + beschäftigen, erinnern wir an den

Mehr

Stetigkeit. Kapitel 4. Stetigkeit. Peter Becker (H-BRS) Analysis Sommersemester / 543

Stetigkeit. Kapitel 4. Stetigkeit. Peter Becker (H-BRS) Analysis Sommersemester / 543 Kapitel 4 Stetigkeit Peter Becker (H-BRS) Analysis Sommersemester 2016 254 / 543 Inhalt Inhalt 4 Stetigkeit Eigenschaften stetiger Funktionen Funktionenfolgen und gleichmäßige Konvergenz Umkehrfunktionen

Mehr

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i 3 Kompaktheit In der Analysis I zeigt man, dass stetige Funktionen f : [a, b] R auf abgeschlossenen, beschränkten Intervallen [a, b] gleichmäßig stetig und beschränkt sind und dass sie ihr Supremum und

Mehr

Kapitel 6. Exponentialfunktion

Kapitel 6. Exponentialfunktion Kapitel 6. Exponentialfunktion 6.1. Potenzreihen In Kap. 4 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.

Mehr

2.6 Der komplexe Logarithmus und allgemeine Potenzen

2.6 Der komplexe Logarithmus und allgemeine Potenzen 2.6 Der komplexe Logarithmus und allgemeine Potenzen Ziel: Umkehrung der komplexen Exponentialfunktion fz) = expz). Beachte: Die Exponentialfunktion expz) ist für alle z C erklärt, und es gilt Dexp) =

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Wintersemester 2008/2009 Übung 11 Einleitung Es wird eine 15-minütige Mikroklausur geschrieben. i) Sei D R oderd C. Wann heißt

Mehr

IV. Stetige Funktionen. Grenzwerte von Funktionen

IV. Stetige Funktionen. Grenzwerte von Funktionen IV. Stetige Funktionen. Grenzwerte von Funktionen Definition. Seien X und Y metrische Räume und E X sowie f : X Y eine Abbildung und p ein Häufungspunkt von E. Wir schreiben lim f(x) = q, x p falls es

Mehr

Potenzgesetze und Logarithmengesetze im Komplexen

Potenzgesetze und Logarithmengesetze im Komplexen Potenzgesetze und Logarithmengesetze im Komplexen Man kennt die Potenzgesetze und die Logarithmengesetze gewöhnlich schon aus der Schule und ist es gewohnt, mit diesen leicht zu agieren und ohne große

Mehr

Die komplexe Exponentialfunktion und die Winkelfunktionen

Die komplexe Exponentialfunktion und die Winkelfunktionen Die komplexe Exponentialfunktion und die Winkelfunktionen In dieser Zusammenfassung werden die für uns wichtigsten Eigenschaften der komplexen und reellen Exponentialfunktion sowie der Winkelfunktionen

Mehr

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen Kapitel III Stetige Funktionen 14 Stetigkeit und Rechenregeln für stetige Funktionen 15 Hauptsätze über stetige Funktionen 16 Konvergenz von Funktionen 17 Logarithmus und allgemeine Potenz C 1 14 Stetigkeit

Mehr

Thema 4 Limiten und Stetigkeit von Funktionen

Thema 4 Limiten und Stetigkeit von Funktionen Thema 4 Limiten und Stetigkeit von Funktionen Wir betrachten jetzt Funktionen zwischen geeigneten Punktmengen. Dazu wiederholen wir einige grundlegende Begriffe und Schreibweisen aus der Mengentheorie.

Mehr

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $ $Id: stetig.tex,v 1.11 2012/06/26 15:40:18 hk Exp $ 9 Stetigkeit 9.1 Eigenschaften stetiger Funktionen Am Ende der letzten Sitzung hatten wir eine der Grundeigenschaften stetiger Funktionen nachgewiesen,

Mehr

1 Reihen von Zahlen. Inhalt:

1 Reihen von Zahlen. Inhalt: 5 Kapitel 3 Reihen Reihen von Zahlen Inhalt: Konvergenz und Divergenz von Reihen reeller oder komplexer Zahlen, geometrische Reihe, harmonische Reihe, alternierende Reihen. Cauchy-Kriterium, absolute Konvergenz,

