Lineare Algebra und analytische Geometrie I

Größe: px
Ab Seite anzeigen:

Download "Lineare Algebra und analytische Geometrie I"

Transkript

1 Prof. Dr. H. Brenner Osnabrück WS 2017/2018 Lineare Algebra und analytische Geometrie I Vorlesung 10 Ich war nie der talentierteste Spieler. Ich musste mir alles unheimlich hart erarbeiten und es gab bestimmt viel bessere Fußballer. Nur, ich hatte Willen! Ich musste und ich wollte nach oben. Berti Vogts Lineare Abbildungen Zwischen zwei Vektorräumen interessieren insbesondere die Abbildungen, die mit den Strukturen, also der Addition und der Skalarmultiplikation, verträglich sind. Definition Es sei K ein Körper und es seien V und W Vektorräume über K. Eine Abbildung ϕ: V W heißt lineare Abbildung, wenn die beiden folgenden Eigenschaften erfüllt sind. (1) ϕ(u+v) = ϕ(u)+ϕ(v) für alle u,v V. (2) ϕ(sv) = sϕ(v) für alle s K und v V. Die erste Eigenschaft nennt man dabei die Additivität und die zweite Eigenschaft die Verträglichkeit mit Skalierung. Wenn man den Grundkörper betonen möchte, spricht man von K-Linearität. Insgesamt gilt für eine lineare Abbildung die Verträglichkeit mit beliebigen Linearkombinationen, also die Beziehung ( n ) n ϕ s i v i = s i ϕ(v i ), siehe Aufgabe Statt von linearen Abbildungen spricht man auch von Homomorphismen. Die Identität Id V : V V, die Nullabbildung V 0 und die Inklusionen U V von Untervektorräumen sind die einfachsten Beispiele für lineare Abbildungen. 1

2 2 Beispiel Die einfachsten linearen Abbildungen sind (neben der Nullabbildung) diejenigen von K nach K. Eine solche lineare Abbildung ϕ: K K, x ϕ(x), ist aufgrund von Satz (siehe unten) bzw. direkt aufgrund der Definition durch ϕ(1) bzw. durch den Wert ϕ(t) für ein einziges t K, t 0, festgelegt. Es ist also ϕ(x) = ax mit einem eindeutig bestimmten a K. Insbesondere im physikalischen Kontext, wenn K = R ist und wenn zwischen zwei messbaren Größen ein linearer Zusammenhang besteht, spricht man von Proportionalität, und a heißt der Proportionalitätsfaktor. In der Schule tritt die lineare Beziehung zwischen zwei skalaren Größen als Dreisatz auf. Der Funktionsgraph einer linearen Abbildung von R nach R, die Abbildung ist allein durch den Proportionalitätsfaktor k festgelegt. Viele wichtige Funktionen, insbesondere von R nach R, sind nicht linear. Beispielsweise ist das Quadrieren x x 2, die Quadratwurzel, die trigonometrischen Funktionen, die Exponentialfunktion, der Logarithmus nicht linear. Aber auch für solche kompliziertere Funktionen gibt es im Rahmen der Differentialrechnung lineare Approximationen, die zum Verständnis dieser Funktionen beitragen. Beispiel Es sei K ein Körper und sei K n der n-dimensionale Standardraum. Dann ist die i-te Projektion, also die Abbildung K n K, (x 1,..., x i 1, x i, x i+1,..., x n ) x i, eine K-lineare Abbildung. Dies folgt unmittelbar aus der komponentenweisen Addition und Skalarmultiplikation auf dem Standardraum. Die i-te Projektion heißt auch die i-te Koordinatenfunktion. Beispiel Es stehen n verschiedene Produkte zum Verkauf an, wobei das i-te Produkt (pro Einheit) a i kostet. Ein Einkauf wird durch das n-tupel (x 1, x 2,..., x n )

3 repräsentiert, wobei x i die vom i-ten Produkt gekaufte Menge angibt. Der Preis des Einkaufs wird dann durch n a ix i beschrieben. Die Preisabbildung n R n R, (x 1, x 2,..., x n ) a i x i. ist linear. Dies bedeutet beispielsweise, dass wenn man zuerst den Einkauf (x 1, x 2,..., x n ) tätigt und eine Woche später den Einkauf (y 1, y 2,..., y n ), dass dann der Preis der beiden Einkäufe zusammen dem Preis entspricht, den man bezahlt hätte, wenn man auf einen Schlag gekauft hätte. (x 1 +y 1, x 2 +y 2,..., x n +y n ) 3 Wenn Sie das zehnmal kaufen, müssen Sie zehnmal soviel zahlen. In der linearen Welt gibt es keinen Rabatt. Beispiel Die zu einer m n-matrix M = (a ij ) 1 i m,1 j n gehörende Abbildung (siehe Beispiel 2.6) n j=1 s 1 s 1 a 1js j n K n K m,. M. j=1 = a 2js j., s n s n n j=1 a mjs j ist linear. Definition Es sei K ein Körper und V ein K-Vektorraum. Zu a K heißt die lineare Abbildung ϕ: V V, v av,

