Aufgabenstellung: Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung Gesucht ist eine Funktion y = y(x).

Größe: px
Ab Seite anzeigen:

Download "Aufgabenstellung: Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung Gesucht ist eine Funktion y = y(x)."

Transkript

1 I Neunte Übungseinheit Inhalt der neunten Übungseinheit: Gewöhnliche Differentialgleichungen erster Ordnung I. Gewöhnliche Differentialgleichungen erster Ordnung Aufgabenstellung: Explizite gewöhnliche Differentialgleichung. Ordnung mit Anfangsbedingung Gesucht ist eine Funktion y = y(x). Sie soll erfüllen y (x) = f(x,y(x)) y(x ) = y Differentialgleichung Anfangsbedingung I.. Einschrittverfahren Bei der numerischen Lösung einer DG bestimmt man ausgehend von den Anfangsbedingungen eine Folge von Wertepaaren (x,y ),(x,y ),(x 2,y 2 ),..., die den Verlauf der gesuchten Funktion y = y(x) annähern sollen. Schema: Wähle Schrittweite h und maximale Schrittzahl N; setze x und y laut Anfangsbedingung; für i =,,...,N x i+ = x i +h ; y i+ = y i +hf(x i,y i,h). Dabei ist F(x,y,h) die Fortschreit-Richtung. Die verschiedenen Verfahren unterscheiden sich in der Definition der Fortschreit-Richtung. Nur beim expliziten Euler-Verfahren ist die Fortschreit- Richtung im Punkt (x;y) auch gleich der Steignug y (x,y), also F(x,y,h) = f(x,y), Andere Verfahren versuchen, die Fortschreit-Richtung besser an den Verlauf der Lösung anzupassen. Beim modifizierten Euler-Verfahren ist F(x,y,h) = f (x+ h2,y + h2 ) f(x,y), beim Verfahren von Heun F(x,y,h) = 2 (k +k 2 ) mit k = f(x,y) k 2 = f(x+h,y +hf(x,y)). Dazu gibt es ein Musterprogramm GDGdemo.m zum Herunterladen! I..2 Handrechnung Die numerische Lösung einer Differentialgleichung durch händische Rechnung dient heutzutage nur mehr der Illustration der Rechenverfahren. Die praktische Durchführung überlassen Sie dem Computer. Ihr Verständnis für die Rechenverfahren müssen Sie aber zumindest bei der 44

2 Vorlesungsprüfung dadurch demonstrieren, dass Sie einige Rechenschritte selbst auf dem Papier ausarbeiten. Ein Beispiel sei das Anfangswertproblem y = 4xy +3 y() = In diesem Fall ist also f(x,y) = 4xy +3 und x = y =. Wir wollen mit Schrittweite h =,2 den Wert der Funktion y(x) an den Stellen x =,2 ; x 2 =,4 ; x 3 =,6 näherungsweise bestimmen. Die exakte Lösung ist bekannt, aber nicht durch elementare Funktionen angebbar; auf sechs Nachkommastellen genau beträgt y(,6) = 2, Ein tabellarisches Rechenschema ist hilfreich. Beachten Sie: Die vorletzte Spalte berechnet immer die Fortschreit-Richtung F, die letzte Spalte entspricht dem allgemeinen Schritt y i+ = y i + hf(x i,y i,h), in einfachen Worten: neuer y-wert = alter Wert plus h mal Fortschreit- Richtung F Für das explizite Euler-Verfahren: i x y F = f(x,y) = 4xy +3 y +hf 2 Modifiziertes Euler-Verfahren: i x y k = f(x,y) y + h 2 k F = f(x+ h 2,y + h 2 k ) y +hf 2 Verfahren von Heun: x y k = f(x,y) y +hk k 2 = f(x+h,y +hk ) F = (k +k 2 )/2 y +hf Aufgabe 72 Einfache Einschrittverfahren programmieren Verwenden Sie das Musterprogramm GDGdemo.m und berechnen Sie für das oben gegebene Beispiel den Wert y(,6) mit verschiedenen Schrittweiten und verschiedenen Verfahren:. Rechnen Sie mit h =,2 und den drei obigen Verfahren. (Vergleichen Sie mit den Werten aus der Handrechnung.) Implementieren Sie auch das dreistufige Verfahren k = f(x,y) k 2 = f(x+ h 2,y + h 2 k ) k 3 = f(x+h,y hk +2hk 2 ) F = 6 (k +4k 2 +k 3 ) 45

3 2. Rechnen Sie nun mit feinerer Schrittweite h =,5. Wie groß ist jeweils der Fehler (Differenz zwischen Näherungswert und exakter Lösung y(,6) = 2,97344? 3. Halbieren Sie die Schrittweite, rechnen Sie also mit h =,25 und vergleichen Sie die Fehler. Um welchen Faktor hat sich jeweils der Fehler reduziert? Die verscheidenen MATLAB-Löser für Anfangswertprobleme arbeiten im Prinzip wie das Demo- Programm GDGdemo.m, aber die Fortschreit-Richtung wird aus mehreren, optimal gewählten Zwischenpunkten bestimmt, der (globale) Fehler wird abgeschätzt, die Schrittweite wird automatisch angepasst. für steife Probleme gibt es Methoden (ode23s, ode5s) mit besserem Stabilitätsverhalten. I..3 Stabilität Gegeben ist das Anfangswertproblem y() = für verschiedene Werte λ R und auch λ C. Als Stabilitätsgebiet eines Verfahrens bezeichnet man die Menge aller λ, für bei Schrittweite h = die Folge der berechneten Näherungslösungen nach Null konvergiert. Die exakte Lösung des Anfangswertproblems ist natürlich y = e λx ; nur für λ < oder (falls λ C, für Re(λ) < ) gilt y, wenn x. Das Stabilitätsgebiet eines Lösungsverfahrens suchen Sie daher sinnvoller Weise nur im Bereich negativer λ-werte (oder, für komplexe λ, im Bereich der linken Halbebene der komplexen Zahlenebene. Hier sind Näherungslösungen des expliziten Euler-Verfahrens für verschiedene λ gezeichnet: Für λ =,5 monoton abnehmend, für λ =,7 oszilllierend, aber konvergent, und für λ = 2,5 oszillierend und divergent Aufgabe 73 Stabilität expliziter Einschrittverfahren Modifizieren Sie das Musterprogramm GDGdemo.m, stellen Sie die Schrittweite h = ein und testen Sie die bisher behandelten Einschritt-Verfahren für verschiedene (auch komplexe) λ- Werte beim Anfangswertproblem y() = 46

