Lineare Abbildungen und Matrizen
|
|
|
- Erika Braun
- vor 7 Jahren
- Abrufe
Transkript
1 Lineare Abbildungen und Matrizen In diesem Kapitel geht es um den grundlegenden Zusammenhang zwischen linearen Abbildungen und Matrizen. Die zentrale Aussage ist, dass nach anfänglicher Wahl von Basen in den beteiligten Vektorräumen jeder (geeigneten) Matrix eine lineare Abbildung, und jeder linearen Abbildung eine Matrix (die sog. darstellende Matrix) zugeordnet werden kann. Seien V und W K-Vektorräume mit dim V = n und dim W = m. Wir wollen jeder m n Matrix eine lineare Abbildung V W zuordnen, und umgekehrt jeder linearen Abbildung V W eine m n Matrix, sodass wir einen Isomorphismus M(m n; K) Hom K (V, W ) erhalten. Wichtig: Ein derartiger gesuchter Isomorphismus ist allerdings nicht kanonisch gegeben. Wir müssen zuerst in beiden Vektorräumen Basen wählen, und der Isomorphismus wird dann von den gewählten Basen abhängen. Für das Folgende fixieren wir nun also eine Basis A = (v 1, v 2,, v n ) von V, und eine Basis B = (w 1, w 2,, w m ) von W. I. Die einer Matrix zugeordnete lineare Abbildung Sei A = (a ij ) M(m n; K). Wir definieren eine lineare Abbildung F : V W durch Angabe der Bilder der Basisvektoren. F (v 1 ) = a 11 w 1 + a 21 w a m1 w m F (v 2 ) = a 12 w 1 + a 22 w a m2 w m F (v n ) = a 1n w 1 + a 2n w a mn w m Dies bedeutet: Die j-te Spalte von A ist der Koordinatenvektor von F (v j ) bezüglich der Basis B = (w 1, w 2,, w m ). 1
2 ( Beispiel. A = ) (m = 2, n = 3) liefert F : V W mit F (v 1 ) = w 1 + 2w 2, F (v 2 ) = 3w 1, F (v 3 ) = w 1 + 4w 2. Setzen wir L A B (A) = F, dann ist durch diese Vorgangsweise eine Abbildung L A B : M(m n; K) Hom K(V, W ) erklärt. Spezialfall. (siehe vorher) Seien V = K n, W = K m und K bzw. K die kanonischen Basen in K n bzw. K m. Für A = (a ij ) M(m n; K) ist dann F (e 1 ) = (a 11, a 21,, a m1 ) F (e 2 ) = (a 12, a 22,, a m2 ) F (e n ) = (a 1n, a 2n,, a mn ) D.h. F (e j ) ist die j-te Spalte von A. Für ein beliebiges x = (x 1,, x n ) K n gilt somit F (x) = F (x 1 e x n e n ) = x 1 F (e 1 ) + + x n F (e n ) = x 1 (a 11, a 21,, a m1 ) + x 2 (a 12, a 22,, a m2 ) + + x n (a 1n, a 2n,, a mn ) = ( n a 1j x j, n a 2j x j,, n a mj x j ). Werden nun x K n und F (x) = L K K (A)(x) als Spaltenvektoren geschrieben, dann kann x als n 1 Matrix, F (x) als m 1 Matrix aufgefaßt werden, und es gilt mit y = F (x) = (y 1, y 2,, y m ) die Beziehung y 1 y 2.. y m = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn x 1 x 2 x n 2
3 wobei auf der rechten Seite die Multiplikation von Matrizen auftritt! Aus diesem Grund verwendet man auch die Schreibweise F (x) = L K K (A)(x) = Ax. Beispiel. ( ) Sei A = M(2 3; R). A definiert F : R R 2 ( ) x ( F (x) = F ((x 1, x 2, x 3 )) = x x1 x = 2 + 2x 3 4x 1 + x 2 + 3x 3 Im speziellen ist etwa F ((1, 1, 1)) = (Ende des Spezialfalles) ( 2 8 x 3 ). mit ). Zurück zum allgemeinen Fall. Seien nun Φ A : K n V und Φ B : K m W die durch A bzw. B definierten Koordinatensysteme in V bzw. W. Die zentrale Aussage ist nun die, dass das folgende Diagramm kommutativ ist, d.h. Φ B L K K (A) = L A B (A) Φ A : K n W. K n L K K (A) K m Φ A V W L A B (A) Φ B Beweis. Sei x = (x 1,, x n ) K n. Dann ist L K K (A)(x) = Ax = ( n n a 1j x j,, a mj x j ) und 3
