Zur Dynamik kosmologischer Modelle

Größe: px
Ab Seite anzeigen:

Download "Zur Dynamik kosmologischer Modelle"

Transkript

1 Ergänzungen zur Vorlesung Einführung in die relativistische Kosmologie von DOMENICO GIULINI Blatt 2 Zur Dynamik kosmologischer Modelle Bewegungsgleichungen In der Vorlesung wurde gezeigt, dass die Friedmann-Gleichungen für den Skalenparameter a(t) formal in der Form eines Energie-Erhaltungssatzes (eines Teilchens der Masse m = 2) geschrieben werden können: ( ) 2 dx + V(x) = E. (1) dλ Dabei ist λ = th 0 und x(λ) := a(λ)/a 0. Das Potential V(x) und die Energie E sind durch die kosmologischen Parameter gegeben: Dabei ist und es gilt V(x) := Ω m x x2 Ω Λ, (2) E := Ω k = 1 Ω m Ω Λ. (3) Ω m := 8πG ρ 0 3H 2 0, (4) Ω Λ := Λ, (5) 3H 2 0 Ω k := kc2, (6) H 2 0 a2 0 Ω m + Ω Λ + Ω k = 1, (7) so dass wir uns zukünftig Ω k stets durch 1 Ω m Ω Λ ersetzt denken dürfen. Außerdem haben wir uns dabei auf drucklose Materie beschränkt, so dass ρa 3 = 1/6

2 ρ 0 a 3 0. Es gilt Ω m 0, während Ω Λ beide Vorzeichen annehmen darf. Der Bremsparameter zum Zeitpunkt t = t 0 (heute) ist als Funktion der Ω gegeben durch q 0 := äa = ȧ t=t0 1Ω 2 2 m Ω Λ. (8) Potentialverlauf 1. Fall: Λ = 0 V(x) ist streng monoton steigend ohne Wendepunkt und nähert sich von unten asymptotisch für x dem Wert 0. Für E 0 erhält man ewige Expansion mit einer Singularität in endlicher Vergangenheit (oder die Zeitumkehrung davon). E 0 ist gleichbedeutend mit Ω k > 0 bzw. k = 1 (negative Krümmung) bzw. Ω m < 1 bzw. ρ m < ρ krit, wobei ρ krit := 3H2 0 8πG. (9) Man spricht in diesem Fall auch vom sogenannten offenen Universum, wobei es falsch ist zu behaupten, das Universum hätte dann notwendig ein unendliches Volumen (zu jeder Zeit). Eine negative konstante Krümmung ist i.a. sowohl mit einem endlichen als auch einem unendlichen Volumen verträglich. Im Falle von E < 0 rekollabiert das Universum nach endlicher Zeit. Die Krümmung ist dann positiv und ρ 0 > ρ krit. Man spricht dann auch vom geschlossenen Universum. In diesem Fall ist es nun korrrekt zu behaupten, das Universum hätte notwendig ein endliches Volumen (zu jeder Zeit). (Theorem: Eine Riemannsche Mannigfaltigkeit mit positiv konstanter Krümmung hat ein endliches Volumen.) Im Grenzfall E = 0 ist die Expansion ewig mit asymptotisch verschwindender Rate. Jetzt ist ρ 0 = ρ krit und die Krümmung verschwindet. Man spricht auch vom flachen Universum. Auch dieser Fall ist sowohl mit unendlichem (etwa bei R 3 ) oder endlichem (etwa beim dreidimensionalen Torus T 3 = S 1 S 1 S 1 ) Volumen modelierbar. 2/6