Mehr

n 1, n N \ {1}, 0 falls x = 0,

n 1, n N \ {1}, 0 falls x = 0, IV.1. Stetige Funktionen 77 IV. Stetigkeit IV.1. Stetige Funktionen Stetige Funktionen R R sind vielen sicher schon aus der Schule bekannt. Dort erwirbt man sich die naive Vorstellung, dass eine stetige

Mehr

Stetigkeit. Definitionen. Beispiele

Stetigkeit. Definitionen. Beispiele Stetigkeit Definitionen Stetigkeit Sei f : D mit D eine Funktion. f heißt stetig in a D, falls für jede Folge x n in D (d.h. x n D für alle n ) mit lim x n a gilt: lim f x n f a. Die Funktion f : D heißt

Mehr

Kapitel 7. Exponentialfunktion

Kapitel 7. Exponentialfunktion Kapitel 7. Exponentialfunktion 7.1. Potenzreihen In Kap. 5 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.

Mehr

Funktionsgrenzwerte, Stetigkeit

Funktionsgrenzwerte, Stetigkeit Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn

Mehr

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 92

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 92 Kapitel 4 Funktionen und Stetigkeit In diesem Kapitel beginnen wir Funktionen f : Ê Ê systematisch zu untersuchen. Dazu bauen wir auf den Begriff des metrischen Raumes auf und erhalten offene und abgeschlossene

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 5: Konvergenz Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Dezember 2011) Folgen Eine Folge x 0, x 1,

Mehr

11. Übungsblatt zur Mathematik I für Maschinenbau

11. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 200/ 2.0.-28.0. Aufgabe G (Grenzwertberechnung)

Mehr

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert.

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. SS 6 Höhere Mathematik für s Studium der Physik. Juli 6 Probeklausur Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. Fragen Sei (X, d) ein metrischer Raum. Beantworten Sie die nachfolgenden

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f.

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f. Stetige Funktionen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume), spielen eine zentrale Rolle in der Mathematik. In der Analysis sind Abbildungen

Mehr

i=1 i=1,...,n x K f(x).

i=1 i=1,...,n x K f(x). 2. Normierte Räume und Banachräume Ein normierter Raum ist ein Vektorraum, auf dem wir Längen messen können. Genauer definieren wir: Definition 2.1. Sei X ein Vektorraum über C. Eine Abbildung : X [0,

Mehr

Mathematische Grundlagen der Ökonomie Übungsblatt 8

Mathematische Grundlagen der Ökonomie Übungsblatt 8 Mathematische Grundlagen der Ökonomie Übungsblatt 8 Abgabe Donnerstag 7. Dezember, 0:5 in H 5+7+8 = 20 Punkte Mit Lösungshinweisen zu einigen Aufgaben 29. Das Bisektionsverfahren sucht eine Nullstelle

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren Ferienkurs Analysis 1 - Wintersemester 2014/15 Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} bzw. N 0 = {0, 1, 2,

Mehr

Funktionen. Mathematik-Repetitorium

Funktionen. Mathematik-Repetitorium Funktionen 4.1 Funktionen einer reellen Veränderlichen 4.2 Eigenschaften von Funktionen 4.3 Die elementaren Funktionen 4.4 Grenzwerte von Funktionen, Stetigkeit Funktionen 1 4. Funktionen Funktionen 2

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Kapitel 5. Stetige Funktionen 5.1. Stetigkeit

Kapitel 5. Stetige Funktionen 5.1. Stetigkeit Kapitel 5. Stetige Funktionen 5.1. Stetigkeit Reelle Zahlen sind ideale Objekte, die es uns ermöglichen, eine transparente und leistungsfähige Theorie aufzubauen. Ein Computer kann jedoch nur mit Approximationen

Mehr

Formelsammlung zum Starterstudium Mathematik

Formelsammlung zum Starterstudium Mathematik Formelsammlung zum Starterstudium Mathematik Universität des Saarlandes ¼ Version.3 Inhaltsverzeichnis. Potenzgesetze. Vollständige Induktion 3. Betragsgleichungen, Betragsungleichungen 4 4. Folgen und

Mehr

Mathematik für Wirtschaftswissenschaften I Wintersemester 2015/16 Universität Leipzig. Lösungvorschläge Präsenzaufgaben Serien 1-10