4 Φ B L K K (A)(x) = Φ B (Ax) = ( n a 1j x j )w ( n a mj x j )w m. Andererseits ist Φ A (x) = x 1 v x n v n und (mit F = L A B (A)) L A B (A) Φ A(x) = L A B (A)(x 1v x n v n ) = x 1 F (v 1 ) + + x n F (v n ) = x 1 (a 11 w a m1 w m ) + + x n (a 1n w a mn w m ) = ( n a 1j x j )w ( n a mj x j )w m. Dies bedeutet: Mit F = L A B (A) sei x der Koordinatenvektor von v V bzgl. A. Dann ist y = Ax der Koordinatenvektor von F (v) bzgl. B. Bemerkung. L A B (A) heißt die der Matrix A bzgl. der Basen A und B zugeordnete lineare Abbildung V W. Gilt V = W und A = B, dann schreibt man statt L A B auch L B. II. Die einer linearen Abbildung zugeordnete Matrix Sei nun F : V W eine lineare Abbildung. Für jedes j = 1, 2,, n gibt es dann eindeutig bestimmte Skalare a 1j, a 2j,, a mj sodass F (v j ) = a 1j w 1 + a 2j w a mj w m. Auf diese Weise wird eine Matrix M A B (F ) = (a ij) definiert bzw. eine Abbildung M A B : Hom K(V, W ) M(m n; K), F M A B (F ) Man beachte, dass die j-te Spalte von MB A (F ) der Koordinatenvektor von F (v j ) bzgl. der Basis B ist. MB A (F ) heißt die der linearen Abbildung F bzgl. der Basen A und B zugeordnete Matrix (bzw. die darstellende Matrix von F bzgl. A 4
5 und B). Ist v V und x = x 1 x 2 x n bzw. y = y 1 y 2 y m der Koordinatenvektor von v ( bzw. F (v) ) bzgl. A ( bzw. B ), dann gilt y = M A B (F ) x. Beweis. v = x 1 v x n v n F (v) = x 1 F (v 1 ) + + x n F (v n ) = x 1 (a 11 w 1 + a 21 w a m1 w m ) + + x n (a 1n w 1 + a 2n w a mn w m ) = ( n a 1j x j )w ( n a mj x j )w m. Damit ist y i = n a ij x j. Satz. Die Abbildung L A B : M(m n; K) Hom K(V, W ), A L A B (A) ist ein Isomorphismus, dessen Umkehrabbildung durch M A B : Hom K(V, W ) M(m n; K), F M A B (F ) gegeben ist. Beweis. Wir setzen L = L A B und M = M A B. i) L ist linear. Seien A, B M(m n; K) und λ, µ K. Zu v V sei x der Koordinatenvektor von v bzgl. A. L(λA + µb)(v) = L(λA + µb) Φ A (x) = Φ B ((λa + µb)x) = Φ B (λax + µbx) = λφ B (Ax) + µφ B (Bx) = λl(a) Φ A (x) + µl(b) Φ A (x) = λl(a)(v) + µl(b)(v) = 5
6 (λl(a) + µl(b))(v). Dies gilt für jedes v V und somit L(λA + µb) = λl(a) + µl(b). ii) L ist bijektiv. Für A M(m n; K) gilt: die j-te Spalte von M(L(A)) ist der Koordinatenvektor von L(A)(v j ) bzgl. B. Dies ist aber die j-te Spalte von A. Damit gilt: M L(A) = A bzw. M L = id M(m n;k). Für F Hom K (V, W ) und v V gilt: L(M(F ))(v) = L(M(F )) Φ A (x) = Φ B (M(F )x) = F (v). Also L M(F ) = F bzw. L M = id HomK (V,W ). Damit ist L ein Isomorphismus. Beispiele. 1) Sei V = P 1 mit Basis A = (1, t), W = P 2 mit Basis B = (1, t, t 2 ). 1 1 Wir suchen L A B (A) für A = Wir wissen: Ist x der Koordinatenvektor von v V bzgl. A, dann ist Ax der Koordinatenvektor von L A B (A)(v) bzgl. B. 1 1 ( ) x 1 x 2 Also, mit v = x 1 1+x 2 t und Ax = 2 0 x1 = 2x x x 1 + 2x 2 gilt L A B (A)(v) = (x 1 x 2 ) 1 + 2x 1 t + (x 1 + 2x 2 ) t 2. Speziell, etwa für v = 1 t, also x 1 = 1, x 2 = 1 ergibt sich damit L A B (A)(v) = 2 + 2t t2. 6
