Numerische Verfahren für gewöhnliche Differentialgleichungen. Literaturliste. P.Deuflhard, F.Bornemann: Numerische Mathematik II, De Gruyter, 1994.

Größe: px
Ab Seite anzeigen:

Download "Numerische Verfahren für gewöhnliche Differentialgleichungen. Literaturliste. P.Deuflhard, F.Bornemann: Numerische Mathematik II, De Gruyter, 1994."

Transkript

1 Numerische Verfahren für gewöhnliche Differentialgleichungen. Einschrittverfahren I: Einfache Verfahren. Konvergenzordnung. Einschrittverfahren II: Runge Kutta Verfahren 4. Stabilität 5. Schrittweitensteuerung 6. Steife DGL Kapitel IV (general) Literaturliste P.Deuflhard, F.Bornemann: Numerische Mathematik II, De Gruyter, 994. E.Hairer, S.Nørsett, G.Wanner: Solving Ordinary Differential Equations I, Springer 99. E.Hairer, G.Wanner: Solving Ordinary Differential Equations II, Springer 996. A.Quarteroni, R.Sacco, F.Saleri Numerical Mathematics, Springer. H.Schwetlick, H.Kretzschmar: Numerische Verfahren für Naturwissenschaftler und Ingenieure, Fachbuchverlag Leipzig 99. J.Stoer, R.Bulirsch: Numerische Mathematik II, Springer 99. Kapitel IV (general)

2 ml φ = mgsin(φ) Mathematisches Pendel φ() = α φ() = Umschreiben in System: w = φ, w = φ ) ( ) ( ) ( (ẇ w = w α ẇ g l sin(w, () = ) w ) Für kleine Auslenkungen α: Periodendauer T = π.5 alpha = pi/ pi sqrt(l/g) l g Auslenkung φ Zeit Kapitel IV (general) Periodendauer für verschiedene Anfangswinkel α.5 alpha = pi/ alpha = pi/ alpha = pi/4 alpha = pi/ Auslenkung φ Zeit = Periodendauer nimmt mit wachsendem α monoton zu. Kapitel IV (general4) 4

3 Ein Räuber-Beute-Modell Lotka-Volterra-Gleichungen: ḃ = λ b b( r/r e ) ṙ = λ r r(b/b e ) 4 b =,r = 5, zeitlicher Verlauf λ b,λ r : Wachstumsraten (b e,r e ): Gleichgewichtspunkt Beute Räuber b e = 5,r e =, unterschiedliche Anfangswerte Räuber 5 5 Zeit 4 6 Beute Kapitel IV (general6) 5 Dreikörperproblem Aufgabe: Beschreibe die Bewegung eines Satelliten um das System Erde/Mond. Die Differenzialgleichungen in den Koordinaten (x, y) des mitrotierenden Schwerpunktsystems lauten: x = x + y ˆµ x + µ µ x ˆµ, N N y = y x ˆµ y N µ y N, wobei N = ( (x + µ) + y ) / (, N = (x ˆµ) + y ) /, und µ =.7747, ˆµ = µ, µ das Verhältnis der Mondmasse zur Masse des Gesamtsystems. Mit verschiedenen Anfangswerten ergeben sich damit verschiedene Orbits. Kapitel IV (general7) 6

4 .5.5 Dreikörperproblem - periodische Orbits - Blättrig Eingebettetes Runge Kutta Verfahren RK4().5 Schleife Eingebettetes Runge Kutta Verfahren RK4().5 Knäuel Eingebettetes Runge Kutta Verfahren RK4() TOL = e 4, Schritte = TOL = e 4, Schritte = TOL = e 4, Schritte = µ =.7747, x() =.994 x () =, y() =, y () = T = µ =.486, x() =.994 x () =, y() =, y () =.45, T = 5.44 µ =.486, x() =.5 x () =, y() =, y () =.76, T = 9.5 Die Software ist unter ID=&MP ID=55 abgelegt. Kapitel IV (general8) 7 Korrekt gestellte Probleme. Existenz einer Lösung. Eindeutigkeit der Lösung. stetige Abhängigkeit der Lösung von den Problemdaten J. Hadamard (865-96) Kapitel IV (general5) 8

5 Satz von Peano Sei f stetig und beschränkt auf { } Q ab := (t,y) R n+ : t t a; y y b mit f(t,y) M und α := min(a, b M ). Dann besitzt das Anfangswertproblem Giuseppe Peano (858-9) y = f(t,y), y(t ) = y eine stetig differenzierbare Lösung y C ([t α,t +α]). Beweis: s. Harro Heuser - Gewöhnliche Differentialgleichungen, 5. Auflage, Kapitel III Kapitel IV (general6) 9 Satz von Picard-Lindelöf Zusätzlich zu den Voraussetzungen des Satzes von Peano sei f in einer kleinen Umgebung von t Lipschitz stetig bezüglich des zweiten Arguments mit der Lipschitz Konstanten L: f(t,y) f(t,z) L y z. C. E. Picard (856-94) E. Lindelöf (87-946) Dann gibt es eine eindeutig bestimmte Lösung y C ([t α,t +α]). Beweis: s. Heuser - Gewöhnliche Differentialgleichungen, 5. Auflage, Kapitel III Kapitel IV (general7)

6 Numerische Verfahren nach Euler. Explizites Euler-Verfahren y i+ = y i +h i f(t i,y i ). Implizites Euler-Verfahren y i+ = y i +h i f(t i+,y i+ ) Leonhard Euler (77-78). Modifiziertes Euler-Verfahren ( y i+ = y i +h i f t i + h i,y i+ h ) i f(t i,y i ) Kapitel IV (general8) Runge Kutta-Verfahren Carle Runge (856-97) ab 94 Professor in Göttingen erstes mehrstufiges Verfahren (895) M. Kutta ( ), ab 9 Professor in Stuttgart Verallgemeinerung auf s-stufige explizite Verfahren (9) Kapitel IV (general9)