Mathematik für Wirtschaftswissenschaften I Wintersemester 2015/16 Universität Leipzig. Lösungvorschläge Präsenzaufgaben Serien 1-10 Mathematik für Wirtschaftswissenschaften I Wintersemester 05/6 Universität Leipzig Lösungvorschläge Präsenzaufgaben Serien -0 Inhaltsverzeichnis Serie Serie 5 3 Serie 8 4 Serie 9 5 Serie 3 6 Serie 6 7

Mehr

Etwas Topologie. Handout zur Vorlesung Semi-Riemannsche Geometrie, SS 2004 Dr. Bernd Ammann

Etwas Topologie. Handout zur Vorlesung Semi-Riemannsche Geometrie, SS 2004 Dr. Bernd Ammann Etwas Topologie Handout zur Vorlesung Semi-Riemannsche Geometrie, SS 2004 Dr. Bernd Ammann Literatur Abraham, Marsden, Foundations of Mechanics, Addison Wesley 1978, Seiten 3 17 Definition. Ein topologischer

Mehr

Definition: Differenzierbare Funktionen

Definition: Differenzierbare Funktionen Definition: Differenzierbare Funktionen 1/12 Definition. Sei f :]a, b[ R eine Funktion. Sie heißt an der Stelle ξ ]a, b[ differenzierbar, wenn der Grenzwert existiert. f(ξ + h) f(ξ) lim h 0 h = lim x ξ

Mehr

eine Folge in R, für die man auch hätte schreiben können, wenn wir alle richtig raten, was auf dem Pünktchen stehen sollte.

eine Folge in R, für die man auch hätte schreiben können, wenn wir alle richtig raten, was auf dem Pünktchen stehen sollte. Analysis, Woche 5 Folgen und Konvergenz A 5. Cauchy-Folgen und Konvergenz Eine Folge in R ist eine Abbildung von N nach R und wird meistens dargestellt durch {x n } n=0, {x n} n N oder {x 0, x, x 2,...

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} Ganze Zahlen : Aus

Mehr

A N A L Y S I S I F Ü R T P H, U E ( ) 1. Übungstest (FR, ) (mit Lösung )

A N A L Y S I S I F Ü R T P H, U E ( ) 1. Übungstest (FR, ) (mit Lösung ) Institut für Analysis und Scientific Computing TU Wien W. Auzinger WS 05/6 A N A L Y S I S I F Ü R T P H, U E (03.088). Übungstest (FR, 6..05) (mit Lösung ) Aufgabe. a ) Wandeln Sie die periodische Dezimalzahl

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen 9 Stetigkeit von Funktionen Definition 9.1 : Sei D R oder C und f : D R, C. f stetig in a D : ε > 0 δ > 0 mit f(z) f(a) < ε für alle z D, z a < δ. f stetig auf D : f stetig in jedem Punkt a D. f(a) ε a

Mehr

Höhere Mathematik für Physiker II

Höhere Mathematik für Physiker II Universität Heidelberg Sommersemester 2013 Wiederholungsblatt Übungen zur Vorlesung Höhere Mathematik für Physiker II Prof Dr Anna Marciniak-Czochra Dipl Math Alexandra Köthe Fragen Machen Sie sich bei

Mehr

2. Mathematische Grundlagen

2. Mathematische Grundlagen 2. Mathematische Grundlagen Erforderliche mathematische Hilfsmittel: Summen und Produkte Exponential- und Logarithmusfunktionen 21 2.1 Endliche Summen und Produkte Betrachte n reelle Zahlen a 1, a 2,...,

Mehr

Kapitel 7 STETIGKEIT

Kapitel 7 STETIGKEIT Kapitel 7 STETIGKEIT Fassung vom 8. Juni 2002 Claude Portenier ANALYSIS 29 7. Der Begri Stetigkeit 7. Der Begri Stetigkeit DEFINITION I.a. sagt man, daßeine Abbildung von einer Menge X in K n, wobei K

Mehr

Stetigkeit. Klaus-R. Loeffler. 1 Vorstellung, Definition und Folgerungen Stetigkeitscharakterisierung durch Folgen... 3

Stetigkeit. Klaus-R. Loeffler. 1 Vorstellung, Definition und Folgerungen Stetigkeitscharakterisierung durch Folgen... 3 Stetigkeit Klaus-R. Loeffler Inhaltsverzeichnis 1 Vorstellung, Definition und Folgerungen 1.1 Stetigkeitscharakterisierung durch Folgen......................... 3 Regeln zur Stetigkeit an einer Stelle