7 2) Sei A = (v 1, v 2, v 3 ) eine Basis von V = R 3 und B = (w 1, w 2 ) eine Basis von W = R 2. Die lineare Abbildung F : R 3 R 2 sei gegeben durch F (v 1 ) = w 1 + w 2, F (v 2 ) = 2w 1 + w 2, F (v 3 ) = 2w 1 w 2. Dann ist die darstellende Matrix von F bzgl. A, B offenbar gegeben durch ( ) MB A(F ) = Sei etwa (4, 5, 3) der Koordinatenvektor von v bzgl. A, also v = 4v 1 + 5v 2 3v 3. Dann ist F (v) = 4F (v 1 ) + 5F (v 2 ) 3F (v 3 ) = 4(w 1 + w 2 ) + 5(2w 1 + w 2 ) 3(2w 1 w 2 ) = 8w w 2. ( ) 8 Also ist der Koordinatenvektor von F (v) bzgl. B gleich. 12 ( ) 4 ( ) Beziehungsweise: 5 8 = III. Komposition linearer Abbildungen Seien V, V, V K-Vektorräume mit Basen B, B, B und weiters gelte dim V = n, dim V = m, dim V = r. Wir betrachten lineare Abbildungen F : V V, G : V V und setzen H = G F : V V. Frage. Was ist die darstellende Matrix von H bzgl. B, B? Setze A = M B B (F ) und B = M B B (G) K n x Ax K m y By K r Φ B V Φ B F V G V Φ B 7
8 Für v V sei x der Koordinatenvektor von v bzgl. B, y der Koordinatenvektor von F (v) bzgl. B, z der Koordinatenvektor von G(F (v)) bzgl. B. Dann ist z = By und mit y = Ax folgt, dass z = B(Ax) = (BA)x. Damit: M B B (G F ) = BA = M B B (G) M B B (F ) D.h. die darstellende Matrix der Komposition von zwei linearen Abbildungen ist das Produkt der einzelnen darstellenden Matrizen. Analog zeigt man für A M(m n; K) und B M(r m; K), dass L B B (BA) = L B B (B) L B B (A). 8
Kap 5: Rang, Koordinatentransformationen
Kap 5: Rang, Koordinatentransformationen Sei F : V W eine lineare Abbildung. Dann ist der Rang von F erklärt durch: rang F =dim ImF. Stets gilt rang F dimv, und ist dimv
Eigenwerte und Diagonalisierung
Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende
2 Die Darstellung linearer Abbildungen durch Matrizen
2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )
Kapitel III. Lineare Abbildungen
Kapitel III. Lineare Abbildungen Beispiele: 1 Lineare Abbildungen a) Seien c 1,..., c n K vorgegeben. Betrachte die Funktion F (x 1,..., x n ) = c 1 x 1 + c 2 x 2 +... + c n x n in den Variablen x 1,...,
Übungen zu Einführung in die Lineare Algebra und Geometrie
Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Sommersemester 2010 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax = b
x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen)
Def Wiederholung Sei f : V U eine lineare Abbildung Das Bild von f ist die folgende Teilmenge von U: Bild f = {u U so dass es gibt ein Element v V mit f (v) = u} (Andere Bezeichnung: f (V) wird in Analysis-Vorlesung
Lineare Algebra I Zusammenfassung
Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition
Lineare Abbildungen. i=0 c ix i n. K n K m
Kapitel 4 Lineare Abbildungen In diesem Abschnitt lernen Sie erstmals eine Klasse von strukturerhaltenden Abbildungen kennen. Diese Konzept ist von zentraler Bedeutung in der Algebra. Grob gesagt geht
Euklidische und unitäre Vektorräume
Kapitel 7 Euklidische und unitäre Vektorräume In diesem Abschnitt ist der Körper K stets R oder C. 7.1 Definitionen, Orthonormalbasen Definition 7.1.1 Sei K = R oder C, und sei V ein K-Vektorraum. Ein
6 Hauptachsentransformation
6 Hauptachsentransformation A Diagonalisierung symmetrischer Matrizen (6.1) Satz: Sei A M(n n, R) symmetrisch. Dann gibt es eine orthogonale n n-matrix U mit U t AU = D Diagonalmatrix Es folgt: Die Spalten
Mathematische Erfrischungen III - Vektoren und Matrizen
Signalverarbeitung und Musikalische Akustik - MuWi UHH WS 06/07 Mathematische Erfrischungen III - Vektoren und Matrizen Universität Hamburg Vektoren entstanden aus dem Wunsch, u.a. Bewegungen, Verschiebungen