7 Explizites Eulerverfahren (Polygonzugverfahren) y = y, y() =, y i+ = y i +hy i h =. h =.5 Euler.5 Euler.5 h =.5 h =.5 Euler.5 Euler.5 Kapitel IV (esv) Modifiziertes Eulerverfahren y = y, y() =, y i+ = y i +h(y i + h y i) h =. h = h =.5 h = Kapitel IV (esv) 4

8 Verfahren von y = y, y() =, y i+ = y i + h (y i+hy i ) h =. h = h =.5 h = Kapitel IV (esv) 5 Implizites Eulerverfahren y = y, y() =, y i+ = y i +hy i+ h =. imp. Euler.5 h =.5 imp. Euler.5 h =.5 imp. Euler.5 h =.5 imp. Euler.5 Vorsicht: Für h =. funktioniert das Verfahren wegen y i+ = y i h nicht. Kapitel IV (esv4) 6

9 Einschrittverfahren: Vergleich: y = ty, y() = exp. Euler h =..5 exp. Euler h =.5.5 exp. Euler h =.5 exp. Euler h = Beobachtung: und qualitativ besser Kapitel IV (esv5) 7 Einschrittverfahren, Übersicht Anfangswertproblem: Finde eine reellwertige Funktion y C (I), so dass { y (t) = f(t,y(t)) t I y(t ) = y Name Typ p Diskretisierung Forward Euler Explizit y i+ = y i +hf i modif. Euler Explizit y i+ = y i +hf(t i+/,y i + h f i) Explizit y i+ = y i + h [f i+f(t i+,y i +hf i )] Backward Euler Implizit y i+ = y i +hf i+ Crank-Nicolson Implizit y i+ = y i + h [f i +f i+ ] modif. Euler impl. Implizit y i+ = y i +hf(t i+/, (y i +y i+ )) Kapitel IV (esv6) 8

Numerische Verfahren für gewöhnliche Differentialgleichungen

Numerische Verfahren für gewöhnliche Differentialgleichungen Numerische Verfahren für gewöhnliche Differentialgleichungen. Einschrittverfahren I: Einfache Verfahren. Konvergenzordnung. Einschrittverfahren II: Runge Kutta Verfahren 4. Stabilität 5. Schrittweitensteuerung

Mehr

Satz von Peano. Sei f stetig und beschränkt auf

Satz von Peano. Sei f stetig und beschränkt auf Satz von Peano Sei f stetig und beschränkt auf { } Q ab := (t,y) R n+1 : t t 0 a; y y 0 b mit f(t,y) M und α := min(a, b M ). Dann besitzt das Anfangswertproblem y = f(t,y), y(t 0 ) = y 0 Giuseppe Peano

Mehr

ODE-Solver. Inhalt. Einleitung. grundlegende Algorithmen. weiterführende Algorithmen

ODE-Solver. Inhalt. Einleitung. grundlegende Algorithmen. weiterführende Algorithmen Martin Reinhardt angewandte Mathematik 8. Semester Matrikel: 50108 ODE-Solver 11. Mai 2011 Inhalt Einleitung grundlegende Algorithmen weiterführende Algorithmen Martin Reinhardt (TUBAF) 1 Orientierung

Mehr

Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung

Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung Gesucht ist eine Funktion y(x), welche erfüllt y = f(x,y) y(x 0 ) = y 0 Differentialgleichung Anfangsbedingung Wenn f in x stetig

Mehr

h n = (t t 0 )/n Bevor wir diesen Satz beweisen, geben wir noch einen Hilfssatz an, der eine wichtige Abschätzung liefert.

h n = (t t 0 )/n Bevor wir diesen Satz beweisen, geben wir noch einen Hilfssatz an, der eine wichtige Abschätzung liefert. Kapitel 4 Berechnung von Lösungen 41 Die Euler sche Polygonzugmethode Die Grundlage dieser Methode ist die einfache Beobachtung, dass f(u, t) in der Nähe eines Punktes als nahezu konstant angesehen werden

Mehr

Übungen zu Differentialgleichungen (WiSe 12/13)

Übungen zu Differentialgleichungen (WiSe 12/13) Übungen zu Differentialgleichungen WiSe 2/) Blatt 6 22 November 202 Gruppenübung Aufgabe G Sei f t, p) := p 5, t, p) R 2 Gegeben sei das Anfangswertproblem ẋ = f t,x), x0) = ) Bestimmen sie das maximale

Mehr

Numerische Verfahren

Numerische Verfahren Numerische Verfahren Numerische Methoden von gewöhnlichen Differentialgleichungen (AWP) Prof. Dr.-Ing. K. Warendorf, Prof. Dr.-Ing. P. Wolfsteiner Hochschule für Angewandte Wissenschaften München (FH)

Mehr

Lokaler Fehler y = y 2, y(0.2) = 5/9, Lösung: y = 1 Fehler nach dem 1. Schritt

Lokaler Fehler y = y 2, y(0.2) = 5/9, Lösung: y = 1 Fehler nach dem 1. Schritt Lokaler Fehler y = y, y(.) = /9, Lösung: y = Fehler nach dem. Schritt ( t) 4 Fehler 6 8 4 (I) Euler explizit (II) Euler implizit (IIIa) Crank Nicolson (IIIb) Heun (IVa) Euler modifiziert (IVb) Euler mod.

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 2 2 Gewöhnliche Differentialgleichungen 2. Einleitung Sei f : D R wobei D R 2. Dann nennt man y = f(x, y) (5) eine (gewöhnliche) Differentialgleichung (DGL) erster Ordnung. Als Lösung von (5) akzeptiert

Mehr

Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden.

Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden. Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am 20.6.2015 um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden. Prof. Dr. Wolfgang Arendt Manuel Bernhard Sommersemester 2015 Achten

Mehr

Eingebettete Runge Kutta Verfahren DOPRI5(4) Verfahren: FSAL Verfahren

Eingebettete Runge Kutta Verfahren DOPRI5(4) Verfahren: FSAL Verfahren Eingebettete Runge Kutta Verfahren DOPRI5(4) Verfahren: FSAL Verfahren 0 1 5 3 10 4 5 8 9 1 5 3 9 40 40 44 45 56 15 19372 6561 25360 2187 9017 1 3168 355 33 1 35 348 0 500 1113 35 500 p = 5 348 0 1113

Mehr

Numerische Verfahren

Numerische Verfahren Numerische Verfahren Numerische Methoden von gewöhnlichen Differentialgleichungen (AWP) Prof. Dr.-Ing. K. Warendorf, Prof. Dr.-Ing. P. Wolfsteiner Hochschule für Angewandte Wissenschaften München Fakultät

Mehr

PVK Numerische Methoden Tag 1

PVK Numerische Methoden Tag 1 PVK Numerische Methoden Tag 1 Lucas Böttcher ETH Zürich Institut für Baustoffe Wolfgang-Pauli-Str. 27 HIT G 23.8 8093 Zürich lucasb@ethz.ch June 19, 2017 Lucas Böttcher (ETH Zürich) PVK Numerik June 19,

Mehr

2. Numerische Verfahren für AWPe 2.1 Das Euler-Verfahren

2. Numerische Verfahren für AWPe 2.1 Das Euler-Verfahren 2.1 Das Euler-Verfahren Wir betrachten das AWP y = f (t, y), y(t 0 ) = y 0. (AWP) Unter den Voraussetzungen von Satz 1.1 besitzt es eine eindeutige Lösung, sagen wir über dem Intervall I. Wir wollen diese

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung (

Mehr

Abschnitt 1.7: Schrittweitensteuerung 27

Abschnitt 1.7: Schrittweitensteuerung 27 Abschnitt.7: Schrittweitensteuerung 7 zu oben analoge Schrittweitensteuerung durch Kombination von drei- und vierstufigen Runge- Kutta-Methoden ist nicht möglich, weil die betreffenden Gleichungssysteme

Mehr

5 Anfangswertprobleme bei gewöhnlichen Differentialgleichungen

5 Anfangswertprobleme bei gewöhnlichen Differentialgleichungen Numerische Mathematik für ingenieurwissenschaftliche Studiengänge 118 5 Anfangswertprobleme bei gewöhnlichen Differentialgleichungen Eine Differentialgleichung (DG) beschreibt eine Beziehung zwischen einer

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Gewöhnliche Differentialgleichungen 10. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 22. Mai 2014 Gliederung 1 Aufgabenstellung und Interpretation

Mehr

5 Randwertprobleme. y = f(t, y, y ) für t J, (5.2a) y(t 0 ) = y 0, y(t) = y T (5.2b) zu gegebener Funktion f und Werten y 0, y T.

5 Randwertprobleme. y = f(t, y, y ) für t J, (5.2a) y(t 0 ) = y 0, y(t) = y T (5.2b) zu gegebener Funktion f und Werten y 0, y T. 5 Randwertprobleme Bei den bisher betrachteten Problemen handelte es sich um Anfangswertprobleme. In der Praxis treten, insbesondere bei Differentialgleichungen höherer Ordnung, auch Randwertprobleme auf.

Mehr

Mehrschrittverfahren Ein weiterer, häufig benutzter Verfahrenstyp zur numerischen Lösung der Anfangswertaufgabe

Mehrschrittverfahren Ein weiterer, häufig benutzter Verfahrenstyp zur numerischen Lösung der Anfangswertaufgabe Mehrschrittverfahren Ein weiterer, häufig benutzter Verfahrenstyp zur numerischen Lösung der Anfangswertaufgabe y = f(x, y), y(a) =y 0 (1) sind die linearen Mehrschrittverfahren, bei denen man zur Berechnung

Mehr

Rheinisch-Westfälische Technische Hochschule. Gegeben seien eine gewöhnliche Dierentialgleichung (DGL) und ein Anfangswert. γ l K l.

Rheinisch-Westfälische Technische Hochschule. Gegeben seien eine gewöhnliche Dierentialgleichung (DGL) und ein Anfangswert. γ l K l. Rheinisch-Westfälische Technische Hochschule Institut für Geometrie und Praktische Mathematik Numerische Mathematik II Wintersemester 2009 Priv. Doz. Dr. Helmuth Jarausch Dr. KarlHeinz Brakhage Übung :

Mehr

2.3.1 Explizite Runge-Kutta-Verfahren

2.3.1 Explizite Runge-Kutta-Verfahren Somit ist y(t + h) = y + hf(t, y ) + h (f t (t, y ) + f y (t, y )f(t, y )) + O(h 3 ) Setzen wir Φ(t, y, h) := f(t, y) + h (f t(t, y) + f y (t, y)f(t, y)), so erhalten wir ein Verfahren mit der Konsistenzordnung

Mehr

MATHEMATISCHE METHODEN DER PHYSIK 1

MATHEMATISCHE METHODEN DER PHYSIK 1 MATHEMATISCHE METHODEN DER PHYSIK 1 Helmuth Hüffel Fakultät für Physik der Universität Wien Vorlesungsskriptum Sommersemester 2012 Version vom 08-03-2012 Inhaltsverzeichnis 1 Lineare gewöhnliche Differentialgleichungen

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik in einige Teilbereiche der Wintersemester 2016 Prof. Dr. Stefan Etschberger HSA : Table of Contents 1 Finanzmathematik 2 Lineare Programme 3 Differentialgleichungen 4 Statistik: 5 Deskriptive Statistik

Mehr

Einführung und Beispiele

Einführung und Beispiele Kapitel 7 Gewöhnliche Differentialgleichungen Prof. R. Leithner, E. Zander Einführung in numerische Methoden für Ingenieure 7/2 Einführung und Beispiele Prof. R. Leithner, E. Zander Einführung in numerische

Mehr

Aufgabenstellung: Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung Gesucht ist eine Funktion y = y(x).