4 Grenzen Sie (durch systematisches Probieren verschiedener Werte) das Stabilitätsgebiet möglichst gut ein. Aufgabe 74 Implizites Eulerverfahren Hier ist die Fortschreit-Richtung gegeben durch und der neue Näherungswert daher F(x,y,h) = f(x+h,y(x+h)) y(x+h) = y(x)+hf(x+h,y(x+h)) Das Problem ist hier, dass y(x + h) berechnet werden soll, aber zugleich auch schon rechts in f eigesetzt werden soll; die obige Formel ist also eine implizite Gleichung für y(x + h). Für einfache Funktionen f(x,y) lässt sich diese Gleichung jedoch leicht lösen. Orientieren sie sich am Musterprogramm GDGdemo.m und implementieren Sie das implizite Euler-Verfahren für das Testproblem y() = Untersuchen Sie die Stabilität dieses Verfahrens. Aufgabe 75 Lösen Sie das schon früher (Aufgabe 72) behandelte Anfangswertproblem y = 4xy +3 y() = mit dem impliziten Euler-Verfahren im Bereich x. Schrittweite h =,2. I.2 Systeme von Differentialgleichungen erster Ordnung Aufgabe 76 Populationsdynamik Ein mathematisches Modell, das Entwicklung des Bestandes zweier Arten ( Räuber und Beutetiere ) in vereinfachter Weise darstellt, wird durch das System nichtlinearer Differentialgleichungen y (t) = k y (t) k 2 y (t)y 2 (t) y 2(t) = k 3 y (t)y 2 (t) k 4 y 2 (t) ausgedrückt. Dabei stelleny (t) undy 2 (t) den zeitlichen Bestand der Beutetiere beziehungsweise der Räuber dar. Lösen Sie dieses System für t 4 unter der Annahme, daß der Anfangsbestand an Beutetieren, der der Räuber 2 und die Konstanten k = 3,k 2 =,2,k 3 =,6 und k 4 =,5 betragen. Methode: ode45. Um die Ergebnisse zu veranschaulichen, stellen Sie die Lösung, also die Anzahl der beiden Populationen versus Zeit, graphisch dar. Wiederholen Sie die Rechnung für einen Anfangsbestand von 2 Beutetieren und 5 Räubern. 47

5 Aufgabe 77 Schmetterlingseffekt Der Meteorologe Edward N. Lorenz formulierte 963 ein System von drei gekoppelten, nichtlinearen gewöhnlichen Differentialgleichungen zur Modellierung der Erdatmosphäre zum Zweck einer Langzeitvorhersage. dx/dt = a(y x) dy/dt = x(b z) y dz/dt = xy cz Die numerische Lösung des Systems zeigt bei bestimmten Parameterwerten chaotisches Verhalten. Die typische Parametereinstellung mit chaotischer Lösung lautet: a =, b = 28, c = 8 3 Lösen Sie dieses System für t 5, Anfangsbedingungen x = 2,y = 2,z = 4. Stellen Sie die Lösung als Kurve in Parameterform in einem xyz-koordinatensystem (Befehl plot3) dar Die Lösung ist für ihre typische Schmetterlings-Form bekannt. 48

Aufgabenstellung: Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung Gesucht ist eine Funktion y = y(x).

Aufgabenstellung: Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung Gesucht ist eine Funktion y = y(x). I Neunte Übungseinheit Inhalt der neunten Übungseinheit: Gewöhnliche Differentialgleichungen erster Ordnung I. Gewöhnliche Differentialgleichungen erster Ordnung Aufgabenstellung: Explizite gewöhnliche

Mehr

H. Achte Übungseinheit

H. Achte Übungseinheit H. Achte Übungseinheit Inhalt der achten Übungseinheit: Einschrittverfahren für gewöhnliche Differentialgleichungen erster Ordnung MATLAB-Löser Klassisches Euler-Verfahren und andere einfache explizite

Mehr

F(x,y,h) = f(x,y), = f(x,y) = f(x + h,y + hf(x,y)).

F(x,y,h) = f(x,y), = f(x,y) = f(x + h,y + hf(x,y)). 170 005 Übungen zu Numerische Methoden I Neunte Übungseinheit 9., 10. und 11. Juni 2008 Inhalt der neunten Übungseinheit: Gewöhnliche Differentialgleichungen KNW-Musterbeispiele 9 Gewöhnliche Differentialgleichungen

Mehr

Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung

Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung Gesucht ist eine Funktion y(x), welche erfüllt y = f(x,y) y(x 0 ) = y 0 Differentialgleichung Anfangsbedingung Wenn f in x stetig

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Gewöhnliche Differentialgleichungen 10. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 22. Mai 2014 Gliederung 1 Aufgabenstellung und Interpretation

Mehr

Vorlesung, 26. Mai 2011, Inhalt. Eigenwerte und Eigenvektoren. Gewöhnliche Differentialgleichungen

Vorlesung, 26. Mai 2011, Inhalt. Eigenwerte und Eigenvektoren. Gewöhnliche Differentialgleichungen Vorlesung, 26. Mai 2011, Inhalt Eigenwerte und Eigenvektoren Gewöhnliche Differentialgleichungen 1 Eigenwerte und Eigenvektoren Es sei A eine n n-matrix, x ein vom Nullvektor verschiedener Vektor und λ