3.8. Lineare Abbildungen.
38 Lineare Abbildungen 38 Lineare Abbildungen 38 Definition Es seien V und W Vektorräume über K Eine Abbildung α : V W heißt linear, wenn für alle Vektoren u, v V und alle Skalare k K gilt: α(u + v α(u
37 Gauß-Algorithmus und lineare Gleichungssysteme
37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass
35 Stetige lineare Abbildungen
171 35 Stetige lineare Abbildungen Lernziele: Konzepte: Lineare Operatoren und ihre Normen Resultate: Abschätzungen für Matrizennormen Kompetenzen: Abschätzung von Operatornormen 35.1 Lineare Abbildungen.
Erinnerung/Zusammenfassung zu Abbildungsmatrizen
Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin ([email protected]) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend
Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen.
1. Der Vektorraumbegriff...1 2. Unterräume...2. Lineare Abhängigkeit/ Unabhängigkeit... 4. Erzeugendensystem... 5. Dimension...4 6. Austauschlemma...5 7. Linearität von Abbildungen...6 8. Kern und Bild
Analytische Geometrie, Vektorund Matrixrechnung
Kapitel 1 Analytische Geometrie, Vektorund Matrixrechnung 11 Koordinatensysteme Eine Gerade, eine Ebene oder den Anschauungsraum beschreibt man durch Koordinatensysteme 111 Was sind Koordinatensysteme?
2.2 Kern und Bild; Basiswechsel
22 Kern und Bild; Basiswechsel 22 Kern und Bild; Basiswechsel 35 Jede lineare Abbildung definiert charakteristische Unterräume, sowohl im Ausgangsraum als auch im Bildraum 22 Satz Sei L: V W eine lineare
3 Elementare Umformung von linearen Gleichungssystemen und Matrizen
3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange
00. Einiges zum Vektorraum R n
00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen
2 Euklidische Vektorräume
Sei V ein R Vektorraum. 2 Euklidische Vektorräume Definition: Ein Skalarprodukt auf V ist eine Abbildung σ : V V R, (v, w) σ(v, w) mit folgenden Eigenschaften ( Axiome des Skalarprodukts) (SP1) σ ist bilinear,
8 Lineare Abbildungen
80 8 Lineare Abbildungen In diesem Kapitel untersuchen wir lineare Abbildungen von R n nach R m wie zum Beispiel Spiegelungen, Drehungen, Streckungen und Orthogonalprojektionen in R 2 und R 3 Man nennt
Einführung in die Mathematik für Informatiker
Einführung in die Mathematik für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 12.12.2016 9. Vorlesung Eigenschaften linearer Abbildungen Beschreibung linearer Abbildungen durch Matrizen... Eigenschaften
Koordinaten und darstellende Matrizen
Koordinaten und darstellende Matrizen Olivier Sète 23 Juli 200 Inhaltsverzeichnis Koordinatenabbildung 5 Definition und Eigenschaften 5 2 Beispiele 6 2 Matrixdarstellung eines Vektorraumhomomorphismus
Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen
Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).