4 4 die Streckung (oder Homothetie) zum Streckungsfaktor a. Bei einer Streckung stimmen Ausgangsraum und Zielraum überein. Die Zahl a heißt Streckungsfaktor. Bei a = 1 liegt die Identität vor und bei a = 1 spricht man von einer Punktspiegelung. Beispiel EsseiC 0 (R,R)derRaumderstetigenFunktionenvonRnach R und C 1 (R,R) der Raum der stetig differenzierbaren Funktionen. Dann ist die Abbildung D: C 1 (R,R) C 0 (R,R), f f, die einer Funktion ihre Ableitung zuordnet, linear. In der Analysis wird ja (af +bg) = af +bg für a,b R und eine weitere Funktion g C 1 (R,R) bewiesen. Lemma Es sei K ein Körper und seien U,V,W Vektorräume über K. Es seien ϕ : U V und ψ : V W lineare Abbildungen. Dann ist auch die Verknüpfung eine lineare Abbildung. Beweis. Siehe Aufgabe ψ ϕ: U W Lemma Es sei K ein Körper und es seien V und W zwei K-Vektorräume. Es sei ϕ: V W eine bijektive lineare Abbildung. Dann ist auch die Umkehrabbildung linear. ϕ 1 : W V Beweis. Siehe Aufgabe Festlegung auf einer Basis Hinter der folgenden Aussage(dem Festlegungssatz) steckt das wichtige Prinzip, dass in der linearen Algebra (von endlichdimensionalen Vektorräumen) die Objekte durch endlich viele Daten bestimmt sind. Satz Es sei K ein Körper und es seien V und W Vektorräume über K. Es sei v i, i I, eine Basis von V und es seien w i, i I, Elemente in W. Dann gibt es genau eine lineare Abbildung mit f: V W f(v i ) = w i für alle i I.

5 Beweis. Da f(v i ) = w i sein soll und eine lineare Abbildung für jede Linearkombination die Eigenschaft 1 ( ) f s i v i = s i f (v i ) i I i I erfüllt, und jeder Vektor v V sich als eine solche Linearkombination schreiben lässt, kann es maximal nur eine solche lineare Abbildung geben. Wir definieren nun umgekehrt eine Abbildung f: V W, indem wir jeden Vektor v V mit der gegebenen Basis als 5 v = i I s i v i schreiben und f(v) := i I s i w i ansetzen. Da die Darstellung von v als eine solche Linearkombination eindeutig ist, ist diese Abbildung wohldefiniert. Zur Linearität. Für zwei Vektoren u = i I s iv i und v = i I t iv i gilt (( ( )) f (u+v) = f s i v i )+ t i v i ( i I ) i I = f (s i +t i )v i i I = (s i +t i )f (v i ) i I = s i f (v i )+ t i f(v i ) i I ( i I ( ) = f s i v i )+f t i v i i I = f(u)+f(v). Die Verträglichkeit mit der skalaren Multiplikation ergibt sich ähnlich, siehe Aufgabe InsbesondereisteinelineareAbbildungϕ: K n K m durchϕ(e 1 ),...,ϕ(e n ) eindeutig festgelegt. i I 1 Wenn I eine unendliche Indexmenge ist, so sind hier sämtliche Summen so zu verstehen, dass nur endlich viele Koeffizienten nicht 0 sind.

6 6 Beispiel In vielen Situationen soll ein Objekt (beispielsweise ein Würfel) im Raum R 3 in einer Ebene R 2 dargestellt werden. Eine Möglichkeit ergibt sich mit Hilfe einer Parallelprojektion. Dabei handelt es sich um eine lineare Abbildung R 3 R 2 die bezüglich der Standardbasen e 1,e 2,e 3 bzw. f 1,f 2 durch e 1 f 1, e 2 af 1 +bf 2, e 3 f 2 gegebenist,wobeidiekoeffizientena,b(die Tiefenschrägen )typischerweise im Bereich [ 1, 1 ] gewählt werden. Die Linearität wirkt sich dahingehend aus, 3 2 dass parallele Geraden in parallele Geraden überführt werden (oder Punkte werden). Der Punkt (x,y,z) wird dabei auf (x+ay,by +z) abgebildet. Das Bild des Objektes unter einer solchen linearen Abbildung nennt man ein Schrägbild. Eine lineare Abbildung Lineare Abbildungen und Matrizen ϕ: K n K m ist durch die Bilder ϕ(e j ), j = 1,...,n, der Standardvektoren eindeutig festgelegt, und jedes ϕ(e j ) ist eine Linearkombination m ϕ(e j ) = a ij e i und damit durch die Elemente a ij eindeutig festgelegt. Insgesamt ist also eine solche lineare Abbildung durch mn Elemente a ij, 1 i m, 1 j n, festgelegt. Eine solche Datenmenge kann man wieder als Matrix schreiben. Nach dem Festlegungssatz gilt dies für alle endlichdimensionalen Vektorräume, sobald sowohl im Definitionsraum als auch im Zielraum der linearen Abbildung eine Basis fixiert ist.

7 Definition Es sei K ein Körper und sei V ein n-dimensionaler Vektorraum mit einer Basis v = v 1,...,v n und sei W ein m-dimensionaler Vektorraum mit einer Basis w = w 1,...,w m. 7 Die Wirkungsweise von verschiedenen linearen Abbildungen des R 2 in sich, dargestellt an einer Gehirnzelle. Zu einer linearen Abbildung heißt die m n-matrix ϕ: V W M = M v w(ϕ) = (a ij ) ij,