Mehr

Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan :00-14:00 (120 min)

Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan :00-14:00 (120 min) Lehrstuhl für Angewandte Mathematik Montanuniversität Leoben 70 004 Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan. 207 2:00-4:00 (20 min) Name Matrikelnummer Mündliche Prüfung: Bitte markieren

Mehr

Zehnte Vorlesung, 4. Juni 2009, Inhalt. Eigenwerte und Eigenvektoren (2) Gewöhnliche Differentialgleichungen

Zehnte Vorlesung, 4. Juni 2009, Inhalt. Eigenwerte und Eigenvektoren (2) Gewöhnliche Differentialgleichungen Zehnte Vorlesung, 4. Juni 2009, Inhalt Eigenwerte und Eigenvektoren (2) Gewöhnliche Differentialgleichungen 1 Eigenwerte und Eigenvektoren Wichtige Feststellungen zur Eigenwertaufgabe Ax = λx: Eigenwerte

Mehr

10 Gewöhnliche Differentialgleichungen

10 Gewöhnliche Differentialgleichungen Gewöhnliche Differentialgleichungen. Aufgabenstellung, Beispiele.. Differentialgleichungen erster Ordnung Explizite gewöhnliche Differentialgleichung. Ordnung mit Anfangsbedingung Gesucht ist eine Funktion

Mehr

Mathematische Grundlagen

Mathematische Grundlagen G-CSC Goethe-Center for Scientific Computing der Universität Frankfurt 2 Übung zur Vorlesung Modellierung und Simulation 3 (WS 2013/14) Prof Dr G Queisser Markus Breit, Martin Stepniewski Abgabe: Dienstag,

Mehr

ODE-Solver. Inhalt. Einleitung. grundlegende Algorithmen. weiterführende Algorithmen

ODE-Solver. Inhalt. Einleitung. grundlegende Algorithmen. weiterführende Algorithmen Martin Reinhardt angewandte Mathematik 8. Semester Matrikel: 50108 ODE-Solver 11. Mai 2011 Inhalt Einleitung grundlegende Algorithmen weiterführende Algorithmen Martin Reinhardt (TUBAF) 1 Orientierung

Mehr

Numerische Verfahren

Numerische Verfahren Numerische Verfahren Numerische Methoden von gewöhnlichen Differentialgleichungen (AWP) Prof. Dr.-Ing. K. Warendorf, Prof. Dr.-Ing. P. Wolfsteiner Hochschule für Angewandte Wissenschaften München (FH)

Mehr

Lösung Semesterendprüfung

Lösung Semesterendprüfung MNUM Mathematik: Numerische Methoden Herbstsemester 17 Dr Christoph Kirsch ZHAW Winterthur Aufgabe 1 : Lösung Semesterendprüfung Wir schreiben zuerst die Gleichungen f(x i ; a, a 1, a y i, i 1,,, 1, als

Mehr

Übungen zu gewöhnlichen Differentialgleichungen Lösungen zu Übung 23

Übungen zu gewöhnlichen Differentialgleichungen Lösungen zu Übung 23 Übungen zu gewöhnlichen Differentialgleichungen Lösungen zu Übung 3 3.1 Gegeben sei die Anfangswertaufgabe (AWA) Zeigen Sie, dass die Funktion y (x) = x y(x) mit y(0) = 1 die einzige Lösung dieser AWA

Mehr

Klausurlösung Einführung in Numerische Methoden und FEM Universität Siegen, Department Maschinenbau,

Klausurlösung Einführung in Numerische Methoden und FEM Universität Siegen, Department Maschinenbau, Universität Siegen, Department Maschinenbau, 7.7. Aufgabe y 3 l 3 3 F l l x Das dargestellte Fachwerk soll statisch mit Hilfe der FEM untersucht werden. Die Knoten und Elemente sind in der Abbildung nummeriert.

Mehr

Numerische Verfahren

Numerische Verfahren Numerische Verfahren Numerische Methoden von gewöhnlichen Differentialgleichungen (AWP) Prof. Dr.-Ing. K. Warendorf, Prof. Dr.-Ing. P. Wolfsteiner Hochschule für Angewandte Wissenschaften München Fakultät

Mehr

Differenzialgleichungen

Differenzialgleichungen Differenzialgleichungen Fakultät Grundlagen April 2011 Fakultät Grundlagen Differenzialgleichungen Übersicht Grundsätzliches 1 Grundsätzliches Problemstellung Richtungsfeld Beispiel 2 Eulerverfahren Heunverfahren

Mehr

1. Anfangswertprobleme 1. Ordnung

1. Anfangswertprobleme 1. Ordnung 1. Anfangswertprobleme 1. Ordnung 1.1 Grundlagen 1.2 Euler-Vorwärts-Verfahren 1.3 Runge-Kutta-Verfahren 1.4 Stabilität 1.5 Euler-Rückwärts-Verfahren 1.6 Differentialgleichungssysteme Prof. Dr. Wandinger

Mehr

Einführung und Beispiele

Einführung und Beispiele Kapitel 7 Gewöhnliche Differentialgleichungen Prof. R. Leithner, E. Zander Einführung in numerische Methoden für Ingenieure 7/2 Einführung und Beispiele Prof. R. Leithner, E. Zander Einführung in numerische

Mehr

Explizite Runge-Kutta-Verfahren

Explizite Runge-Kutta-Verfahren Explizite Runge-Kutta-Verfahren Proseminar Numerische Mathematik Leitung: Professor Dr. W. Hofmann Dominik Enseleit 06.07.2005 1 1 Einleitung Nachdem wir schon einige numerische Verfahren zur Lösung gewöhnlicher

Mehr

1. Anfangswertprobleme 1. Ordnung

1. Anfangswertprobleme 1. Ordnung 1. Anfangswertprobleme 1. Ordnung 1.1 Grundlagen 1.2 Euler-Vorwärts-Verfahren 1.3 Runge-Kutta-Verfahren 1.4 Stabilität 1.5 Euler-Rückwärts-Verfahren 1.6 Differenzialgleichungssysteme 5.1-1 1.1 Grundlagen

Mehr

(d) das zu Grunde liegende Problem gut konditioniert ist.