Kapitel 12. Lineare Abbildungen und Matrizen
Kapitel 12 Lineare Abbildungen und Matrizen Lineare Abbildungen f : R n R m Wir wissen schon: Eine lineare Abbildung f : R n R m ist eindeutig durch ein n-tupel von Vektoren v 1, v 2,, v n des R m bestimmt
KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG
KLAUSUR ZUR LINEAREN ALGEBRA I Wiederholungsprüfung MUSTERLÖSUNG. April 2008 Name: Studiengang: Aufgabe 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter
45 Eigenwerte und Eigenvektoren
45 Eigenwerte und Eigenvektoren 45.1 Motivation Eigenvektor- bzw. Eigenwertprobleme sind wichtig in vielen Gebieten wie Physik, Elektrotechnik, Maschinenbau, Statik, Biologie, Informatik, Wirtschaftswissenschaften.
Die Dimension eines Vektorraumes
Die Dimension eines Vektorraumes Ist (b 1, b 2,..., b n ) eine Basis des Vektorraums V, so heißt n die Dimension von V. Die Möglichkeit dieser Definition beruht auf dem folgenden nichttrivialen Satz. Je
Kapitel 2: Mathematische Grundlagen
[ Computeranimation ] Kapitel 2: Mathematische Grundlagen Prof. Dr. Stefan M. Grünvogel [email protected] Institut für Medien- und Phototechnik Fachhochschule Köln 2. Mathematische Grundlagen
Kapitel VI. Euklidische Geometrie
Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und
(Allgemeine) Vektorräume (Teschl/Teschl 9)
(Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:
Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor)
Matrizenrechnung. Matrizen Matrizen sind bereits im Kapitel Lineare Gleichungssysteme aufgetreten. Unter einer (m n) -Matrix A verstehen wir ein rechteckiges Zahlenschema mit m Zeilen und n Spalten. Der.
Lineare Gleichungssysteme
Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern
7 Die Determinante einer Matrix
7 Die Determinante einer Matrix ( ) a11 a Die Determinante einer 2 2 Matrix A = 12 ist erklärt als a 21 a 22 det A := a 11 a 22 a 12 a 21 Es ist S 2 = { id, τ}, τ = (1, 2) und sign (id) = 1, sign (τ) =
2 Die Dimension eines Vektorraums
2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1
Lineare Algebra und analytische Geometrie I
Prof Dr H Brenner Osnabrück WS 205/206 Lineare Algebra und analytische Geometrie I Vorlesung 9 Basiswechsel Wir wissen bereits, dass in einem endlichdimensionalen Vektorraum je zwei Basen die gleiche Länge
Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung
6 Eigenwerte und Eigenvektoren
6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,
Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A
133 e 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 2. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 Schritte des
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html
In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)
34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)
7 Vektorräume und Körperweiterungen
$Id: vektor.tex,v 1.3 2009/05/25 15:03:47 hk Exp $ 7 Vektorräume und Körperweiterungen Wir sind gerade bei der Besprechung derjenigen Grundeigenschaften des Tensorprodukts, die mit vergleichsweise wenig
Lösungen zu den Hausaufgaben zur Analysis II
Christian Fenske Lösungen zu den Hausaufgaben zur Analysis II Blatt 6 1. Seien 0 < b < a und (a) M = {(x, y, z) R 3 x 2 + y 4 + z 4 = 1}. (b) M = {(x, y, z) R 3 x 3 + y 3 + z 3 = 3}. (c) M = {((a+b sin
Grundsätzliches Rechnen mit Matrizen Anwendungen. Matrizenrechnung. Fakultät Grundlagen. Juli 2015
Matrizenrechnung Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Matrizenrechnung Übersicht Grundsätzliches 1 Grundsätzliches Matrixbegriff Rechenregeln Spezielle Matrizen 2 Matrizenrechnung Determinanten
C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w =
1 v Die Länge Def. Sei (V,, ) ein Euklidscher Vektorraum. Für jeden Vektor v V heißt die Zahl v,v die Länge von v und wird v bezeichnet. Bemerkung. Die Länge des Vektors ist wohldefiniert, da nach Definition
Lineare Algebra I: Eine Landkarte
Bild F Algebra I: Eine Landkarte Faser Versuch einer Übersicht der Themen und Zusammenhänge der n Algebra 1. 1 Algebra I: Bild F Faser Sei B Basis von V. Jedes v V läßt sich eindeutig aus den Basisvektoren
Lineare Abhängigkeit
Lineare Abhängigkeit Vorbemerkung. Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung I X, i x i. I heißt dabei Indexmenge. Man verwendet dabei oft die Schreibweise (x i ) oder (x
Lineare Abbildungen. Es seien V und W Vektorräume über einem Körper K. Eine Abbildung f : V W heißt linear oder Homomorphismus, falls. d.h.