3 2. Fall: Λ < 0 In diesem Fall ist V(x) streng monoton steigend und beidseitig unbeschränkt. Es gilt V(x 0) und V(x ) +, und außerdem hat V (x) = Ω m /x 2 2xΩ Λ keine Nullstelle für positives x (und negatives Ω Λ ). Also ist die Expansion nach endlicher Zeit rekollabierend für jedes E. Der Bremsparameter ist stets positiv so dass man entweder verzögerte Expansion oder beschleunigte Kontraktion hat. 3. Fall: Λ > 0 Dies ist der eigentlich interessante Fall. Hier ist sowohl V(x 0) als auch V(x ), und V (x) = Ω m /x 2 2xΩ Λ hat genau eine Nullstelle bei x = [ Ωm 2 Ω Λ ] 1 3 (10) die somit einem Maximum des Potentials V(x) entspricht. Der Wert des Potentials am Maximum ist [ ] V(x ) = Ω 2 m Ω 3 Λ. (11) Abbildung 1: Verlauf des Potentials V(x) für (Ω m, Ω Λ ) = (0.3, 0.7) (Kurve mit Maximum) und zum Vergleich für (1.5, 0.5) (Kurve ohne Maximum). Das Maximum liegt gemäß (10) bei x 0.6 mit V(x ) Wegen 1/x = a 0 /a = 1+z entspricht dies einer Rotverschiebung von z = 1 + 1/x Für z > z schauen wir also in eine Epoche noch verzögerter Expansion, während für z < z die Expansion bereits beschleunigt verläuft. Wir befinden uns bei x = 1, haben das Maximum also bereits durchlaufen. 3/6

4 Für E > V(x ) ist das Universum also entweder monoton expandierend bis in alle Ewigkeit, mit einer Singularität in endlicher Vergangenheit, oder, aus unendlicher Vergangenheit kommend, monoton kollabierend bis zur einer Singularität in endlicher Zukunft. (Da wir die Sinularität in die Vergangenheit legen sprechen wir meist von ewig expandierenden Modellen.) Darunter fallen wegen V(x ) < 0 insbesondere alle Modelle mit E > 0, d.h. k = 1, also für negative Krümmung (offene Universen). Für E < V(x ) erhält man entweder ein rekollabierendes Universum (mit Urknall; es bleibt stets links vom Potentialmaximum, d.h. x < x ), oder ein reexpandierendes Universum (ohne Urknall; es bleibt stets rechts vom Potentialmaximum, d.h. x > x ). Welche der beiden Fälle mit gegebenen Werten von Ω m und Ω Λ verträglich ist werden wir noch genauer untersuchen. Modelle in denen E V(x ) (also insbesondere E < 0, d.h. geschlossene Universen), nennt man Trödeluniversen (engl. loitering models ), da sie sich sehr lange in der Nähe des Potentialmaximums aufhalten können um dann wieder zu expandieren oder zu kollabieren. Insbesondere kann man durch Feinadjustierung einem schließlich rekollabierenden Universum eine beliebig lange Lebensdauer verleihen. Das statische Universum mit E = V(x ), das exakt auf dem Potentialmaximum ruht, ist das Einstein-Universum. Es befindet sich klarerweise in einem labilen Gleichgewicht. Die beiden Fälle E > V(x ) und E < V(x ) sind in der Ω m Ω Λ -Ebene durch eine Grenzkurve getrennt, die implizit gegeben ist durch E 3 V 3 (x ) = (1 Ω Λ Ω m ) Ω2 mω Λ = 0. (12) Ihre Äste sind in Abb. 2 gezeichnet, wobei uns hier nur die Region Ω Λ > 0 interessiert. Wir wissen ja bereits, dass für Ω Λ < 0 alle Universen rekollabieren und dass Universen mit Ω Λ = 0 und Ω m < 1 ewig expandieren. Das horizontale Geradenstück zwischen (0, 0) und (1, 0) gehört also zur Grenzlinie zwischen expandierenden und rekollabierenden Universen. Rechts von (1, 0) schließt sich daran dann der untere Ast von Abb. 2 an. Dieser beginnt mit horizontaler Tangente und steigt dann in führender Ordnung in dritter Potenz an. Das sieht man so: Linearisiert man (12) zunächst in Ω Λ, d.h. schreibt man Ω Λ = Ω Λ und vernachlässigt quadratische und höhere Potenzen in Ω Λ, so erhält man Ω Λ = (Ω m 1) Ω2 m 3(Ω m 1). (13) 2 4/6