8 8 wobei a ij die i-te Koordinate von ϕ(v j ) bezüglich der Basis w ist, die beschreibende Matrix zu ϕ bezüglich der Basen. Zu einer Matrix M = (a ij ) ij Mat m n (K) heißt die durch m v j a ij w i gemäßsatz10.10definiertelineareabbildungϕ v w(m)diedurch M festgelegte lineare Abbildung. Wenn V = W, ist, so interessiert man sich häufig, aber nicht immer, für die beschreibende Matrix bezüglich einer einzigen Basis v von V. Beispiel Es sei V ein Vektorraum mit Basen v und w. Wenn man die Identität Id: V V bezüglich der Basis v vorne und der Basis w hinten betrachtet, so ist wegen Id(v j ) = v j = a ij w i direkt Mw(Id) v = Mw, v d.h. die beschreibende Matrix zur identischen linearen Abbildung ist die Übergangsmatrix zum Basiswechsel von v nach w. Lemma Es sei K ein Körper und sei V ein n-dimensionaler Vektorraum mit einer Basis v = v 1,...,v n und sei W ein m-dimensionaler Vektorraum mit einer Basis w = w 1,...,w m mit den zugehörigen Abbildungen Ψ v : K n V und Ψ w : K m W. Es sei ϕ: V W eine lineare Abbildung mit beschreibender Matrix M v w(ϕ). Dann ist d.h. das Diagramm ϕ Ψ v = Ψ w M v w(ϕ), K n M v w(ϕ) K m Ψ v V ϕ Ψw W ist kommutativ. Zu einem Vektor v V kann man ϕ(v) ausrechnen, indem man das Koeffiziententupel zu v bezüglich der Basis v bestimmt, darauf die Matrix M v w(ϕ) anwendet und zu dem sich ergebenden m-tupel den zugehörigen Vektor bezüglich w berechnet.

9 9 Beweis. Siehe Aufgabe Satz Es sei K ein Körper und sei V ein n-dimensionaler Vektorraum mit einer Basis v = v 1,...,v n und sei W ein m-dimensionaler Vektorraum mit einer Basis w = w 1,...,w m. Dann sind die in Definition festgelegten Abbildungen invers zueinander. ϕ M v w(ϕ) und M ϕ v w(m) Beweis. Wir zeigen, dass beide Hintereinanderschaltungen die Identität sind. Wir starten mit einer Matrix M = (a ij ) ij und betrachten die Matrix M v w(ϕ v w(m)). Zwei Matrizen sind gleich, wenn für jedes Indexpaar (i, j) die Einträge übereinstimmen. Es ist (Mw(ϕ v v w(m))) ij = i te Koordinate von (ϕ v w(m))(v j ) m = i te Koordinate von a ij w i = a ij. Sei nun ϕ eine lineare Abbildung, und betrachten wir ϕ v w(m v w(ϕ)). Zwei lineare Abbildungen stimmen nach Satz überein, wenn man zeigen kann, dass sie auf der Basis v 1,...,v n übereinstimmen. Es ist m (ϕ v w(mw(ϕ)))(v v j ) = (Mw(ϕ)) v ij w i. Dabei ist nach Definition der Koeffizient (M v w(ϕ)) ij die i-te Koordinate von ϕ(v j ) bezüglich der Basis w 1,...,w m. Damit ist diese Summe gleich ϕ(v j ). Wir bezeichnen die Menge aller linearen Abbildungen von V nach W mit Hom K (V,W). Satz bedeutet alos, dass die Abbildung Hom K (V,W) Mat m n (K), ϕ M v w(ϕ), bijektiv mit der angegebenen Umkehrabbildung ist. Eine lineare Abbildung ϕ: V V nennt man auch einen Endomorphismus. Die Menge aller Endomorphismen auf V wird mit End K (V) bezeichnet.

10 10 Isomorphe Vektorräume Definition Es sei K ein Körper und es seien V und W Vektorräume über K. Eine bijektive, lineare Abbildung heißt Isomorphismus. ϕ: V W Ein Isomorphismus von V nach V heißt Automorphismus. Definition Es sei K ein Körper. Zwei K-Vektorräume V und W heißen isomorph, wenn es einen Isomorphismus von V nach W gibt. Satz Es sei K ein Körper und es seien V und W endlichdimensionale K-Vektorräume. Dann sind V und W genau dann zueinander isomorph, wenn ihre Dimension übereinstimmt. Insbesondere ist ein n-dimensionaler K-Vektorraum isomorph zum K n. Beweis. Siehe Aufgabe Bemerkung Eine Isomorphie zwischen einem n-dimensionalen Vektorraum V und dem Standardraum K n ist im Wesentlichen äquivalent zur Wahl einer Basis in V. Zu einer Basis gehört die lineare Abbildung v = v 1,...,v n Ψ v : K n V, e i v i, die also den Standardraum in den Vektorraum abbildet, indem sie dem i-ten Standardvektor den i-ten Basisvektor aus der gegebenen Basis zuordnet. Dies definiert nach Satz eine eindeutige lineare Abbildung, die aufgrund von Aufgabe bijektiv ist. Es handelt sich dabei einfach um die Abbildung n (a 1,...,a n ) a i v i. Die Umkehrabbildung x = Ψ 1 v : V K n ist ebenfalls linear und heißt die zur Basis gehörende Koordinatenabbildung. Die i-te Komponente davon, also die zusammengesetzte Abbildung x i = p i x: V K, v (Ψ 1 v (v)) i, heißt i-te Koordinatenfunktion. Sie wird mit vi bezeichnet, und gibt zu einem Vektor v V in der eindeutigen Darstellung n v = λ i v i

11 die Koordinate λ i aus. Man beachte, dass die lineare Abbildung v i von der gesamten Basis abhängt, nicht nur von dem Vektor v i. Wenn umgekehrt ein Isomorphismus gegeben ist, so sind die Bilder eine Basis von V. Ψ: K n V Ψ(e i ),i = 1,...,n, 11