Mehr

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Dietmar A. Salamon ETH-Zürich 23. Februar 2015 1 Topologische Grundbegriffe Sei (X, d) ein metrischer Raum, d.h. X ist eine Menge und d : X X R ist

Mehr

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen Skript zur Analysis 1 Kapitel 3 Stetigkeit / Grenzwerte von Funktionen von Prof. Dr. J. Cleven Fachhochschule Dortmund Fachbereich Informatik Oktober 2003 2 Inhaltsverzeichnis 3 Stetigkeit und Grenzwerte

Mehr

17 Logarithmus und allgemeine Potenz

17 Logarithmus und allgemeine Potenz 7 Logarithmus und allgemeine Potenz 7. Der natürliche Logarithmus 7.3 Die allgemeine Potenz 7.4 Die Exponentialfunktion zur Basis a 7.5 Die Potenzfunktion zum Exponenten b 7.6 Die Logarithmusfunktion zur

Mehr

27 Taylor-Formel und Taylor-Entwicklungen

27 Taylor-Formel und Taylor-Entwicklungen 136 IV. Unendliche Reihen und Taylor-Formel 27 Taylor-Formel und Taylor-Entwicklungen Lernziele: Konzepte: klein o - und groß O -Bedingungen Resultate: Taylor-Formel Kompetenzen: Bestimmung von Taylor-Reihen

Mehr

Humboldt-Universität zu Berlin Institut für Mathematik Prof. A. Griewank Ph.D.; Dr. A. Hoffkamp; Dipl.Math. T.Bosse; Dipl.Math. L. Jansen,T.

Humboldt-Universität zu Berlin Institut für Mathematik Prof. A. Griewank Ph.D.; Dr. A. Hoffkamp; Dipl.Math. T.Bosse; Dipl.Math. L. Jansen,T. Humboldt-Universität zu Berlin Institut für Mathematik Prof. A. Griewank Ph.D.; Dr. A. Hoffkamp; Dipl.Math. T.Bosse; Dipl.Math. L. Jansen,T. Streubel Lösungsalternativen für die Übungsaufgaben zur Vorlesung

Mehr

Konvergenz im quadratischen Mittel - Hilberträume

Konvergenz im quadratischen Mittel - Hilberträume CONTENTS CONTENTS Konvergenz im quadratischen Mittel - Hilberträume Contents 1 Ziel 2 1.1 Satz........................................ 2 2 Endlich dimensionale Vektorräume 2 2.1 Defintion: Eigenschaften

Mehr

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen:

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen: Klausur zur Analysis I svorschläge Universität Regensburg, Wintersemester 013/14 Prof. Dr. Bernd Ammann / Dr. Mihaela Pilca 0.0.014, Bearbeitungszeit: 3 Stunden 1. Aufgabe [ Punte] Seien X, Y zwei nicht-leere

Mehr

Mathematik I Herbstsemester 2014

Mathematik I Herbstsemester 2014 Mathematik I Herbstsemester 2014 www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 32 1 Stetigkeit Grenzwert einer

Mehr

von und deren Werte in liegen, dabei ist wie bisher immer entweder oder. Verallgemeinerungen, etwa auf Abbildungen

von und deren Werte in liegen, dabei ist wie bisher immer entweder oder. Verallgemeinerungen, etwa auf Abbildungen III Stetigkeit, Grenzwerte bei Funktionen Natura non facit saltus (Die Natur macht keine Sprünge), dieser Anspruch von Raoul Fournier (1627) galt lange bei der mathematischen Behandlung von Naturvorgängen

Mehr

Leitfaden a tx t

Leitfaden a tx t Leitfaden -0.7. Potenz-Reihen. Definition: Es sei (a 0, a, a 2,...) eine Folge reeller Zahlen (wir beginnen hier mit dem Index t 0). Ist x R, so kann man die Folge (a 0, a x, a 2 x 2, a 3 x 3,...) und

Mehr

6 Reelle und komplexe Zahlenfolgen

6 Reelle und komplexe Zahlenfolgen $Id: folgen.tex,v.7 200//29 :58:57 hk Exp hk $ 6 Reelle und komplexe Zahlenfolgen 6. Folgenkonvergenz In der letzten Sitzung hatten wir den Begriff der Konvergenz einer reellen oder komplexen Folge gegen

Mehr

Kapitel 3. Konvergenz von Folgen und Reihen

Kapitel 3. Konvergenz von Folgen und Reihen Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden

Mehr

Wir beginnen mit der Definition eines metrischen Raumes, der in diesem Kapitel von zentraler Bedeutung ist. x, y, z X (Dreiecksungleichung).