Lineare Abbildungen Es seien V und W Vektorräume über einem Körper K. Eine Abbildung f : V W heißt linear oder Homomorphismus, falls (1) u, v V : f( u + v) = f( u) + f( v). (2) v V α K : f(α v) = αf( v).
x,y A = t xay v i,v j A = e i,e j t PAP
75 Lineare Algebra II SS 2005 Teil 6 Bilinearformen 6A Kongruenz quadratischer Matrizen Sei K ein Körper, sei A M(n n, K) eine quadratische Matrix Wie wir zu Beginn von Teil 3 gesehen haben, liefert A
Vektorräume und Rang einer Matrix
Universität Basel Wirtschaftswissenschaftliches Zentrum Vektorräume und Rang einer Matrix Dr. Thomas Zehrt Inhalt:. Lineare Unabhängigkeit 2. Vektorräume und Basen 3. Basen von R n 4. Der Rang und Rangbestimmung
Quadratische Matrizen
Quadratische Matrizen (n n)-matrizen heißen quadratische Die entsprechenden linearen Abbildungen sind laut Definition Endomorphismen des R n (weil f A : R n R n ) Das Produkt von (n n)- Matrizen ist auch
Lineare Gleichungssysteme - Grundlagen
Lineare Gleichungssysteme - Grundlagen Betrachtet wird ein System linearer Gleichungen (im deutschen Sprachraum: lineares Gleichungssystem mit m Gleichungen für n Unbekannte, m, n N. Gegeben sind m n Elemente
Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar.
Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Hinweis:
Kapitel 10. Lineare Abbildungen Definition linearer Abbildungen Eigenschaften und Beispiele Alle linearen Abbildungen R n V Bild von Unterräumen
Kapitel 10. Lineare Abbildungen Definition linearer Abbildungen Eigenschaften und Beispiele Alle linearen Abbildungen R n V Bild von Unterräumen Vorschau: Lineare Abbildungen Wer Vektorräume studiert,
Lineare Algebra II 5. Übungsblatt
Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross / Mai Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Algebraisch abgeschlossener Körper) Ein Körper heißt algebraisch abgeschlossen,
Lineare Gleichungssysteme
Lineare Gleichungssysteme 1 Wiederholung Eine Menge von Vektoren a 1, a 2,, a k heisst linear unabhängig, wenn eine Linearkombination c 1 a 1 + c 2 a 2 + + c k a k = k c i a i (1) i=1 nur dann Null sein
1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau,
Algebra I 9. April 2008 c Rudolf Scharlau, 2002 2008 18 1.3 Gruppen Der Begriff der Gruppe ordnet sich in gewisser Weise dem allgemeineren Konzept der Verknüpfung (auf einer Menge) unter. So ist zum Beispiel
Bild und Kern. Für eine lineare Abbildung L : V W bezeichnet man mit. Kern L = {v V : L(v) = 0} V. den Kern und mit
Bild und Kern Für eine lineare Abbildung L : V W bezeichnet man mit Kern L = {v V : L(v) = 0} V den Kern und mit Bild L = {w W : v V mit L(v) = w} W das Bild von L. Bild und Kern 1-1 Bild und Kern Für
1 Vektoren, Vektorräume, Abstände: 2D
Vektoren, Vektorräume, Astände: D Definition: Die Menge aller (geordneten Paare reeller Zahlen (oder allgemeiner: Elemente eines elieigen Körpers, als Spalten geschrieen, ezeichnen wir als Vektoren: R
Vorlesung. Funktionen/Abbildungen
Vorlesung Funktionen/Abbildungen 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.