Aufgabenstellung: Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung Gesucht ist eine Funktion y = y(x). I Neunte Übungseinheit Inhalt der neunten Übungseinheit: Gewöhnliche Differentialgleichungen erster Ordnung I. Gewöhnliche Differentialgleichungen erster Ordnung Aufgabenstellung: Explizite gewöhnliche

Mehr

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB)

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Prof. R. Leithner, Dipl. Phys. E. Zander Wintersemester 2010/2011 Kapitel 7 Gewöhnliche

Mehr

1 Einführung, Terminologie und Einteilung

1 Einführung, Terminologie und Einteilung Zusammenfassung Kapitel V: Differentialgleichungen 1 Einführung, Terminologie und Einteilung Eine gewöhnliche Differentialgleichungen ist eine Bestimmungsgleichung um eine Funktion u(t) einer unabhängigen

Mehr

Differentialgleichungen I

Differentialgleichungen I Universität Hamburg Fachbereich Mathematik Differentialgleichungen I Hans Joachim Oberle Vorlesung an der TUHH im Wintersemester 2012/13 Literatur. R. Ansorge, H.J. Oberle, K. Rothe, Th. Sonar: Mathematik

Mehr

Gewöhnliche Differentialgleichungen Woche 10. Spezielles für zweite Ordnung

Gewöhnliche Differentialgleichungen Woche 10. Spezielles für zweite Ordnung d Gewöhnliche Differentialgleichungen Woche 0 Spezielles für zweite Ordnung 0. Phasenebene Wenn wir die autonome Differentialgleichung zweiter Ordnung u (t = f (u(t, u (t (0. studieren wollen, ist ein

Mehr

Vorlesung Mathematik 2 für Ingenieure (A)

Vorlesung Mathematik 2 für Ingenieure (A) 1 Vorlesung Mathematik 2 für Ingenieure (A) Sommersemester 2017 Kapitel 8: Gewöhnliche Differenzialgleichungen Prof. Dr. Gerald Warnecke Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke

Mehr

Dr. R. Käppeli D-ITET, D-MATL Winter Numerische Methoden Punkte

Dr. R. Käppeli D-ITET, D-MATL Winter Numerische Methoden Punkte Dr. R. Käppeli D-ITET, D-MATL Winter 2018 Prüfung Numerische Methoden Wichtige Hinweise Die Prüfung dauert 90 Minuten. Erlaubte Hilfsmittel: 5 A4-Blätter doppelseitig (=10 Seiten) eigenhändig und handschriftlich

Mehr

Analysis und Lineare Algebra mit MuPAD

Analysis und Lineare Algebra mit MuPAD Analysis und Lineare Algebra mit MuPAD Dehling/Kubach Mögliche Themen für Abschlussprojekte 1 Fourier-Reihen Zu einer integrierbaren Funktion f : [0,2π] R definieren wir die Fourier-Reihe wobei a 0 = 1

Mehr

Höhere Mathematik III für die Fachrichtung Physik Wintersemester 2016/17. Lösungsvorschlag zu Übungsblatt 5

Höhere Mathematik III für die Fachrichtung Physik Wintersemester 2016/17. Lösungsvorschlag zu Übungsblatt 5 Institut für Analysis Dr. Christoph Schmoeger M.Sc. Jonathan Wunderlich Höhere Mathematik III für die Fachrichtung Physik Wintersemester 6/7..7 Lösungsvorschlag zu Übungsblatt 5 Aufgabe 6: Zeigen Sie mit

Mehr

Numerisches Programmieren (IN0019)

Numerisches Programmieren (IN0019) Numerisches Programmieren (IN0019) Frank R. Schmidt Winter Semester 2016/2017 11. Gewöhnliche Differenzialgleichungen................................................................................. 2

Mehr

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens in einige Teilbereiche der für Studierende des Wirtschaftsingenieurwesens Sommersemester 2013 Hochschule Augsburg : Gliederung 1 Finanzmathematik 2 Lineare Programme 3 Differentialgleichungen 4 Statistik:

Mehr

10 Stabilität und steife Systeme

10 Stabilität und steife Systeme Numerik II 34 Stabilität und steife Systeme Inhalt. Absolute Stabilität. Was sind steife Differentialgleichungen?.3 Weitere Stabilitätsbegriffe Stabilität und steife Systeme TU Bergakademie Freiberg, SS

Mehr

Numerik und Statistik: Numerik

Numerik und Statistik: Numerik Numerik und Statistik: Numerik Dimitri Ovrutskiy 4. Mai 202 Inhaltsverzeichnis Vorwort 2 Einfuhrung 4 2. Grundbegriffe, Definitionen..................... 4 2.2 Beispiele, Modellierung........................

Mehr

Aufgabenstellung: Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung Gesucht ist eine Funktion y = y(x).

Aufgabenstellung: Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung Gesucht ist eine Funktion y = y(x). I Neunte Übungseinheit Inhalt der neunten Übungseinheit: Gewöhnliche Differentialgleichungen erster Ordnung I. Gewöhnliche Differentialgleichungen erster Ordnung Aufgabenstellung: Explizite gewöhnliche

Mehr

(45 Min) als auch schriftlich im Rahmen einer Ausarbeitung zu präsentieren. 1. Gusfield: Algorithms on strings, trees and sequences.