Wir beginnen mit der Definition eines metrischen Raumes, der in diesem Kapitel von zentraler Bedeutung ist. x, y, z X (Dreiecksungleichung). Kapitel 4 Metrische Räume und Stetigkeit 4.1 Metrische und normierte Räume 4.2 Folgen in metrischen Räumen 4.3 Offene und abgeschlossene Mengen 4.4 Stetige Funktionen 4.5 Grenzwerte von Funktionen 4.6

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

2. Stetige lineare Funktionale

2. Stetige lineare Funktionale -21-2. Stetige lineare Funktionale Die am Ende von 1 angedeutete Eigenschaft, die ein lineares Funktional T : D(ú) 6 verallgemeinerten Funktion macht, ist die Stetigkeit von T in jedem n 0 0 D(ú). Wenn

Mehr

Aufgaben zur Analysis I aus dem Wiederholungskurs

Aufgaben zur Analysis I aus dem Wiederholungskurs Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 Hilfskräfte: A. Weiß, W. Thumann 6.3.29 NWF I - Mathematik Universität Regensburg Aufgaben zur Analysis I aus dem Wiederholungskurs Die folgenden

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen Stetigkeit von Funktionen Definition. Es sei D ein Intervall oder D = R, x D, und f : D R eine Funktion. Wir sagen f ist stetig wenn für alle Folgen (x n ) n in D mit Grenzwert x auch die Folge der Funktionswerte

Mehr

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Prof Dr Picard, gehalten von Helena Malinowski In vorhergehenden Vorträgen und dazugehörigen

Mehr

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom Prof. Dr. M. Kaßmann Fakultät für Mathematik Wintersemester 2011/2012 Universität Bielefeld Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom 27.10.2011 Aufgabe III.1 (4 Punkte) Sei Ω R

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

Schulstoff. Übungen zur Einführung in die Analysis. (Einführung in das mathematische Arbeiten) Sommersemester 2010

Schulstoff. Übungen zur Einführung in die Analysis. (Einführung in das mathematische Arbeiten) Sommersemester 2010 Übungen zur Einführung in die Analysis (Einführung in das mathematische Arbeiten) Sommersemester 010 Schulstoff 1. Rechnen mit Potenzen und Logarithmen 1. Wiederholen Sie die Definiton des Logarithmus

Mehr

Topologische Aspekte: Eine kurze Zusammenfassung

Topologische Aspekte: Eine kurze Zusammenfassung Kapitel 1 Topologische Aspekte: Eine kurze Zusammenfassung Wer das erste Knopfloch verfehlt, kommt mit dem Zuknöpfen nicht zu Rande J. W. Goethe In diesem Kapitel bringen wir die Begriffe Umgebung, Konvergenz,

Mehr

Konvergenz von Folgen

Konvergenz von Folgen 6 Konvergenz von Folgen Definition 6.1 Eine Folge in C (oder R) ist eine Abbildung f : N C (oder R). Schreibweise: (a n ) n N, (a n ), a 1, a 2... wobei a n = f(n). Beispiele: 1) (1 + 2 n ) n N, 3 2, 5

Mehr

Funktionen und Stetigkeit

Funktionen und Stetigkeit Kapitel 4 Funktionen und Stetigkeit 4.1 Funktionen Definition 4.1: Eine Funktion f : D C ist eine Zuordnung f : z f(z) einer Zahl z D C zu einem Bildwert f(z) C. Der Punkt z heißt auch Urbild von f(z).

Mehr

Folgen und Reihen von Funktionen

Folgen und Reihen von Funktionen Folgen und Reihen von Funktionen Sehr häufig treten in der Mathematik Folgen bzw. Reihen von Funktionen auf. Ist etwa (f n ) eine Folge von Funktionen, dann können wir uns für ein festes x fragen, ob die

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0 KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 03/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 0. Übungsblatt Aufgabe

Mehr

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C.