Definition 7.1. Der Coxeter Graph zu W ist der ungerichtete gewichtete Graph Γ W = (V, E), mit Eckenmenge V und Kantenmenge E, gegeben durch V = und
7. Coxeter Graphen Um die endlichen Spiegelungsgruppen zu klassifizieren, wollen wir ihnen nun Graphen zuordnen, die die Gruppen bis auf Isomorphie eindeutig bestimmen. Im Folgenden sei wie vorher Π Φ
Lineare Algebra II, Lösungshinweise Blatt 9
Prof Dr Katrin Wendland Priv Doz Dr Katrin Leschke Christoph Tinkl SS 27 Lineare Algebra II, Lösungshinweise Blatt 9 Aufgabe (4 Punkte) Sei 2 3 4 A = 5 6 Berechnen Sie A k für alle k N und verifizieren
klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s
Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen
Kapitel 3. Konvergenz von Folgen und Reihen
Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden
Kap 1: VEKTORRÄUME. (c) (λµ) v = λ (µ v) (b) λ (v + w) = (λ v) + (λ w) (d) 1 v = v
Kap 1: VEKTORRÄUME Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung ϕ : I X, i ϕ(i) = x i, wobei die Menge I in diesem Zusammenhang auch Indexmenge genannt wird. Man schreibt vereinfacht
Lösungen Serie 6 (Vektorräume, Skalarprodukt)
Name: Seite: 1 Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Lösungen Serie 6 (Vektorräume, Skalarprodukt) Dozent: R. Burkhardt Büro: 4.613 Klasse: 1. Studienjahr Semester: 1 Datum: HS 28/9
Technische Universität München Zentrum Mathematik. Übungsblatt 7
Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion
2. Symmetrische Gruppen
14 Andreas Gathmann 2 Symmetrische Gruppen Im letzten Kapitel haben wir Gruppen eingeführt und ihre elementaren Eigenschaften untersucht Wir wollen nun eine neue wichtige Klasse von Beispielen von Gruppen
Kapitel IV. Lineare Abbildungen. Inhalt: 13. Lineare Abbildungen 14. Matrix-Darstellung 15. Isomorphie von Vektorräumen
Kapitel IV. Lineare Abbildungen Inhalt: 13. Lineare Abbildungen 14. Matrix-Darstellung 15. Isomorphie von Vektorräumen Wir wollen nun die Abbildungen F : V W zwischen Vektorräumen V und W untersuchen,
Affine und projektive Räume
Affine und projektive Räume W. Kühnel Literatur hierzu: G.Fischer, Analytische Geometrie, 7. Aufl., Vieweg 2001 Zur Motivation: Wenn man in einem Vektorraum die Elemente nicht als Vektoren, sondern als
Fachhochschule Nordwestschweiz (FHNW) Hochschule Technik Lösungen Serie 10 (Lineare Abbildungen)
Fachhochschule Nordwestschweiz (FHNW) Hochschule Technik Lösungen Serie (Lineare Abbildungen) Dozent/in: R. Burkhardt Büro:.6 Klasse: Semester: Datum: HS 8/9. Aufgabe Zeige, dass die folgenden Abbildungen
Zahlen und metrische Räume
Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} bzw. N 0 = {0, 1, 2,
Lineare Algebra I (WS 13/14)
Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 29.11.2013 Alexander Lytchak 1 / 13 Wiederholung Der Rang einer linearen Abbildung ist gleich dem Spaltenrang der darstellenden
8 Die Riemannsche Zahlenkugel
8 Die Riemannsche Zahlenkugel Wir untersuchen zunächst Geraden- und Kreisgleichungen in der komplexen Ebene C = R 2. Geradengleichungen Die Parameterdarstellung einer Geraden durch zwei Punkte z 1 z 2
Proseminar Lineare Algebra II, SS 11. Blatt
Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2
Lineare Algebra - alles was man wissen muß
Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger
1 Mengen und Abbildungen
1 MENGEN UND ABBILDUNGEN 1 1 Mengen und Abbildungen Wir starten mit einigen einführenden Definitionen und Ergebnissen aus der Theorie der Mengen und Abbildungen, die nicht nur Grundlage der Linearen Algebra
Übungen zur Linearen Algebra 1
Übungen zur Linearen Algebra 1 Wintersemester 2014/2015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 10 Abgabetermin: Freitag, 16.01.2015, 11 Uhr Auf diesem
9.2 Invertierbare Matrizen
34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen
Lineare Algebra und analytische Geometrie II
Prof. Dr. H. Brenner Osnabrück SS 206 Lineare Algebra und analytische Geometrie II Vorlesung 33 Das Kreuzprodukt Eine Besonderheit im R 3 ist das sogenannte Kreuzprodukt, das zu zwei gegebenen Vektoren
Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7
Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Timo Stöcker Erstsemestereinführung Informatik TU Dortmund 22. März 2011 Heute Themen Lineare Gleichungssysteme Matrizen Timo Stöcker https://fsinfo.cs.tu-dortmund.de/studis/ese/vorkurse/mathe
Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D.