(45 Min) als auch schriftlich im Rahmen einer Ausarbeitung zu präsentieren. 1. Gusfield: Algorithms on strings, trees and sequences. 1. Thema: Dynamische Programmierung Das Prinzip des dynamischen Programmierens wird bei der Lösung kombinatorischer Optimierungsprobleme eingesetzt. Grundidee ist, das Problem auf kleinere Teilprobleme

Mehr

Mathematische Grundlagen

Mathematische Grundlagen G-CSC Goethe-Center for Scientific Computing der Universität Frankfurt 2 Übung zur Vorlesung Modellierung und Simulation 3 (WS 2013/14) Prof Dr G Queisser Markus Breit, Martin Stepniewski Abgabe: Dienstag,

Mehr

Aufgabe 1 (Richtungsfeld). Zeichnen Sie das Richtungsfeld der Differentialgleichung. u = 2u 2 tu t 2 2t an den Stellen. = v , 1

Aufgabe 1 (Richtungsfeld). Zeichnen Sie das Richtungsfeld der Differentialgleichung. u = 2u 2 tu t 2 2t an den Stellen. = v , 1 Vertiefung NWI: Gewöhnliche Differentialgleichungen Wintersemester 06/07 Dozent: Dr. Denny Otten Aufgaben zur Klausurvorbereitung 5.0.07 Abgabe: nicht vorgesehen. Übung : Mo. 6-8 Uhr V5-48 Philipp Külker

Mehr

Kurze Einführung zu Stabilität bei Differentialgleichungen und Einschrittverfahren

Kurze Einführung zu Stabilität bei Differentialgleichungen und Einschrittverfahren Kurze Einführung zu Stabilität bei Differentialgleichungen und Einschrittverfahren Was sind typische qualitative Aussagen bei gewöhnlichen Differentialgleichungen der Form x (t) = f(t, x)? (1) 1. Andere

Mehr

Skript zur Vorlesung Analysis 3

Skript zur Vorlesung Analysis 3 Skript zur Vorlesung Analysis 3 Herbstsemester 204 Prof. Benjamin Schlein Inhaltsverzeichnis Gewöhnliche Differentialgleichungen 2. Differentialgleichungen erster Ordnung, elementare Lösungsmethoden..

Mehr

Dynamische Systeme. Mathematik für Biologen, Biotechnologen und Biochemiker. Angela Holtmann

Dynamische Systeme. Mathematik für Biologen, Biotechnologen und Biochemiker. Angela Holtmann Mathematik für Biologen, Biotechnologen und Biochemiker 16.7.2008 Das Räuber-Beute-Modell Das Räuber-Beute-Modell Es gibt zwei Arten, wobei die eine Art die andere frisst. 1925: Volterra (Italiener) und

Mehr

Numerik gewöhnlicher Differentialgleichungen. Prof. Dr. Guido Kanschat

Numerik gewöhnlicher Differentialgleichungen. Prof. Dr. Guido Kanschat Numerik gewöhnlicher Differentialgleichungen Prof. Dr. Guido Kanschat 19. Juni 2013 Vorbemerkungen Bei diesen Blättern handelt es sich zur Zeit nur um eine begleitende Ergänzung des Vorlesungsskriptes

Mehr

Astrophysikalsiches Numerikum: Gewöhnliche Differentialgleichungen am Beispiel Weißer Zwerge

Astrophysikalsiches Numerikum: Gewöhnliche Differentialgleichungen am Beispiel Weißer Zwerge Astrophysikalsiches Numerikum: Gewöhnliche Differentialgleichungen am Beispiel Weißer Zwerge A. Schweitzer Wintersemester 2005/06 Links, Literatur und weitere Informationen Die Numerical Recepies sind

Mehr

x= f(x) p= U (x). (b) Zeigen Sie, dass auf jeder auf einem Intervall existierenden Lösung t x(t) die Energie E(t) := 1 2 p(t)2 + U(x(t)) x 1

x= f(x) p= U (x). (b) Zeigen Sie, dass auf jeder auf einem Intervall existierenden Lösung t x(t) die Energie E(t) := 1 2 p(t)2 + U(x(t)) x 1 Blatt 1 03042006 H-Ch Grunau Aufgabe 1 Betrachten Sie die Differentialgleichung x= f(x) mit f = U und U C 2 ((α, β), R) und schreiben Sie diese in der Form x= p, p= U (x) (a) Skizzieren Sie die Phasenportraits

Mehr

Klausurenkurs zum Staatsexamen (SS 2012): Differential und Integralrechnung 8

Klausurenkurs zum Staatsexamen (SS 2012): Differential und Integralrechnung 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 2012): Differential und Integralrechnung 8 8.1 (Herbst 2002, Thema 1, Aufgabe 6) y = 3y +2x x 8.2 (Frühjahr 2005, Thema 1, Aufgabe 6) (x > 0) y(1)

Mehr

Gewöhnliche Differentialgleichungen Woche 1

Gewöhnliche Differentialgleichungen Woche 1 Gewöhnliche Differentialgleichungen Woche Einführung. Modelle Eine gewöhnliche Differentialgleichung gibt eine Relation zwischen einer unbekannten Funktion und deren Ableitung(en). Nun kann man unendlich

Mehr

Analysis II. 8. Klausur mit Lösungen

Analysis II. 8. Klausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis II 8. Klausur mit en 1 2 Aufgabe 1. Definiere die folgenden kursiv gedruckten) Begriffe. 1) Eine Metrik auf einer Menge M. 2) Die Kurvenlänge

Mehr

Begleitmaterial zur Vorlesung Numerik gewöhnlicher Differentialgleichungen

Begleitmaterial zur Vorlesung Numerik gewöhnlicher Differentialgleichungen Begleitmaterial zur Vorlesung Numerik gewöhnlicher Differentialgleichungen Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial

Mehr

Differenzialgleichungen

Differenzialgleichungen Differenzialgleichungen Fakultät Grundlagen April 2011 Fakultät Grundlagen Differenzialgleichungen Übersicht Grundsätzliches 1 Grundsätzliches Problemstellung Richtungsfeld Beispiel 2 Eulerverfahren Heunverfahren

Mehr

Dynamische Systeme eine Einführung

Dynamische Systeme eine Einführung Dynamische Systeme eine Einführung Seminar für Lehramtstudierende: Mathematische Modelle Wintersemester 2010/11 Dynamische Systeme eine Einführung 1. Existenz und Eindeutigkeit von Lösungen 2. Flüsse,

Mehr

Differentialgleichungen I: Existenz und Eindeutigkeit

Differentialgleichungen I: Existenz und Eindeutigkeit Differentialgleichungen I: Existenz und Eindeutigkeit Proseminar Analysis I (Prof. Pedit): Thema 2 Marcel Schmittfull, Dmitrij Sauermilch 17. April 2007 Inhaltsverzeichnis 1 Einführung 2 1.1 Differentialgleichung

Mehr

D-MATH Numerische Methoden FS 2018 Dr. Vasile Gradinaru Kjetil Olsen Lye. Serie 6

D-MATH Numerische Methoden FS 2018 Dr. Vasile Gradinaru Kjetil Olsen Lye. Serie 6 D-MATH Numerische Methoden FS 08 Dr. Vasile Gradinaru Kjetil Olsen Lye Serie 6 Abgabedatum: Di. 08.0 / Mi. 09.0, in den Übungsgruppen, oder im HG J 68. Koordinatoren: Kjetil Olsen Lye, HG G 6. kjetil.lye@sam.math.ethz.ch

Mehr

Übungsaufgaben. 6. Übung SS 11: Woche vom Heft Ü 2: a), b), c), i), d), s), 25.1 c), d), 25.

Übungsaufgaben. 6. Übung SS 11: Woche vom Heft Ü 2: a), b), c), i), d), s), 25.1 c), d), 25. Übungsaufgaben 6. Übung SS 11: Woche vom 9.5. - 13.5. 2011 Heft Ü 2: 24.12 a), b), c), i), 24.15 d), s), 25.1 c), d), 25.3 b), e) Numerische Verfahren (Buch, Abschnitt 6.8) (zur Lösung von AWP 1. Ordnung)

Mehr

Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik'

Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik' Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik' 1. Diskretisierung in der Zeit: Die Evolutionsgleichung Kurzzusammenfassung Zur Erprobung der Verfahren zur zeitlichen Diskretisierung

Mehr

Klausur zur Analysis II

Klausur zur Analysis II Klausur zur Analysis II Prof. Dr. C. Löh/M. Blank 13. Februar 01 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob Sie alle Seiten erhalten haben.

Mehr

8 Numerik gewöhnlicher Differentialgleichungen

8 Numerik gewöhnlicher Differentialgleichungen 8 NUMERIK GEWÖHNLICHER DIFFERENTIALGLEICHUNGEN 03 8 Numerik gewöhnlicher Differentialgleichungen 8. Grundlagen In der Numerik von gewöhnlichen Differentialgleichungen werden vorwiegend Aufgaben folgender

Mehr

- Numerik in der Physik - Simulationen, DGL und Co. Max Menzel

- Numerik in der Physik - Simulationen, DGL und Co. Max Menzel - Numerik in der Physik - Simulationen, DGL und Co. Max Menzel 4.1.2011 1 Übersicht Differenzialgleichungen? Was ist das? Wo gibt es das? Lösen von Differenzialgleichungen Analytisch Numerisch Anwendungen

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Viele physikalische Probleme können mathematisch als gewöhnliche Differentialgleichungen formuliert werden nur eine unabhängige Variable (meist t), z.b. Bewegungsgleichungen: gleichmäßig

Mehr

Gewöhnliche Differentialgleichungen Woche 7. Globale Existenz einer Lösung

Gewöhnliche Differentialgleichungen Woche 7. Globale Existenz einer Lösung Gewöhnliche Differentialgleichungen Woche 7 Globale Existenz einer Lösung 7.1 Von lokal zu global Wir betrachten wiederum das Anfangswertproblem { y (x = f (x, y(x, y( = y 0. (7.1 Eine erste Erweiterung

Mehr

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2.

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2. MATHEMATISCHES INSTITUT PROF. DR. ACHIM SCHÄDLE 9.8.7 KLAUSUR zur Numerik I mit Lösungen Aufgabe : ( Punkte) [ wahr falsch ]. Die maximale Ordnung einer s-stufigen Quadraturformel ist s. [ ]. Der Clenshaw

Mehr

Numerisches Programmieren (IN0019) 11. Gewöhnliche Differenzialgleichungen. Differenzialgleichungen. Differenzialgleichungen (Physik)

Numerisches Programmieren (IN0019) 11. Gewöhnliche Differenzialgleichungen. Differenzialgleichungen. Differenzialgleichungen (Physik) umerisches Programmieren (I19) Frank R. Schmidt 11. Gewöhnliche Differenzialgleichungen Winter Semester 16/17 Differenzialgleichungen (Phsik) Differenzialgleichungen Phsikalische Prozesse lassen sich mit

Mehr

Zehnte Vorlesung, 4. Juni 2009, Inhalt. Eigenwerte und Eigenvektoren (2) Gewöhnliche Differentialgleichungen

Zehnte Vorlesung, 4. Juni 2009, Inhalt. Eigenwerte und Eigenvektoren (2) Gewöhnliche Differentialgleichungen Zehnte Vorlesung, 4. Juni 2009, Inhalt Eigenwerte und Eigenvektoren (2) Gewöhnliche Differentialgleichungen 1 Eigenwerte und Eigenvektoren Wichtige Feststellungen zur Eigenwertaufgabe Ax = λx: Eigenwerte