12

13 Abbildungsverzeichnis Quelle = Variables proporcionals.png, Autor = Benutzer Coronellian auf Commons, Lizenz = CC-by-sa Quelle = Korea-grocery shopping-01.jpg, Autor = L. W. Yang, Lizenz = CC-by-sa Quelle = Schrägbild eines Würfels.svg, Autor = Benutzer WissensDürster auf Commons, Lizenz = gemeinfrei 6 Quelle = Some linear maps kpv without eigenspaces.svg, Autor = Benutzer Dividuum auf Commons, Lizenz = CC-by-sa

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 10 Lineare Abbildungen Zwischen zwei Vektorräumen interessieren insbesondere die Abbildungen, die mit den

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 9 Lineare Abbildungen Definition 9.1. Es sei K ein Körper und es seien V und W Vektorräume über K. Eine Abbildung heißt lineare

Mehr

Mathematik I. Vorlesung 12. Lineare Abbildungen

Mathematik I. Vorlesung 12. Lineare Abbildungen Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 12 Lineare Abbildungen Definition 12.1. Es sei K ein Körper und es seien V und W K-Vektorräume. Eine Abbildung heißt lineare Abbildung,

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 9 Lineare Abbildungen Definition 9.1. Es sei K ein Körper und es seien V und W Vektorräume über K. Eine Abbildung ϕ : V W

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 015/016 Lineare Algebra und analytische Geometrie I Vorlesung 14 Ich war nie der talentierteste Spieler. Ich musste mir alles unheimlich hart erarbeiten und es gab bestimmt

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnabrück WS 205/206 Lineare Algebra und analytische Geometrie I Vorlesung 2 Ein guter Schüler lernt auch bei einem schlechten Lehrer Eigentheorie Unter einer Achsenspiegelung in der

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 11 Untervektorräume unter linearen Abbildungen Eine typische und wohl auch namensgebende Eigenschaft einer

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 13 Projektionen Zu einer direkten Summenzerlegung V = U 1 U 2 nennt man die Abbildung p 1 : V U 1, v 1

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 15 Unterräume und Dualraum Untervektorräume eines K-Vektorraumes stehen in direkter Beziehung zu Untervektorräumen

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnabrück WS 205/206 Lineare Algebra und analytische Geometrie I Vorlesung 9 Basiswechsel Wir wissen bereits, dass in einem endlichdimensionalen Vektorraum je zwei Basen die gleiche Länge

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 57 Lineare Abbildungen bei Körperwechsel Definition 57.1. Zu einer linearen Abbildung ϕ: V W zwischen K-Vektorräumen

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 6 (WS 2010/2011) Abgabetermin: Donnerstag, 27. November

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 6 (WS 2010/2011) Abgabetermin: Donnerstag, 27. November Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 6 (WS 2010/2011) Abgabetermin: Donnerstag, 27. November http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzugen zur Vorlesung: Der Vollständigkeit

Mehr

Mathematik I. Vorlesung 16. Eigentheorie

Mathematik I. Vorlesung 16. Eigentheorie Prof Dr H Brenner Osnabrück WS 009/00 Mathematik I Vorlesung 6 Eigentheorie Unter einer Achsenspiegelung in der Ebene verhalten sich gewisse Vektoren besonders einfach Die Vektoren auf der Spiegelungsachse

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 7 Die Lösungsmenge eines homogenen linearen Gleichungssystems in n Variablen über einem Körper K ist ein Untervektorraum

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnabrück WS 25/26 Lineare Algebra und analytische Geometrie I Schläft ein Lied in allen Dingen, Die da träumen fort und fort, Und die Welt hebt an zu singen, Triffst du nur das Zauberwort

Mehr

5 Lineare Abbildungen

5 Lineare Abbildungen 5 Lineare Abbildungen Pink: Lineare Algebra 2014/15 Seite 59 5 Lineare Abbildungen 5.1 Definition Gegeben seien Vektorräume U, V, W über einem Körper K. Definition: Eine Abbildung f : V W heisst K-linear,

Mehr

5 Lineare Abbildungen

5 Lineare Abbildungen 5 Lineare Abbildungen Pink: Lineare Algebra HS 2014 Seite 56 5 Lineare Abbildungen 5.1 Definition Gegeben seien Vektorräume U, V, W über einem Körper K. Definition: Eine Abbildung f : V W heisst K-linear,

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 0/06 Lineare Algebra und analytische Geometrie I Vorlesung... und ein guter Lehrer kann auch einem schlechten Schüler was beibringen Beziehung zwischen Eigenräumen Wir

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 8 Erzeugte Algebra und erzeugter Körper Satz 8.1. Sei K L eine Körpererweiterung und sei f L ein algebraisches Element. Dann ist

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 24 Das Lernen und der Orgasmus finden letztlich im Kopf statt Der Satz von Cayley-Hamilton Arthur Cayley

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 20 Kultur ist Reichtum an Problemen. Egon Friedell Der Interpolationssatz Satz 20.1. Es sei K ein Körper

Mehr

α i e i. v = α i σ(e i )+µ

α i e i. v = α i σ(e i )+µ Beweis: Der Einfachheit halber wollen wir annehmen, dass V ein endlich-dimensionaler Vektorraum mit Dimension n ist. Wir nehmen als Basis B {e 1,e 2,...e n }. Für beliebige Elemente v V gilt dann v α i