5 Schreibt man nun noch Ω m = 1+ Ω m und entwickelt man in führender Ordnung in Ω m, so folgt: Ω Λ = 4 27 Ω3 m + O(4). (14) Das ist das behauptete kubische Verhalten rechts von (1, 0). Das schmale Gebiet zwischen diesem Ast und dem Ω m -Achsenabschnitt mit Ω m > 1 enthält die oben erwähnten rekollabierenden Universen mit Λ > 0. Oberhalb des oberen Astes in Abb.2 gilt E < V(x ) und alle Universen sind reexpandierend (rechts vom Potentialmaximum). Sie sind nicht rekollabierend, da sie sämtlich im Bereich negativen Bremsparameters liegen, also oberhalb der Geraden Ω Λ = 1Ω 2 m. Somit besitzen sie auch keinen keinen Urknall (Radius Null) sondern einen Minimalradius größer als Null (engl. bouncing Models ). Die monoton expandierenden Universen entsprechen in der Ω-Ebene also genau dem Gebiet, das unterhalb des oberen Astes der Grenzkurze liegt und oberhalb der Ω m -Achse bis Ω m = 1 und ab da oberhalb des unteren Astes der Grenzkurve in Abb.2. Dies sind gerade die eingezeichneten Begrenzungen in Abb. 4. Dieses Gebiet wird von der Geraden Ω Λ = 1Ω 2 m in zwei Teile zerschnitten. Im oberen Teil sind die Universen bereits beschleunigt expandierend, also schon jenseits des Potentialmaximums (d.h. x > x ), während sie im unteren Teil noch verzögert expandierend sind, das Maximum also noch überwinden müssen (d.h. x < x ). Experimentelle Konfidenzgebiete in der Ω-Ebene Es gibt eine handvoll verschiedener Verfahren, Bereiche im der Ω-Ebene experimentell einzugrenzen. Den beobachteten physikalischen Größen entsprechen meist Observablen, die lineare Funktionen in Ω m und Ω Λ sind. Die Niveaumengen solcher Funktionen F(Ω m, Ω Λ ) sind also Geraden von der Form aω m + bω Λ = konst. Berücksichtigt man noch die Unsicherheiten in den den Messungen, so ergeben sich als Konfidenzgebiete langestrechte Streifen endlicher Dicke, die parallel zu den Geraden F = konst. liegen. Es wird also darauf ankommen, verschiedene Observable zu messen, deren Konfidenzstreifen möglichst transversal zueinender liegen, so dass ihr Schnitt ein möglichst kleines Gebiet in der Ω- Ebene abgrenzt. Da zwei solcher Streifen immer einen nichtleeren Schnitt besitzen, sofern sie nicht gerade parallel liegen, ist die Konsistenz erst ab drei Observablen überprüfbar. Dann gibt es drei Schnittmengen von jeweils zwei Streifen, die nicht schnittleer sein dürfen. 5/6

6 Die drei im Folgenden abgebildeten Messungen betreffen folgende Observable: 1. Das Hubble-Gesetz, d.h. die Funktion d L (z), deren quadratischer Term proportional zu 1 q 0 ist. Die Observable ist also q 0, d.h. 1 2 Ω m Ω Λ. 2. Die Winkelverteilung der Anisotropie der Mikrowellenhintergrundstrahlung. Dabei wird der durchschnittliche Wikelabstand Θ max je zweier benachbarter Intensitätsmaxima gemessen, bzw. die durchschnittliche Drehimulsquantenzahl l max bei der Zerlegung der Funktion T/T(θ, ϕ), die die relativen Temperaturschwankungen in Abhängigkeit von der Blickrichtung angibt, nach sphärischen Harmonischen Y lm. Theoretisch ergibt sich dafür Θ max 0.62 ( 1 1Ω 2 k + 1 Ω ) 14 Λ (15) l max 220 ( Ω k 1 14 Ω Λ ) (16) Die Obeservable is also in Wesentlichen Ω k = 1 Ω m Ω Λ, d.h. die Summe Ω m + Ω Λ. Das Ergebnis der Boomerang- und Maxima-Messungen ist in Abb. 5 wiedergegeben und liefert als wahrscheinlichsten Wert l max 220, also Ω k 0, spricht also für ein flaches Universum. 3. Häufigkeitsverteilung von Galaxienhaufen in Anhängigkeit von z (bzw der Zeit). Nach der Theorie der Entstehung solcher Haufen ist ihre Bildungsrate und Lebesdauer stark von Ω m anhängig. Hier wird also Ω m gemessen. 6/6