Mehr

Wiederholungsklausur zur Analysis II

Wiederholungsklausur zur Analysis II Wiederholungsklausur zur Analysis II Prof. Dr. C. Löh/M. Blank 11. April 2012 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob Sie alle Seiten erhalten

Mehr

1. Anfangswertprobleme 1. Ordnung

1. Anfangswertprobleme 1. Ordnung 1. Anfangswertprobleme 1. Ordnung 1.1 Grundlagen 1.2 Euler-Vorwärts-Verfahren 1.3 Runge-Kutta-Verfahren 1.4 Stabilität 1.5 Euler-Rückwärts-Verfahren 1.6 Differentialgleichungssysteme Prof. Dr. Wandinger

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel 14 Differentialgleichungen Josef Leydold Mathematik für VW WS 2017/18 14 Differentialgleichungen 1 / 41 Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen:

Mehr

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:

Mehr

2. Anfangswertprobleme 2. Ordnung

2. Anfangswertprobleme 2. Ordnung 2. Anfangswertprobleme 2. Ordnung 2.1 Grundlagen 2.2 Mathematisches Pendel 2.3 Selbstzentrierung Prof. Dr. Wandinger 7. Numerische Methoden Dynamik 2 7.2-1 2.1 Grundlagen Für ein Anfangswertproblem 2.

Mehr

Stabilitätsuntersuchung numerischer Einschrittverfahren mit Hilfe von Ljapunov-Funktionen

Stabilitätsuntersuchung numerischer Einschrittverfahren mit Hilfe von Ljapunov-Funktionen Lehrstuhl für Angewandte Mathematik des Mathematischen Instituts an der Fakultät für Mathematik, Physik und Informatik Diplomarbeit Stabilitätsuntersuchung numerischer Einschrittverfahren mit Hilfe von

Mehr

Analysis 4. Lösungsvorschlag zum 12. Übungsblatt

Analysis 4. Lösungsvorschlag zum 12. Übungsblatt Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Andreas Geyer-Schulz SS 208. Juli 208 Analysis 4 Lösungsvorschlag zum 2. Übungsblatt Aufgabe 42 Wir untersuchen

Mehr

Seminar: Numerik gewöhnlicher Differentinalgleichungen Diagonal implizite Runge-Kutta Verfahren

Seminar: Numerik gewöhnlicher Differentinalgleichungen Diagonal implizite Runge-Kutta Verfahren Seminar: Numerik gewöhnlicher Differentinalgleichungen Diagonal implizite Runge-Kutta Verfahren Manuel Hofmann 4..00 Einleitung Ziel dieser Arbeit ist es den Begriff der S-Stabilität einzuführen und im.

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Gewöhnliche Differentialgleichungen Mitschrift der Vorlesung Gewöhnliche Differentialgleichungen von Prof. Dr. George Marinescu an der Universität zu Köln im WS 14/15. Kann Fehler enthalten. Veröffentlicht

Mehr

Gewöhnliche Differentialgleichungen: Einleitung

Gewöhnliche Differentialgleichungen: Einleitung Gewöhnliche Differentialgleichungen: Einleitung Die Sprache des Universums ist die Sprache der Differentialgleichungen. 1-E1 Faszinierender Anwendungsreichtum cc 1-E2 Wie verstanden die Alten das Naturgesetz?

Mehr

Höhere Mathematik III

Höhere Mathematik III Universität Stuttgart Fachbereich Mathematik Prof. Dr. J. Pöschel Dr. D. Zimmermann Dipl.-Math. K. Sanei Kashani Blatt 5 Höhere Mathematik III el, kb, mecha, phs Vortragsübungen (Musterlösungen) 7..4 Aufgabe

Mehr

Maximalität und Globalität von Lösungen

Maximalität und Globalität von Lösungen Gewöhnliche Differentialgleichungen Florian Wörz SoSe 205 Maximalität und Globalität von Lösungen Maximale Lösungen Sei Ω : T U R R n ein Gebiet, f : Ω R n stetig und (t 0, u 0 ) Ω. Im Folgenden betrachten

Mehr

H. Achte Übungseinheit

H. Achte Übungseinheit H. Achte Übungseinheit Inhalt der achten Übungseinheit: Einschrittverfahren für gewöhnliche Differentialgleichungen erster Ordnung MATLAB-Löser Klassisches Euler-Verfahren und andere einfache explizite

Mehr

2 Einschrittverfahren 2.1 Einführung

2 Einschrittverfahren 2.1 Einführung Einschrittverfahren. Einführung Im folgenden werden wir uns bei der Beschreibung und Analyse von numerischen Verfahren für Anfangswertprobleme auf den Fall n = beschränken. Dies wird nur gemacht, um die

Mehr

Einführung in die Numerik strukturerhaltender Zeitintegratoren. Leonard Schlag 6. Dezember 2010

Einführung in die Numerik strukturerhaltender Zeitintegratoren. Leonard Schlag 6. Dezember 2010 Einführung in die Numerik strukturerhaltender Zeitintegratoren Leonard Schlag 6. Dezember 2010 1 Inhaltsverzeichnis 1 Einführung in die Numerik strukturerhaltender Zeitintegratoren 3 1.1 Häuge Problemstellung:

Mehr

D-ITET, D-MATL. Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn

D-ITET, D-MATL. Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn Name: Wichtige Hinweise D-ITET, D-MATL Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn Prüfungsdauer: 90 Minuten. Nur begründete Resultate werden bewertet. Zugelassene Hilfsmittel: 10 A4-Seiten

Mehr

Differentialgleichungen für Ingenieure WS 06/07

Differentialgleichungen für Ingenieure WS 06/07 Differentialgleichungen für Ingenieure WS 06/07 2. Vorlesung Themen heute: Michael Karow 1. Explizite Differentialgleichungen 1.Ordnung 2. Geometrische Deutung: Richtungsfelder und Integralkurven 3. Anfangswertprobleme