Mehr

x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen)

x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen) Def Wiederholung Sei f : V U eine lineare Abbildung Das Bild von f ist die folgende Teilmenge von U: Bild f = {u U so dass es gibt ein Element v V mit f(v) = u} (Andere Bezeichnung: f(v) wird in Analysis-Vorlesung

Mehr

Mathematik I. Vorlesung 14. Rang von Matrizen

Mathematik I. Vorlesung 14. Rang von Matrizen Prof Dr H Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 14 Rang von Matrizen Definition 141 Es sei K ein Körper und sei M eine m n-matrix über K Dann nennt man die Dimension des von den Spalten

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 206 Lineare Algebra und analytische Geometrie II Vorlesung 33 Das Kreuzprodukt Eine Besonderheit im R 3 ist das sogenannte Kreuzprodukt, das zu zwei gegebenen Vektoren

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 6 Vektorräume Die Addition von zwei Pfeilen a und b, ein typisches Beispiel für Vektoren. Der zentrale

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 12 Wege entstehen dadurch, dass man sie geht Franz Kafka Invertierbare Matrizen Definition 121 Es sei K ein

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnabrück WS 25/26 Lineare Algebra und analytische Geometrie I Vorlesung 28 If it works, it s out of date David Bowie Ein Zerlegungssatz Satz 28 Sei ϕ: V V ein trigonalisierbarer K-Endomorphismus

Mehr

x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen)

x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen) Def Wiederholung Sei f : V U eine lineare Abbildung Das Bild von f ist die folgende Teilmenge von U: Bild f = {u U so dass es gibt ein Element v V mit f (v) = u} (Andere Bezeichnung: f (V) wird in Analysis-Vorlesung

Mehr

2.8. ABBILDUNGSMATRIZEN UND BASISWECHSEL 105. gramms kommutativ:

2.8. ABBILDUNGSMATRIZEN UND BASISWECHSEL 105. gramms kommutativ: 2.8. ABBILDUNGSMATRIZEN UND BASISWECHSEL 105 gramms kommutativ: V ϕ W ψ X c B c C c D K n x MC B(ϕ) x K m x MC D (ψ) x K l x M C D (ψ)mb C (ϕ) x Dies bedeutet, dass das gesamte Diagramm kommutativ ist.

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 56 Basiswechsel bei Tensorprodukten Lemma 56.1. Es sei K ein Körper und seien V 1,...,V n endlichdimensionale

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof Dr H Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 11 Rang von Matrizen Definition 111 Es sei K ein Körper und sei M eine m n-matrix über K Dann nennt man die Dimension des von

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 15.11.2013 Alexander Lytchak 1 / 12 Erinnerung Eine Abbildung f : V W zwischen reellen Vektorräumen ist linear, wenn

Mehr

Mathematik I. Vorlesung 18. Vielfachheiten und diagonalisierbare Abbildungen. µ λ = dim(eig λ (ϕ))

Mathematik I. Vorlesung 18. Vielfachheiten und diagonalisierbare Abbildungen. µ λ = dim(eig λ (ϕ)) Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 18 Vielfachheiten und diagonalisierbare Abbildungen Satz 18.1. Es sei K ein Körper und es sei V ein endlichdimensionaler K- Vektorraum.

Mehr

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

1 Lineare Abbildungen

1 Lineare Abbildungen 1 Lineare Abbildungen Definition 1 Sei K ein Körper und V und W K-Vektoräume. Eine Abbildung f : V W heisst linear oder Homomoprhismus, wenn gilt: fv 1 + v 2 = fv 1 + fv 2 v 1, v 2 V fλv = λfv λ K, v V

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 215/216 Lineare Algebra und analytische Geometrie I Vorlesung 27 In der letzten Vorlesung haben wir die Haupträume zu einem Eigenwert λ zu einem Endomorphismus ϕ als Kern

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

Analysis II. Vorlesung 47

Analysis II. Vorlesung 47 Prof. Dr. H. Brenner Osnabrück SS 2014 Analysis II Zu einer reellwertigen Funktion Vorlesung 47 interessieren wir uns wie schon bei einem eindimensionalen Definitionsbereich für die Extrema, also Maxima

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 8 Dimensionstheorie Ein endlich erzeugter Vektorraum hat im Allgemeinen ganz unterschiedliche Basen. Wenn

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 06 Lineare Algebra analytische Geometrie II Vorlesung 35 Winkeltreue Abbildungen Definition 35.. Eine lineare Abbildung ϕ: V W zwischen euklidischen Vektorräumen V W heißt

Mehr

Lineare Algebra Weihnachtszettel

Lineare Algebra Weihnachtszettel Lineare Algebra Weihnachtszettel 0..08 Die Aufgaben auf diesem Zettel sind zum Üben während der Weihnachtspause gedacht, sie dienen der freiwilligen Selbstkontrolle. Die Aufgaben müssen nicht bearbeitet

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 44 In den folgenden Vorlesungen werden wir unsere Methoden um einige wesentliche Aspekte erweitern, indem wir

Mehr

1 Eigenschaften von Abbildungen

1 Eigenschaften von Abbildungen Technische Universität München Christian Neumann Ferienkurs Lineare Algebra für Physiker Vorlesung Dienstag WS 2008/09 Thema des heutigen Tages sind zuerst Abbildungen, dann spezielle Eigenschaften linearer

Mehr

8 Eigenwerttheorie I 8. EIGENWERTTHEORIE I 139. Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet:

8 Eigenwerttheorie I 8. EIGENWERTTHEORIE I 139. Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet: 8. EIGENWERTTHEORIE I 139 8 Eigenwerttheorie I Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet: K[x] = Abb[N, K] = {P ; P = a n x n + a n 1 x n 1 + + a 0 ; a