(d) das zu Grunde liegende Problem gut konditioniert ist. Aufgabe 0: (6 Punkte) Bitte kreuzen Sie die richtige Lösung an. Es ist jeweils genau eine Antwort korrekt. Für jede richtige Antwort erhalten Sie einen Punkt, für jede falsche Antwort wird Ihnen ein Punkt

Mehr

10 Stabilität und steife Systeme

10 Stabilität und steife Systeme Numerik II 34 Stabilität und steife Systeme Inhalt. Absolute Stabilität. Was sind steife Differentialgleichungen?.3 Weitere Stabilitätsbegriffe Stabilität und steife Systeme TU Bergakademie Freiberg, SS

Mehr

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB)

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Prof. R. Leithner, Dipl. Phys. E. Zander Wintersemester 2010/2011 Kapitel 7 Gewöhnliche

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Viele physikalische Probleme können mathematisch als gewöhnliche Differentialgleichungen formuliert werden nur eine unabhängige Variable (meist t), z.b. Bewegungsgleichungen: gleichmäßig

Mehr

J Zehnte Übungseinheit

J Zehnte Übungseinheit J Zehnte Übungseinheit Inhalt der zehnten Übungseinheit: Umformen von Differentialgleichungen 2. und höherer Ordnung auf Systeme 1. Ordnung Die Übungsaufgaben der zehnten Einheit werden nicht mehr angekreuzerlt.

Mehr

J. Neunte Übungseinheit

J. Neunte Übungseinheit J. Neunte Übungseinheit Inhalt der neunten Übungseinheit: Aufgaben dieser Art kommen zum zweiten Kenntnisnachweis. Umformen von Differentialgleichungen 2. und höherer Ordnung auf Systeme 1. Ordnung J.1.

Mehr

Numerische Lösung von Differentialgleichungen. φ(x,y,y',y'',y''',..., d n y/dx n ) = 0 (1)

Numerische Lösung von Differentialgleichungen. φ(x,y,y',y'',y''',..., d n y/dx n ) = 0 (1) Numerik 1 Numerische Lösung von Differentialgleichungen Die Lösung einer Differentialgleichung ist eine Funktion, die der Diff.Gl. über einem gewissen offenen Intervall genügt. Eine gewöhnliche Diff.Gl.

Mehr

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen MATHEMATISCHES INSTITUT SoSe 24 DER UNIVERSITÄT MÜNCHEN Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen Musterlösung Prof. Dr. P. Pickl Aufgabe Zeigen Sie, dass

Mehr

Numerische Verfahren für gewöhnliche Differentialgleichungen

Numerische Verfahren für gewöhnliche Differentialgleichungen Numerische Verfahren für gewöhnliche Differentialgleichungen. Einschrittverfahren I: Einfache Verfahren. Konvergenzordnung. Einschrittverfahren II: Runge Kutta Verfahren 4. Stabilität 5. Schrittweitensteuerung

Mehr

D-MATH Numerische Methoden FS 2018 Dr. Vasile Gradinaru Kjetil Olsen Lye. Serie 6

D-MATH Numerische Methoden FS 2018 Dr. Vasile Gradinaru Kjetil Olsen Lye. Serie 6 D-MATH Numerische Methoden FS 08 Dr. Vasile Gradinaru Kjetil Olsen Lye Serie 6 Abgabedatum: Di. 08.0 / Mi. 09.0, in den Übungsgruppen, oder im HG J 68. Koordinatoren: Kjetil Olsen Lye, HG G 6. kjetil.lye@sam.math.ethz.ch

Mehr

Simulationstechnik V

Simulationstechnik V Simulationstechnik V Vorlesung/Praktikum an der RWTH Aachen Numerische Simulation von Strömungsvorgängen B. Binninger Institut für Technische Verbrennung Templergraben 64 2. Teil 2-1 1) Welche Garantie

Mehr

Simulationstechnik V

Simulationstechnik V Simulationstechnik V Vorlesung/Praktikum an der RWTH Aachen Numerische Simulation von Strömungsvorgängen B. Binninger Institut für Technische Verbrennung Templergraben 64 2. Teil 2-1 1) Welche Garantie

Mehr

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. F. Hettlich Dr. S. Schmitt Dipl.-Math. J. Kusch Karlsruhe, den 09.06.20 Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik

Mehr

Differentialgleichungen WS 2013/ Übungsblatt. und y(x) = cos(x) x

Differentialgleichungen WS 2013/ Übungsblatt. und y(x) = cos(x) x Differentialgleichungen WS 2013/2014 1. Übungsblatt 1. Zeigen Sie, dass y(x) = sin(x) x und y(x) = cos(x) x Lösungen der Bessel-Gleichung sind. x 2 y +xy +(x 2 1 4 )y = 0 2. Konstruieren Sie zu dem Anfangswertproblem

Mehr

8 Numerik gewöhnlicher Differentialgleichungen

8 Numerik gewöhnlicher Differentialgleichungen 8 NUMERIK GEWÖHNLICHER DIFFERENTIALGLEICHUNGEN 03 8 Numerik gewöhnlicher Differentialgleichungen 8. Grundlagen In der Numerik von gewöhnlichen Differentialgleichungen werden vorwiegend Aufgaben folgender

Mehr

Numerische Verfahren für gewöhnliche Differentialgleichungen. Literaturliste. P.Deuflhard, F.Bornemann: Numerische Mathematik II, De Gruyter, 1994.