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C. Die omplexen Zahlen und Salarprodute Kurze Wiederholung des Körpers der omplexen Zahlen C. Erinnerung an die Definition von exp, sin, cos als Potenzreihen C C Herleitung der Euler Formel Definition eines

Mehr

PRÜFUNG AUS ANALYSIS F. INF.

PRÜFUNG AUS ANALYSIS F. INF. Zuname: Vorname: Matrikelnummer: PRÜFUNG AUS ANALYSIS F. INF. (GITTENBERGER) Wien, am 2. Juli 2013 (Ab hier freilassen!) Arbeitszeit: 100 Minuten 1) 2) 3) 4) 5) 1)(8 P.) Sei f : R 2 R mit f(x, y) = e x

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 3.2 Konvergenzkriterien

Mehr

Funktionalgleichungen

Funktionalgleichungen Funktionalgleichungen Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 10. Mai 2010 Funktionalgleichungen sind Gleichungen, mit denen Funktionen charakterisiert oder bestimmt werden können. In diesem

Mehr

Faltung und Approximation von Funktionen

Faltung und Approximation von Funktionen Faltung und Approximation von Funktionen Lisa Bauer und Anja Moldenhauer 9. Juni 2008 1 Die Faltung von Funktionen 1.1 Die Faltung Eine kleine Widerholung mit einem Zusatz: Vergleiche den Vortrag von Benjamin

Mehr

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg Komplexe Funktionen für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Universität Hamburg SS 2006 Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen

Mehr

Lösungen zu Aufgabenblatt 7P

Lösungen zu Aufgabenblatt 7P Analysis Prof. Dr. Peter Becker Fachbereich Informatik Sommersemester 205 9. Mai 205 Lösungen zu Aufgabenblatt 7P Aufgabe (Stetigkeit) (a) Für welche a, b R sind die folgenden Funktionen stetig in x 0

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker II (Sommersemester 2004) Lösungen zu Aufgabenblatt

Mehr

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil April (Voll-) Klausur Analysis I für Ingenieure en Rechenteil Aufgabe 7 Punkte (a) Skizzieren Sie die 4-periodische Funktion mit f() = für und f() = für (b) Berechnen Sie für diese Funktion die Fourierkoeffizienten

Mehr

Kapitel 6 Folgen und Stetigkeit

Kapitel 6 Folgen und Stetigkeit Kapitel 6 Folgen und Stetigkeit Mathematischer Vorkurs TU Dortmund Seite 76 / 226 Definition 6. (Zahlenfolgen) Eine Zahlenfolge (oder kurz: Folge) ist eine Funktion f : 0!. Statt f(n) schreiben wir x n

Mehr

Taylorentwicklung von Funktionen einer Veränderlichen

Taylorentwicklung von Funktionen einer Veränderlichen Taylorentwicklung von Funktionen einer Veränderlichen 17. Januar 2013 KAPITEL 1. MATHEMATISCHE GRUNDLAGEN 1 Kapitel 1 Mathematische Grundlagen 1.1 Stetigkeit, Differenzierbarkeit und C n -Funktionen Der

Mehr

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2 Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II Wiederholungsblatt: Analysis Sommersemester 2011 W. Werner, F. Springer erstellt von: Max Brinkmann Aufgabe 1: Untersuchen Sie, ob die

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik für Physiker 3 (Analysis 2) I... II...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik für Physiker 3 (Analysis 2) I... II... ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 4

Technische Universität München Zentrum Mathematik. Übungsblatt 4 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=

Mehr

Folgen, Reihen, Grenzwerte u. Stetigkeit

Folgen, Reihen, Grenzwerte u. Stetigkeit Folgen, Reihen, Grenzwerte u. Stetigkeit Josef F. Bürgler Abt. Informatik HTA Luzern, FH Zentralschweiz HTA.MA+INF Josef F. Bürgler (HTA Luzern) Einf. Infinitesimalrechnung HTA.MA+INF 1 / 33 Inhalt 1 Folgen

Mehr

Übungen zur Vorlesung MATHEMATIK II

Übungen zur Vorlesung MATHEMATIK II Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom

Mehr

Die alternierende harmonische Reihe.