Mehr

Algebraische Kurven. Vorlesung 27. Der projektive Raum. Die Geraden durch einen Punkt

Algebraische Kurven. Vorlesung 27. Der projektive Raum. Die Geraden durch einen Punkt Prof. Dr. H. Brenner Osnabrück WS 2017/2018 Algebraische urven Vorlesung 27 Der projektive Raum Die Geraden durch einen Punkt Definition 27.1. Sei ein örper. Der projektive n-dimensionale Raum P n besteht

Mehr

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $ Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 34 Die Diagonalisierbarkeit von Isometrien im Komplexen Satz 34.1. Es sei V ein endlichdimensionaler C-Vektorraum

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Arbeitsblatt 16 Die Pausenaufgabe Aufgabe 161 Zeige, dass zu einem K-Vektorraum V mit Dualraum V die Auswertungsabbildung

Mehr

Ferienkurs Mathematik für Physiker I Skript Teil 2 ( )

Ferienkurs Mathematik für Physiker I Skript Teil 2 ( ) Ferienkurs Mathematik für Physiker I WS 206/7 Ferienkurs Mathematik für Physiker I Skript Teil 2 (28.03.207) Vektorräume Bevor wir zur Definition eines Vektorraumes kommen erinnern wir noch einmal kurz

Mehr

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 6): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnabrück WS 205/206 Lineare Algebra und analytische Geometrie I Vorlesung 7 Was die Menschen verbin, ist nicht der Glaube, sondern der Zweifel Peter Ustinow Universelle Eigenschaft der

Mehr

3 Lineare Abbildungen und Matrizen

3 Lineare Abbildungen und Matrizen 3 Lineare Abbildungen und Matrizen Definition 3.1. Es seien V und W zwei Vektorräume über demselben Zahlkörper k. Eine Abbildung heisst linear, falls gilt i) [ λ k ] [ v V ] [ f (λ v) = λ f ( v) ] ii)

Mehr

Lineare Abbildungen und Matrizen

Lineare Abbildungen und Matrizen Lineare Abbildungen und Matrizen In diesem Kapitel geht es um den grundlegenden Zusammenhang zwischen linearen Abbildungen und Matrizen. Die zentrale Aussage ist, dass nach anfänglicher Wahl von Basen

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof Dr H Brenner Osnabrück SS 26 Lineare Algebra und analytische Geometrie II Vorlesung 2 Orthogonalität Mit dem Skalarprodukt kann man die Eigenschaft zweier Vektoren, aufeinander senkrecht zu stehen,

Mehr

Lineare Algebra. Wintersemester 2017/2018. Skript zum Ferienkurs Tag Claudia Nagel Pablo Cova Fariña. Technische Universität München

Lineare Algebra. Wintersemester 2017/2018. Skript zum Ferienkurs Tag Claudia Nagel Pablo Cova Fariña. Technische Universität München Technische Universität München Wintersemester 27/28 Lineare Algebra Skript zum Ferienkurs Tag 2-2.3.28 Claudia Nagel Pablo Cova Fariña Wir danken Herrn Prof. Kemper vielmals für seine Unterstützung bei

Mehr

Mathematik III. Vorlesung 68. Das Verhalten von Maßen bei linearen Abbildungen

Mathematik III. Vorlesung 68. Das Verhalten von Maßen bei linearen Abbildungen Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 68 Das Verhalten von Maßen bei linearen Abbildungen Lemma 68.1. Es sei V ein reeller Vektorraum und L :R n V eine bijektive lineare

Mehr

Lineare Abbildungen und Matrizen

Lineare Abbildungen und Matrizen Lineare Abbildungen und Matrizen Seien V und W K-Vektorräume mit dimv = n und dimw = m Im folgenden wollen wir jeder m n Matrix eine lineare Abbildung V W zuordnen, und umgekehrt jeder linearen Abbildung

Mehr

Lineare Algebra Weihnachtszettel

Lineare Algebra Weihnachtszettel Lineare Algebra Weihnachtszettel 4..008 Die Aufgaben auf diesem Zettel sind zum Üben während der Weihnachtspause gedacht, sie dienen der freiwilligen Selbstkontrolle. Die Aufgaben müssen nicht bearbeitet

Mehr

Vektorräume und lineare Abbildungen

Vektorräume und lineare Abbildungen Kapitel 11. Vektorräume und lineare Abbildungen 1 11.1 Vektorräume Sei K ein Körper. Definition. Ein Vektorraum über K (K-Vektorraum) ist eine Menge V zusammen mit einer binären Operation + einem ausgezeichneten

Mehr

Aufgaben zur linearen Algebra und analytischen Geometrie I

Aufgaben zur linearen Algebra und analytischen Geometrie I Aufgaben zur linearen Algebra und analytischen Geometrie I Es werden folgende Themen behandelt:. Formale und logische Grundlagen 2. Algebraische Grundlagen 3. Vektorräume und LGS 4. Homomorphismen und

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 25 J ai décidé d être heureux parce que c est bon pour la santé Voltaire Trigonalisierbare Abbildungen

Mehr

Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß

Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß Lineare Algebra I - 15. Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß Probeklausur: Samstag, 5.11. 10 Uhr, B6 A001 Anmeldung in den Übungsgruppen Wir hatten gesehen: =! 7 Mat(m, n; K) Hom (Mat(n,