Numerische Verfahren für gewöhnliche Differentialgleichungen. Literaturliste. P.Deuflhard, F.Bornemann: Numerische Mathematik II, De Gruyter, 1994. Numerische Verfahren für gewöhnliche Differentialgleichungen. Einschrittverfahren I: Einfache Verfahren. Konvergenzordnung. Einschrittverfahren II: Runge Kutta Verfahren 4. Stabilität 5. Schrittweitensteuerung

Mehr

h n = (t t 0 )/n Bevor wir diesen Satz beweisen, geben wir noch einen Hilfssatz an, der eine wichtige Abschätzung liefert.

h n = (t t 0 )/n Bevor wir diesen Satz beweisen, geben wir noch einen Hilfssatz an, der eine wichtige Abschätzung liefert. Kapitel 4 Berechnung von Lösungen 41 Die Euler sche Polygonzugmethode Die Grundlage dieser Methode ist die einfache Beobachtung, dass f(u, t) in der Nähe eines Punktes als nahezu konstant angesehen werden

Mehr

Klausurenkurs zum Staatsexamen (SS 2012): Differential und Integralrechnung 8

Klausurenkurs zum Staatsexamen (SS 2012): Differential und Integralrechnung 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 2012): Differential und Integralrechnung 8 8.1 (Herbst 2002, Thema 1, Aufgabe 6) y = 3y +2x x 8.2 (Frühjahr 2005, Thema 1, Aufgabe 6) (x > 0) y(1)

Mehr

Aufgabe 1 (Komplexe Zahlen) Berechnen Sie die folgenden komplexe Zahlen:

Aufgabe 1 (Komplexe Zahlen) Berechnen Sie die folgenden komplexe Zahlen: Mathematik für Wirtschaftswissenschaftler im SoSe 24 Lösungsvorschläge zur Klausur im SoSe 24 Aufgabe (Komplexe Zahlen) Berechnen Sie die folgenden komplexe Zahlen: z = ( + i) 2 w = + i. Stellen Sie jeweils

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens WS 2012/13 DGL Grundlage Klassifikation Anwendung von lin. Ggln. M. konst.

Mehr

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 25 1. Wie lautet die charakteristische Gleichung der Differentialgleichung y + 2y + y = 0? (a) λ 3 + 2λ + 1 = 0 (b) λ 3 + 2λ = 0 (c)

Mehr

3. Berechnen Sie auch die Beschleunigung a als Funktion der Zeit t. 4. Erstellen Sie ein SIMULINK Modell, das x(t) numerisch berechnet.

3. Berechnen Sie auch die Beschleunigung a als Funktion der Zeit t. 4. Erstellen Sie ein SIMULINK Modell, das x(t) numerisch berechnet. unit 1 / Seite 1 Einführung Differenzialgleichungen In physikalischen Anwendungen spielt oft eine Messgrösse in Abhängigkeit von der Zeit die Hauptrolle. Beispiele dafür sind Druck p, Temperatur T, Geschwindigkeit

Mehr

Euler-Verfahren. exakte Lösung. Euler-Streckenzüge. Folie 1

Euler-Verfahren. exakte Lösung. Euler-Streckenzüge. Folie 1 exakte Lösung Euler-Verfahren Folie 1 Euler-Streckenzüge Ein paar grundlegende Anmerkungen zur Numerik Die Begriffe Numerik bzw. Numerische Mathematik bezeichnen ein Teilgebiet der Mathematik, welches

Mehr

Mehrschrittverfahren Ein weiterer, häufig benutzter Verfahrenstyp zur numerischen Lösung der Anfangswertaufgabe

Mehrschrittverfahren Ein weiterer, häufig benutzter Verfahrenstyp zur numerischen Lösung der Anfangswertaufgabe Mehrschrittverfahren Ein weiterer, häufig benutzter Verfahrenstyp zur numerischen Lösung der Anfangswertaufgabe y = f(x, y), y(a) =y 0 (1) sind die linearen Mehrschrittverfahren, bei denen man zur Berechnung

Mehr

2. Numerische Verfahren für AWPe 2.1 Das Euler-Verfahren

2. Numerische Verfahren für AWPe 2.1 Das Euler-Verfahren 2.1 Das Euler-Verfahren Wir betrachten das AWP y = f (t, y), y(t 0 ) = y 0. (AWP) Unter den Voraussetzungen von Satz 1.1 besitzt es eine eindeutige Lösung, sagen wir über dem Intervall I. Wir wollen diese

Mehr

z 2 + 2z + 10 = 0 = 2 ± 36 2 Aufgabe 2 (Lineares Gleichungssystem) Sei die reelle 3 4 Matrix

z 2 + 2z + 10 = 0 = 2 ± 36 2 Aufgabe 2 (Lineares Gleichungssystem) Sei die reelle 3 4 Matrix Mathematik für Wirtschaftswissenschaftler im WS 03/04 Lösungsvorschläge zur Klausur im WS 03/04 Aufgabe (Komplexe Zahlen (4 Punkte a Berechnen Sie das Produkt der beiden komplexen Zahlen + i und 3 + 4i

Mehr

Lösungsvorschlag zur Nachklausur zur Analysis

Lösungsvorschlag zur Nachklausur zur Analysis Prof Dr H Garcke, D Depner SS 09 NWF I - Mathematik 080009 Universität Regensburg Lösungsvorschlag zur Nachklausur zur Analysis Aufgabe Untersuchen Sie folgende Reihen auf Konvergenz und berechnen Sie

Mehr

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0. Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ

Mehr

Differentialgleichungen WS 2011/ Übungsblatt. und y(x) = cos(x) x

Differentialgleichungen WS 2011/ Übungsblatt. und y(x) = cos(x) x Differentialgleichungen WS 2011/2012 1. Übungsblatt 1. Zeigen Sie, dass y(x) = sin(x) x und y(x) = cos(x) x Lösungen der Bessel-Gleichung sind. x 2 y +xy +(x 2 1 4 )y = 0 2. Konstruieren Sie zu dem Anfangswertproblem