Die alternierende harmonische Reihe. Die alternierende harmonische Reihe Beispiel: Die alternierende harmonische Reihe k k + = 2 + 3 4 + konvergiert nach dem Leibnizschen Konvergenzkriterium, und es gilt k k + = ln2 = 06934 für den Grenzwert

Mehr

Prof. Dr. Rolf Linn

Prof. Dr. Rolf Linn Prof. Dr. Rolf Linn 6.4.5 Übungsaufgaben zu Mathematik Analysis. Einführung. Gegeben seien die Punkte P=(;) und Q=(5;5). a) Berechnen Sie den Anstieg m der Verbindungsgeraden von P und Q. b) Berechnen

Mehr

Satz von Taylor Taylorreihen

Satz von Taylor Taylorreihen Satz von Taylor Taylorreihen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Tangente als Näherung Weil sich anschaulich die Tangente anschmiegt, ist die Tangentenfunktion

Mehr

Potenzen - Wurzeln - Logarithmen

Potenzen - Wurzeln - Logarithmen Potenzen - Wurzeln - Logarithmen Anna Geyer 4. Oktober 2006 1 Potenzrechnung Potenz Produkt mehrerer gleicher Faktoren 1.1 Definition (Potenz): (i) a n : a... a, n N, a R a... Basis n... Exponent od. Hochzahl

Mehr

Wintersemester 2015/2016, Universität Rostock Abgabetermin: spätestens , 09:30 Uhr

Wintersemester 2015/2016, Universität Rostock Abgabetermin: spätestens , 09:30 Uhr Serie Abgabetermin: spätestens 2.0.205, 09:30 Uhr Aufgabe.: 4+5 P a Überprüfen Sie für beliebige Aussagen A, B und C die Äquivalenzen: i A B A B ii A B A C A B C b Für beliebige Aussagen A und B sei A

Mehr

Wertebereich der Funktion. Die Funktion f heißt

Wertebereich der Funktion. Die Funktion f heißt 18 1.4 Funktionen 1.4.1 Definitionen Definition 1.43: Eine Funktion f : D R ist eine Zuordnung f : x f(x) einer Zahl x D R zu einem Bildwert f(x) R. Der Punkt x heißt auch Urbild von f(x). Die Menge D

Mehr

Lösungen der Übungsaufgaben von Kapitel 4

Lösungen der Übungsaufgaben von Kapitel 4 Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 4 zu 4.1 4.1.1 Eine Funktion f : R R sei als Nullfunktion für x 0 und als x x für x 0 definiert.

Mehr

Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die kontinuierlich ablaufende Zeit.

Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die kontinuierlich ablaufende Zeit. Kapitel 4 Reelle Zahlen 4.1 Die reellen Zahlen (Schranken von Mengen; Axiomatik; Anordnung; Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die

Mehr

2.6 Stetigkeit und Grenzwerte

2.6 Stetigkeit und Grenzwerte 2.6 Stetigkeit und Grenzwerte Anschaulich gesprochen ist eine Funktion stetig, wenn ihr Graph sich zeichnen lässt, ohne den Stift abzusetzen. Das ist natürlich keine präzise mathematische Definition und

Mehr

Taylor-Entwicklung der Exponentialfunktion.

Taylor-Entwicklung der Exponentialfunktion. Taylor-Entwicklung der Exponentialfunktion. Betrachte die Exponentialfunktion f(x) = exp(x). Zunächst gilt: f (x) = d dx exp(x) = exp(x). Mit dem Satz von Taylor gilt um den Entwicklungspunkt x 0 = 0 die

Mehr

Wachstumsverhalten ganzer Funktionen. Inhaltsverzeichnis

Wachstumsverhalten ganzer Funktionen. Inhaltsverzeichnis Wachstumsverhalten ganzer Funktionen Vortrag zum Seminar zur Funktionentheorie, 11.6.212 Simon Langer Inhaltsverzeichnis 1 Einleitung 2 2 Wachstumsverhalten ganzer Funktionen 3 3 Ganze Funktionen endlicher

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

Gleichmäßige Konvergenz und Funktionenräume

Gleichmäßige Konvergenz und Funktionenräume Gleichmäßige Konvergenz und Funktionenräume Isabella Lukasewitz und Andreas Brack 07.06.2010 Vortrag zum Proseminar zur Analysis Konvergenz und Funktionenräume INHALTSVERZEICHNIS Bereits in den Vorlesungen

Mehr