Mehr

Klausur zur Linearen Algebra I HS 2012, Universität Mannheim, Dr. Ralf Kurbel, Dr. Harald Baum

Klausur zur Linearen Algebra I HS 2012, Universität Mannheim, Dr. Ralf Kurbel, Dr. Harald Baum Klausur zur Linearen Algebra I HS 01, 1.1.01 Universität Mannheim, Dr. Ralf Kurbel, Dr. Harald Baum Name: Sitzplatznummer: Die Bearbeitungszeit für diese Klausur beträgt 90 Minuten. Die Klausur umfaßt

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

Lösung zu Serie 9. Lineare Algebra D-MATH, HS Prof. Richard Pink

Lösung zu Serie 9. Lineare Algebra D-MATH, HS Prof. Richard Pink Lineare Algebra D-MATH, HS 2014 Prof. Richard Pink Lösung zu Serie 9 1. [Aufgabe] Sei f : V W eine lineare Abbildung. Zeige: a) Die Abbildung f ist injektiv genau dann, wenn eine lineare Abbildung g :

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2017/2018 Lineare Algebra und analytische Geometrie I Vorlesung 2 Abbildungen Ein Hauptgebiet der Mathematik ist es zu untersuchen, wie sich eine gewisse Größe mit einer

Mehr

3 Lineare Abbildungen und Matrizen

3 Lineare Abbildungen und Matrizen 3 Lineare Abbildungen und Matrizen 3.1 ektorraum-homomorphismen 3 Lineare Abbildungen und Matrizen 3.1 ektorraum-homomorphismen Deinition 3.1 Seien, W zwei K-ektorräume und : W eine Abbildung. heißt linear

Mehr

13 Partielle Ableitung und Richtungsableitung

13 Partielle Ableitung und Richtungsableitung 3 PARTIELLE ABLEITUNG UND RICHTUNGSABLEITUNG 74 3 Partielle Ableitung und Richtungsableitung 3 Definition und Notiz Sei B R n offen, f : B R m, v R n, so heißt für γ x,v (t) = x + tv d dt f(x + tv) f(x)

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 8 Homomorphie- und Isomorphiesatz Satz 8.1. Seien G,Q und H Gruppen, es sei ϕ :G H ein Gruppenhomomorphismus und ψ : G Q ein surjektiver

Mehr

Kapitel II. Vektorräume

Kapitel II. Vektorräume Inhalt der Vorlesung LAAG I Prof. Dr. Arno Fehm TU Dresden WS2017/18 Kapitel II. Vektorräume In diesem ganzen Kapitel sei K ein Körper. 1 Definition und Beispiele 1.1 Beispiel. Ist K = R, so haben wir

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 5 In dieser Vorlesung diskutieren wir Normalteiler, das sind Untergruppen, für die Links- und Rechtsnebenklassen übereinstimmen.

Mehr

1 Linearkombinationen

1 Linearkombinationen Matthias Tischler Karolina Stoiber Ferienkurs Lineare Algebra für Physiker WS 14/15 A 1 Linearkombinationen Unter einer Linearkombination versteht man in der linearen Algebra einen Vektor, der sich durch

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Auf dem R n gibt es sehr viele verschiedene Normen, allerdings hängen sehr viele wichtige Begriffe wie die Konvergenz

Mehr

Algebraische Kurven. Vorlesung 24. Tangenten bei Parametrisierungen. (Q)) die Richtung der Tangente von C in P.

Algebraische Kurven. Vorlesung 24. Tangenten bei Parametrisierungen. (Q)) die Richtung der Tangente von C in P. Prof. Dr. H. Brenner Osnabrück SS 2012 Algebraische Kurven Vorlesung 24 Tangenten bei Parametrisierungen Satz 24.1. Es sei K ein unendlicher Körper und ϕ: A 1 K A n K eine durch n Polynome ϕ = (ϕ 1 (t),...,ϕ

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2018 Lineare Algebra und analytische Geometrie II Vorlesung 52 Auf dem R n gibt es sehr viele verschiedene Normen, allerdings hängen sehr viele wichtige Begriffe wie die

Mehr

Mathematik I. Vorlesung 11. Lineare Unabhängigkeit

Mathematik I. Vorlesung 11. Lineare Unabhängigkeit Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 11 Lineare Unabhängigkeit Definition 11.1. Es sei K ein Körper und V ein K-Vektorraum. Dann heißt eine Familie von Vektoren v i, i I,

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 26.11.2013 Alexander Lytchak 1 / 12 Wiederholung Ist B = (v 1,..., v n ) eine Basis eines Vektorraums V, so erhalten

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 53 Norm von Endomorphismen und Matrizen Definition 53.1. Es seien V und W endlichdimensionale normierte K-

Mehr

Vektorräume. Stefan Ruzika. 24. April Mathematisches Institut Universität Koblenz-Landau Campus Koblenz

Vektorräume. Stefan Ruzika. 24. April Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 24. April 2016 Stefan Ruzika 3: Vektorräume 24. April 2016 1 / 20 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume Erinnerung:

Mehr

Lösung zu Serie [Aufgabe] Zeige: Das folgende Diagramm kommutiert insgesamt genau dann, wenn alle 6 Teilquadrate kommutieren.