Dr. V. Gradinaru D. Devaud Herbstsemester 5 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie Aufgabe..a Bezüglich des euklidischen Skalarprodukts in R ist die Orthogonalprojektion
4.1 Definition. Gegeben: Relation f X Y f heißt Funktion (Abbildung) von X nach Y, wenn. = y 1. = y 2. xfy 1. xfy 2
4.1 Definition Gegeben: Relation f X Y f heißt Funktion (Abbildung) von X nach Y, wenn xfy 1 xfy 2 = y 1 = y 2 Y heißt Zielbereich oder Zielmenge von f. Statt (x, y) f oder xfy schreibt man y = f(x). Vollständige
(geometrische) Anschauung
(geometrische) Anschauung Marcus Page Juni 28 In dieser Lerneinheit widmen wir uns dem schon oft angesprochenen Zusammenhang zwischen Matrizen und linearen Abbildungen. Außerdem untersuchen wir Funktionen,
Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum
Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume
13. Der diskrete Logarithmus
13. Der diskrete Logarithmus 13.1. Definition. Sei p eine Primzahl. Wie wir in 9 bewiesen haben, ist die multiplikative Gruppe F p des Körpers F p = Z/p zyklisch. Sei g ein erzeugendes Element von F p
Vorkurs Mathematik Abbildungen
Vorkurs Mathematik Abbildungen Philip Bell 19. September 2016 Diese Arbeit beruht im Wesentlichen auf dem Vortrag Relationen, Partitionen und Abbildungen von Fabian Grünig aus den vorangehenden Jahren.
Musterlösungen zur Linearen Algebra II Übungsklausur
Musterlösungen zur Linearen Algebra II Übungsklausur Aufgabe. Sei A R 3 3. Welche der folgenden Aussagen sind richtig? a Ist det(a =, dann ist A eine orthogonale Matrix. b Ist A eine orthogonale Matrix,
Erweiterte Koordinaten
Erweiterte Koordinaten Sei K n ein n dimensionaler affiner Raum Die erweiterten Koordinaten des Punktes x x n K n sind x x n Kn+ (Das ist für alle K sinnvoll, weil in jedem Körper K wohldefiniert ist In
PRÜFUNG AUS ALGEBRA UND DISKRETE MATHEMATIK F. INF. U. WINF.
Zuname: Vorname: Matrikelnummer: PRÜFUNG AUS ALGEBRA UND DISKRETE MATHEMATIK F. INF. U. WINF. (GITTENBERGER) Wien, am 5. Februar 2013 (Ab hier freilassen!) Arbeitszeit: 100 Minuten 1) 2) 3) 4) 5) 1)(8
Lineare Algebra 1. Roger Burkhardt
Lineare Algebra 1 Roger Burkhardt [email protected] Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2008/09 7 Einführung Definition lineare Abbildung
13. Funktionen in einer Variablen
13. Funktionen in einer Variablen Definition. Seien X, Y Mengen. Eine Funktion f : X Y ist eine Vorschrift, wo jedem Element der Menge X eindeutig ein Element von Y zugeordnet wird. Wir betrachten hier
3.3 Klassifikation quadratischer Formen auf R n
3.3. Klassifikation quadratischer Formen auf R n 61 3.3 Klassifikation quadratischer Formen auf R n Wir können den Hauptsatz über symmetrische Matrizen verwenden, um uns einen Überblick über die Lösungsmengen