Mehr

Extrapolationsverfahren

Extrapolationsverfahren Extrapolationsverfahren Vortrag im Rahmen des Seminars Numerik gewöhnlicher Differentialgleichungen unter der Leitung von Prof. Peter Bastian WS 2010/11 Marlene Beczalla 21.12.2010 1. Beschreibung des

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x

Mehr

Nichtlineare Gleichungen in einer und mehreren Unbekannten

Nichtlineare Gleichungen in einer und mehreren Unbekannten Gleichungen in einer und mehreren Unbekannten 2. Vorlesung 170004 Numerische Methoden I Clemens Brand 26. Februar 2009, Gliederung,, Gleichungen in einer Variablen Was ist... Wie geht... eine lineare (nichtlineare,

Mehr

Simulationstechnik V

Simulationstechnik V Simulationstechnik V Vorlesung/Praktikum an der RWTH Aachen Numerische Simulation von Strömungsvorgängen B. Binninger Institut für Technische Verbrennung Templergraben 64 2. Teil 2-1 1) Welche Garantie

Mehr

PVK Probeprüfung FS 2017

PVK Probeprüfung FS 2017 PVK Probeprüfung FS 07 Lucas Böttcher Numerische Methoden ETH Zürich June 3, 07. Radioaktiver Zerfall Gegeben sind zwei radioaktive Substanzen, welche mit den Raten λ = 0.5 und λ = 0. zerfallen: A λ B

Mehr

TU Ilmenau Institut für Mathematik Übungsaufgaben zum Lehrgebiet Numerische Mathematik III Numerik gewöhnlicher Differentialgleichungen

TU Ilmenau Institut für Mathematik Übungsaufgaben zum Lehrgebiet Numerische Mathematik III Numerik gewöhnlicher Differentialgleichungen TU Ilmenau Institut für Mathematik Übungsaufgaben zum Lehrgebiet Numerische Mathematik III Numerik gewöhnlicher Differentialgleichungen Datei: NM34.TEX Serie 6 Mehrschrittverfahren (MSV) 1. Die allgemeine

Mehr

Systemtheorie. Vorlesung 6: Lösung linearer Differentialgleichungen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 6: Lösung linearer Differentialgleichungen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systemtheorie Vorlesung 6: Lösung linearer Differentialgleichungen Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Einführung Viele technischen Anwendungen lassen sich zumindest näherungsweise

Mehr

y hom (x) = C e p(x) dx

y hom (x) = C e p(x) dx Gewöhnliche Differentialgleichungen F (x, y, y,..., y n ) = 0 Gleichung, die die Veränderliche x sowie die Funktion y = y(x) und ihre Ableitungen y,..., y n beinhaltet. Klassifiaktion: implizit F (...)

Mehr

Dr. R. Käppeli D-ITET, D-MATL Winter Numerische Methoden Punkte

Dr. R. Käppeli D-ITET, D-MATL Winter Numerische Methoden Punkte Dr. R. Käppeli D-ITET, D-MATL Winter 2018 Prüfung Numerische Methoden Wichtige Hinweise Die Prüfung dauert 90 Minuten. Erlaubte Hilfsmittel: 5 A4-Blätter doppelseitig (=10 Seiten) eigenhändig und handschriftlich

Mehr

Rheinisch-Westfälische Technische Hochschule. Gegeben seien eine gewöhnliche Dierentialgleichung (DGL) und ein Anfangswert. γ l K l.

Rheinisch-Westfälische Technische Hochschule. Gegeben seien eine gewöhnliche Dierentialgleichung (DGL) und ein Anfangswert. γ l K l. Rheinisch-Westfälische Technische Hochschule Institut für Geometrie und Praktische Mathematik Numerische Mathematik II Wintersemester 2009 Priv. Doz. Dr. Helmuth Jarausch Dr. KarlHeinz Brakhage Übung :

Mehr

TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik 1. Dr. M. Herrich SS 2017

TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik 1. Dr. M. Herrich SS 2017 TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik 1 Prof. Dr. K. Eppler Institut für Numerische Mathematik Dr. M. Herrich SS 2017 Aufgabe 1 Übungen zur Vorlesung Mathematik II 4. Übung,

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 13 Dr. Ana Cannas Serie 13: Online Test Einsendeschluss: 31. Januar 214 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Die Differentialgleichung :

Die Differentialgleichung : Die Differentialgleichung : Erstellt von Judith Ackermann 1.) Definition, Zweck 1.1) verschiedene Arten von Differentialgleichungen 2.) Beispiele und Lösungswege 2.1) gewöhnliche Differentialgleichungen

Mehr

Mathematische Grundlagen der dynamischen Simulation

Mathematische Grundlagen der dynamischen Simulation Mathematische Grundlagen der dynamischen Simulation Dynamische Systeme sind Systeme, die sich verändern. Es geht dabei um eine zeitliche Entwicklung und wie immer in der Informatik betrachten wir dabei

Mehr

Zuname: Vorname: KennNr: Matr.Nr: PRÜFUNG AUS MATHEMATIK 3. 1)(8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation.