Mehr

Vorbereitung für die Prüfung Mathematik II für Informatiker

Vorbereitung für die Prüfung Mathematik II für Informatiker Technische Universität Ilmenau SS 2010 Institut für Mathematik Inf Prof. Dr. Michael Stiebitz Vorbereitung für die Prüfung Mathematik II für Informatiker 1 Lineare Algebra Aufgabe 1 Schauen Sie sich die

Mehr

PRÜFUNG AUS MATHEMATIK 3

PRÜFUNG AUS MATHEMATIK 3 (8 P.) Berechnen Sie das Integral tan(ln x) dx. x (8 P.) Bestimmen Sie die allgemeine Lösung der Differentialgleichung y 2y + 2y = x 2 + 5 cos x. (8 P.) Entwickeln Sie f(x) = sin(x) für x [ π/2, π/2] mit

Mehr

6 Gewöhnliche Differentialgleichungen

6 Gewöhnliche Differentialgleichungen 6 Gewöhnliche Differentialgleichungen Differentialgleichungen sind Gleichungen in denen nicht nur eine Funktion selbst sondern auch ihre Ableitungen vorkommen. Im einfachsten Fall gibt es eine unabhängige

Mehr

32.8 Die lineare Differentialgleichung 2. Ordnung mit konstanten Koeffizienten

32.8 Die lineare Differentialgleichung 2. Ordnung mit konstanten Koeffizienten 3 Die lineare Differentialgleichung. Ordnung mit konstanten Koeffizienten 3.1 Lösungsbegriff für explizite Differentialgleichungen n-ter Ordnung 3. Das Anfangswertproblem für explizite Differentialgleichungen

Mehr

Differentialgleichungen I

Differentialgleichungen I Differentialgleichungen I Michael Hinze (zusammen mit Peywand Kiani) Department Mathematik Schwerpunkt Optimierung und Approximation, Universität Hamburg 5. Januar 2009 Beachtenswertes Die Veranstaltung

Mehr

Seminar Gewöhnliche Differentialgleichungen

Seminar Gewöhnliche Differentialgleichungen Seminar Gewöhnliche Differentialgleichungen Dynamische Systeme I 1 Einleitung 1.1 Nichtlineare Systeme In den vorigen Vorträgen haben wir uns mit linearen Differentialgleichungen beschäftigt. Nun werden

Mehr

Kapitel 11 Gewöhnliche Differentialgleichungen

Kapitel 11 Gewöhnliche Differentialgleichungen Kapitel 11 Gewöhnliche Differentialgleichungen 11.1 Einführung Gesucht wird eine Funktion y = y(t) einer (Zeit-)Variablen t, die der Gleichung und der Anfangsbedingung genügen soll. y (t) = f(t, y(t)),

Mehr

Wir untersuchen die Bewegungsleichung des mathematischen (gedämpften) Fadenpendels in einer Dimension. = 0, ϕ (0)

Wir untersuchen die Bewegungsleichung des mathematischen (gedämpften) Fadenpendels in einer Dimension. = 0, ϕ (0) 3.1 Beispiel: mathematisches Pendel Wir untersuchen die Bewegungsleichung des mathematischen (gedämpften) Fadenpendels in einer Dimension ϕ+α ϕ+ω 2 0 sinϕ = 0, Ω2 0 = g/l (1) Das äquivalente System 1.

Mehr

9 Numerische Verfahren für Anfangswertaufgaben

9 Numerische Verfahren für Anfangswertaufgaben Numerik II 63 9 Numerische Verfahren für Anfangswertaufgaben Inhalt 9.1 Einige einfache Verfahren 9.2 Einschrittverfahren Definition und Eigenschaften 9.3 Runge-Kutta-Verfahren 9.4 Lineare Mehrschrittverfahren

Mehr

Numerische Mathematik II

Numerische Mathematik II Numerische Mathematik II Günter Bärwolff 15. März 2010 Skript, geschrieben parallel zur Vorlesung Numerische Mathematik im WS2009/10 an der TU Berlin, Stand nach Berücksichtigung der Korrekturhinweise

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Wilhelm Forst Dieter Hoffmann Gewöhnliche Differentialgleichungen Theorie und Praxis - vertieft und visualisiert mit Maple 4y Springer Inhaltsverzeichnis Inhaltsverzeichnis Einleitung V IX 1 Einführende

Mehr

Kapitel 1 Gewöhnliche Differentialgleichungen

Kapitel 1 Gewöhnliche Differentialgleichungen Kapitel 1 Gewöhnliche Differentialgleichungen Eines der wichtigsten Einsatzgebiete numerischer Verfahren sind Differentialgleichungen, also Gleichungen, die Funktionen sowie deren Ableitungen in Bezug

Mehr

Inhaltsverzeichnis. Kapitel 9. Gewöhnliche Differentialgleichungen... 1

Inhaltsverzeichnis. Kapitel 9. Gewöhnliche Differentialgleichungen... 1 Inhaltsverzeichnis Kapitel 9. Gewöhnliche Differentialgleichungen... 1 1. Einführung... 1 1.1 Grundbegriffe 1.2 Anfangswertprobleme 1.3 Geometrische Bedeutung der DGL 1. Ordnung 2. Spezielle Differentialgleichungen

Mehr

Kapitel II Funktionen reeller Variabler

Kapitel II Funktionen reeller Variabler Kapitel II Funktionen reeller Variabler D (Funktion) Es sei f XxY eine Abbildung Die Abbildung f heiß Funktion, falls sie eindeutig ist Man schreibt dann auch: f : X Y f ( x) = y, wobei y das (eindeutig

Mehr