Lösung zu Serie [Aufgabe] Zeige: Das folgende Diagramm kommutiert insgesamt genau dann, wenn alle 6 Teilquadrate kommutieren. Lineare Algebra D-MATH, HS 2014 Prof. Richard Pink Lösung zu Serie 8 1. [Aufgabe] Zeige: Das folgende Diagramm kommutiert insgesamt genau dann, wenn alle 6 Teilquadrate kommutieren. a 1 A 1 a 2 A 2 a 3

Mehr

Lineare Algebra. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra 7. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching November 9, 27 Erinnerung 2 Vektoräume Sei V ein Vektorraum, U V, U {}. U hiesst Untervektorraum, Unterraum,

Mehr

x 2 + y 2 = f x y = λ

x 2 + y 2 = f x y = λ Lineare Abbildungen Def Es seien (V 1,+, ) und (V 2,+, ) zwei Vektorräume Eine Abbildung f : V 1 V 2 heißt linear, falls für alle Vektoren u,v V 1 und für jedes λ R gilt: f (u + v) = f (u) + f (v), f (λu)

Mehr

Lineare Abbildungen und Darstellungsmatrizen

Lineare Abbildungen und Darstellungsmatrizen KAPITEL 4 Lineare Abbildungen und Darstellungsmatrizen 1. Lineare Abbildungen Definition 4.1 (Lineare Abbildungen). Seien V und W zwei Vektorräume über den selben Körper K. Eine Abbildung f : V W heißt

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 43 Polynome in mehreren Variablen und Nullstellenmengen Als eine Anwendung der Diagonalisierbarkeit von symmetrischen

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel V SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

Kapitel 2 Lineare Algebra II. 2.1 Lineare Abbildungen

Kapitel 2 Lineare Algebra II. 2.1 Lineare Abbildungen Kapitel 2 Lineare Algebra II 21 Lineare Abbildungen Die mit der Vektorraumstruktur verträglichen Abbildungen zwischen Vektorräumen werden als linear bezeichnet Genauer definiert man: 21 Definition Eine

Mehr

Mathematik II. Vorlesung 46. Der Gradient

Mathematik II. Vorlesung 46. Der Gradient Prof. Dr. H. Brenner Osnabrück SS 2010 Mathematik II Vorlesung 46 Der Gradient Lemma 46.1. Es sei K ein Körper und V ein K-Vektorraum, der mit einer Bilinearform, versehen sei. Dann gelten folgende Aussagen

Mehr

Wiederholung: lineare Abbildungen

Wiederholung: lineare Abbildungen Wiederholung: lineare Abbildungen Def Es seien (V,+, ) und (U, +, ) zwei Vektorräume Eine Abbildung f : V U heißt linear, falls für alle Vektoren v 1, v 2 V und für jedes λ R gilt: (a) f (v 1 + v 2 ) =

Mehr

Übersicht Kapitel 9. Vektorräume

Übersicht Kapitel 9. Vektorräume Vektorräume Definition und Geometrie von Vektoren Übersicht Kapitel 9 Vektorräume 9.1 Definition und Geometrie von Vektoren 9.2 Teilräume 9.3 Linearkombinationen und Erzeugendensysteme 9.4 Lineare Abhängigkeiten

Mehr

Grundlagen der Mathematik 1: Lineare Algebra

Grundlagen der Mathematik 1: Lineare Algebra 13 Vektorräume 151 Grundlagen der Mathematik 1: Lineare Algebra 13 Vektorräume Ausgehend von den elementaren Konzepten in den Kapiteln 1 bis 3 wollen wir in dieser Vorlesung zwei grundlegende Gebiete der

Mehr

3 Bilinearform, Basen und Matrizen

3 Bilinearform, Basen und Matrizen Lineare Algebra II 2. Oktober 2013 Mitschrift der Vorlesung Lineare Algebra II im SS 2013 bei Prof. Peter Littelmann von Dario Antweiler an der Universität zu Köln. Kann Fehler enthalten. Veröentlicht

Mehr

Analysis II. Vorlesung 48. Die Hesse-Form

Analysis II. Vorlesung 48. Die Hesse-Form Prof. Dr. H. Brenner Osnabrück SS 2015 Analysis II Vorlesung 48 Die Hesse-Form Wir sind natürlich auch an hinreichenden Kriterien für das Vorliegen von lokalen Extrema interessiert. Wie schon im eindimensionalen

Mehr

1 Zum Aufwärmen. 1.1 Notationen. 1.2 Lineare Abbildungen und Matrizen. 1.3 Darstellungsmatrizen

1 Zum Aufwärmen. 1.1 Notationen. 1.2 Lineare Abbildungen und Matrizen. 1.3 Darstellungsmatrizen 1 Zum Aufwärmen 1.1 Notationen In diesem Teil der Vorlesung bezeichnen wir Körper mit K, Matrizen mit Buchstaben A,B,..., Vektoren mit u,v,w,... und Skalare mit λ,µ,... Die Menge der m n Matrizen bezeichnen

Mehr

35 Matrixschreibweise für lineare Abbildungen

35 Matrixschreibweise für lineare Abbildungen 35 Matrixschreibweise für lineare Abbildungen 35 Motivation Wir haben gesehen, dass lineare Abbildungen sich durch ihre Wirkung auf die Basisvektoren ausdrücken lassen Mithilfe von Matrizen können wir

Mehr

4 Vektorräume. 4.1 Definition. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48. Sei K ein Körper.

4 Vektorräume. 4.1 Definition. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48. Sei K ein Körper. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48 4 Vektorräume 4.1 Definition Sei K ein Körper. Definition: Ein Vektorraum über K, oder kurz ein K-Vektorraum, ist ein Tupel (V,+,, 0 V ) bestehend aus

Mehr