Zuname: Vorname: KennNr: Matr.Nr: PRÜFUNG AUS MATHEMATIK 3. 1)(8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation. (8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation. y 7y + 10y = sin(2x), y(0) = 1, y (0) = 3. x ( ) Bemerkung: Für festes a gilt L(e ax ) = 1 und L sin(ax) = arctan a. s a x s Die auftretenden

Mehr

PVK Numerische Methoden Tag 1

PVK Numerische Methoden Tag 1 PVK Numerische Methoden Tag 1 Lucas Böttcher ETH Zürich Institut für Baustoffe Wolfgang-Pauli-Str. 27 HIT G 23.8 8093 Zürich lucasb@ethz.ch June 19, 2017 Lucas Böttcher (ETH Zürich) PVK Numerik June 19,

Mehr

Dr. R. Käppeli D-ITET, D-MATL Sommer Numerische Methoden Punkte

Dr. R. Käppeli D-ITET, D-MATL Sommer Numerische Methoden Punkte Dr. R. Käppeli D-ITET, D-MATL Sommer 217 Prüfung Numerische Methoden Wichtige Hinweise Die Prüfung dauert 9 Minuten. Erlaubte Hilfsmittel: 5 A4-Blätter doppelseitig (=1 Seiten) eigenhändig und handschriftlich

Mehr

Folgen und Reihen. Folgen. Inhalt. Mathematik für Chemiker Teil 1: Analysis. Folgen und Reihen. Reelle Funktionen. Vorlesung im Wintersemester 2014

Folgen und Reihen. Folgen. Inhalt. Mathematik für Chemiker Teil 1: Analysis. Folgen und Reihen. Reelle Funktionen. Vorlesung im Wintersemester 2014 Inhalt Mathematik für Chemiker Teil 1: Analysis Vorlesung im Wintersemester 2014 Kurt Frischmuth Institut für Mathematik, Universität Rostock Rostock, Oktober 2014... Folgen und Reihen Reelle Funktionen

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 8

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung ( y

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Gewöhnliche Differentialgleichungen Aufgaben für das Seminar und zum selbständigen Üben 22. Januar 2018 Vorbereitende Übungen Aufgabe 1: Bestimmen Sie die Isoklinen zu den folgenden Differentialgleichungen

Mehr

Kapitel L. Gewöhnliche Differentialgleichungen

Kapitel L. Gewöhnliche Differentialgleichungen Kapitel L Gewöhnliche Differentialgleichungen Inhalt dieses Kapitels L000 1 Erste Beispiele von Differentialgleichungen 2 Exakte Differentialgleichungen 3 Fazit: Existenz, Eindeutigkeit, Lösungsmethoden

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung (

Mehr

Lösung - Schnellübung 13

Lösung - Schnellübung 13 D-MAVT/D-MATL Analysis II FS 7 Dr. Andreas Steiger Lösung - Schnellübung 3. Gegeben sei die Differentialgleichung y + λ 4 y + λ y = 0. Für welche Werte des reellen Parameters λ gibt es eine von Null verschiedene

Mehr

Analysis I & II Lösung zur Basisprüfung

Analysis I & II Lösung zur Basisprüfung FS 6 Aufgabe. [8 Punkte] (a) Bestimmen Sie den Grenzwert ( lim x x ). [ Punkte] log x (b) Beweisen Sie, dass folgende Reihe divergiert. n= + n + n + sin(n) n 3 + [ Punkte] (c) Finden Sie heraus, ob die

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung (

Mehr

Numerische Methoden 7. Übungsblatt

Numerische Methoden 7. Übungsblatt Karlsruher Institut für Technologie (KIT) SS 01 Institut für Analysis Prof Dr Michael Plum Dipl-Mathtechn Rainer Mandel Numerische Methoden 7 Übungsblatt Aufgabe 17: Quadratur II Die Menge aller Polynome

Mehr

Numerisches Programmieren

Numerisches Programmieren Technische Universität München WiSe 2015/16 Institut für Informatik Prof. Dr. Daniel Cremers Dr. Rudolph Triebel Nikola Tchipev Felix Dietrich Numerisches Programmieren 4. Programmieraufgabe: Freier Fall,

Mehr

Biostatistik, Winter 2018/19

Biostatistik, Winter 2018/19 1/37 Biostatistik, Winter 2018/19 Differentialgleichungen 2. Ordnung Prof. Dr. Achim Klenke http://www.aklenke.de 5. Vorlesung: 16.11.2018 2/37 Inhalt 1 Differentialgleichungen 1. Ordnung Michaelis-Menten

Mehr

A2.3 Lineare Gleichungssysteme

A2.3 Lineare Gleichungssysteme A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen

Mehr

Klausur im Fach Numerische Methoden II Universität Siegen; Fachbereich Maschinenbau,

Klausur im Fach Numerische Methoden II Universität Siegen; Fachbereich Maschinenbau, Aufgabe 1 (Polynominterpolation) Abb. 1: Roboter für Positionierungsaufgaben Industrieroboter erledigen oft Positionierungsaufgaben, indem sie einen vorgegebenen Pfad abfahren. Diese Trajektorie entspricht

Mehr

Hochschule München, FK 03 WS 2015/16. Ingenieurinformatik. Name Vorname Matrikelnummer Sem.Gr. Hörsaal Platz. Zulassung geprüft Note :

Hochschule München, FK 03 WS 2015/16. Ingenieurinformatik. Name Vorname Matrikelnummer Sem.Gr. Hörsaal Platz. Zulassung geprüft Note : Hochschule München, FK 03 WS 2015/16 Ingenieurinformatik Name Vorname Matrikelnummer Sem.Gr. Hörsaal Platz Zulassung geprüft Note : Die Prüfung ist nur dann gültig, wenn Sie die erforderliche Zulassungsvoraussetzung

Mehr

Mathematische Methoden in der Systembiologie Universität Heidelberg, Sommer 2017

Mathematische Methoden in der Systembiologie Universität Heidelberg, Sommer 2017 Mathematische Methoden in der Systembiologie Universität Heidelberg, Sommer 2017 Dozent: Dr. M. V. Barbarossa (barbarossa@uni-heidelberg.de) Vorlesung+ Übung: Mo/Mi/Fr. 8:15-9:45Uhr, SR 1, INF 205 Termin

Mehr

Bezeichnung von Funktionen x := y:=

Bezeichnung von Funktionen x := y:= Bezeichnung von Funktionen x := y:= Bezeichnung von Funktionen x := y:= Analytische Darstellung (Funktionsgleichung) Explizit: (aufgelöst nach y) Analytische Darstellung (Funktionsgleichung) Explizit:

Mehr

Analysis I. 14. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 14. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I 4. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching June 6, 207 Erinnerung Die Reihe a k konvergiert falls, lim S n = lim n n n a k =: a k existiert. Satz (Majoranten/Minorantenkriterium)

Mehr

Modellierung und Simulation

Modellierung und Simulation Prüfung WS 009/010 Modellierung und Simulation Prof. Dr.-Ing. K. Wöllhaf Anmerkungen: Aufgabenblätter auf Vollständigkeit überprüfen Nur Blätter mit Namen und Matr.Nr. werden korrigiert. Bitte Schreiben

Mehr

Übungsblatt 4 Musterlösung

Übungsblatt 4 Musterlösung Numerik gewöhnlicher Differentialgleichungen MA2304 - SS6 Übungsblatt 4 Musterlösung Aufgabe 7 (Nullstellen als Eigenwerte) Die Polynome {S n } n=0,,2,, S n P n, mit führem Koeffizienten eins, heißen Orthogonalpolynome

Mehr

Öffnen Sie den Klausurbogen erst nach Aufforderung! Mathematische Grundlagen III (CES) WS 2017/2018 Klausur 23. März 2018

Öffnen Sie den Klausurbogen erst nach Aufforderung! Mathematische Grundlagen III (CES) WS 2017/2018 Klausur 23. März 2018 Prof. Dr. Manuel Torrilhon Prof. Dr. Sebastian Noelle Öffnen Sie den Klausurbogen erst nach Aufforderung! Zugelassene Hilfsmittel: Mathematische Grundlagen III (CES) WS 2017/2018 Klausur 23. März 2018

Mehr

Computerphysik. Übungsblatt 6

Computerphysik. Übungsblatt 6 Institut für Theoretische Physik der Universität zu Köln Computerphysik Übungsblatt 6 SS 2013 Prof. Dr. Simon Trebst Michael Becker, Peter Bröcker Website: http://www.thp.uni-koeln.de/trebst/lectures/2013-compphys.html

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

BERGISCHE UNIVERSITÄT WUPPERTAL Fachbereich C Mathematik und Naturwissenschaften

BERGISCHE UNIVERSITÄT WUPPERTAL Fachbereich C Mathematik und Naturwissenschaften Musterl osung BERGISCHE UNIVERSITÄT WUPPERTAL Fachbereich C Mathematik und Naturwissenschaften Analysis II Klausur WS 211/212 Prof. Dr. Hartmut Pecher 3.2.212, 9:15 Uhr Name Matr.Nr. Studienfach Fachsemester

Mehr

4. Differentialgleichungen

4. Differentialgleichungen 4. Differentialgleichungen Prof. Dr. Erich Walter Farkas 10.11.2011 Seite 1 Einleitung Viele in der Natur stattfindende Vorgänge können durch sogenannte Differentialgleichungen beschrieben werden. Unter

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

3 Einige konkrete Probleme der Höheren Mathematik

3 Einige konkrete Probleme der Höheren Mathematik 3 Einige konkrete Probleme der Höheren Mathematik Übersicht 3. Bestimmung der Extremalstellen bei Funktionen in einer Variable........ 7 3. Bestimmung der Extremalstellen bei Funktionen in zwei Variablen........

Mehr

Kurze Einführung zu Stabilität bei Differentialgleichungen und Einschrittverfahren

Kurze Einführung zu Stabilität bei Differentialgleichungen und Einschrittverfahren Kurze Einführung zu Stabilität bei Differentialgleichungen und Einschrittverfahren Was sind typische qualitative Aussagen bei gewöhnlichen Differentialgleichungen der Form x (t) = f(t, x)? (1) 1. Andere

Mehr

5 Randwertprobleme. y = f(t, y, y ) für t J, (5.2a) y(t 0 ) = y 0, y(t) = y T (5.2b) zu gegebener Funktion f und Werten y 0, y T.

5 Randwertprobleme. y = f(t, y, y ) für t J, (5.2a) y(t 0 ) = y 0, y(t) = y T (5.2b) zu gegebener Funktion f und Werten y 0, y T. 5 Randwertprobleme Bei den bisher betrachteten Problemen handelte es sich um Anfangswertprobleme. In der Praxis treten, insbesondere bei Differentialgleichungen höherer Ordnung, auch Randwertprobleme auf.

Mehr

MATHEMATIK I für Bauingenieure (Fernstudium)

MATHEMATIK I für Bauingenieure (Fernstudium) TU DRESDEN Dresden, 2. Februar 2004 Fachrichtung Mathematik / Institut für Analysis Doz.Dr.rer.nat.habil. N. Koksch Prüfungs-Klausur MATHEMATIK I für Bauingenieure (Fernstudium) Name: Vorname: Matrikel-Nr.:

Mehr

Lineare Differentialgleichungen n-ter Ordnung

Lineare Differentialgleichungen n-ter Ordnung KAPITEL 5 Lineare Differentialgleichungen n-ter Ordnung 1 Veränderliche Koeffizienten Analog zu den linearen Dierentialgleichungen 2 Ordnung gilt: 75 76 5 LINEARE DIFFERENTIALGLEICHUNGEN n-ter ORDNUNG

Mehr

2.3.1 Explizite Runge-Kutta-Verfahren

2.3.1 Explizite Runge-Kutta-Verfahren Somit ist y(t + h) = y + hf(t, y ) + h (f t (t, y ) + f y (t, y )f(t, y )) + O(h 3 ) Setzen wir Φ(t, y, h) := f(t, y) + h (f t(t, y) + f y (t, y)f(t, y)), so erhalten wir ein Verfahren mit der Konsistenzordnung

Mehr

C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: Ort: Geschwindigkeit:

C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: Ort: Geschwindigkeit: C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) [Stoffgliederung im Skript für Kapitel

Mehr