7 Ω Λ reexpandierend ewig expandierend bzw. kollabierend Ω m rekollabierend Abbildung 2: Lösung der kubischen Gleichung (12), von der hier nur der Teil in der oberen Halbebene mit Ω Λ > 0 interessiert, da für Ω Λ < 0 sowieso alle Universen rekollabieren. Oberhalb des oberen Astes und unterhalb des unteren Astes ist E < V(x ). Im Gebiet zwischen den Ästen ist E > V(x ). Der obere Ast liegt ganz im Gebiet oberhalb der Geraden Ω Λ = 1 2 Ω m (Steigung 1 2 ), im dem der Bremsparameter negativ ist, also entweder beschleunigte Expansion oder verzögerte Kontraktion voliegt. Dies entspricht Universen für die stets x > x, die also keinen Urknall besitzen. Der untere Ast liegt hingegen im Gebiet unterhalb der Gerade Ω Λ = 1 2 Ω m, in dem der Bremsparameter positiv ist, entsprechend verzögerter Expansion oder beschleunigter Kontraktion. Für diese Universen gilt x < x. Diese haben stets einen Urknall. Das schmale keilförmige Gebiet unterhalb des unteren Astes und oberhalb der Ω m -Achse entspricht den rekollabierenden Universen mit Ω Λ > 0. Sie auch Abb. 4. 7/6

8 Abbildung 3: Messergebnisse für die Hubble-Beziehung d L (z) an Supernovae des Typs 1a im Bereich z < 1. Vertikal ist eine logarithmische Funktion m von d L aufgetragen (größere m entsprechen kleineren d L ). Es gilt d L (z) = c H 0 [z + 1(1 2 q 0 )z 2 + O(3)], so dass durch die nahen Supernovae die Hubble Konstante H 0 (linearer Term) und durch die entfernteren der Bremsparameter q 0 (quadratischer Term) gemessen wird. 8/6

9 Abbildung 4: Wegen q 0 = 1 2 Ω m Ω Λ ergeben sich aus der Messung des Bremsparameters folgende Konfidenzgebiete in der Ω-Ebene. 9/6

10 Abbildung 5: Gemeinsame Daten der Boomerang- und Maxima-Mission. Aufgetragen sind die über m gemittelten Betragsquadrate der Entwicklungskoeffizienten c lm von T/T(θ, ϕ) nach den Kugelfunktionen Y lm. Es zeichnet sich deutlich ein erstes Maximum bei l max 220 ab, was gemäß (16) auf Ω k 0 bzw. Ω m + Ω Λ 1 deutet. In Abb. 6 ist die zugehörige, sich nach der statistischen Analyse ergebende Konfidenzregion eingezeichnet. 10/6

11 Abbildung 6: Konfidenzregionen in der Ω-Ebene dreier verschiedener Messungen: 1) an Supernovae (empfindlich auf 1 2 Ω m Ω Λ ), 2) an Galaxienhaufen (empfindlich auf Ω m ) und 3) am Anisotropie-Spektrum der Mikrowellen- Hintergrundstrahlung (empfindlich auf Ω m +Ω Λ ). Es ergibt sich eine gemeinsame Schnittregion mit (Ω m, Ω Λ ) (0.3, 0.7) als wahrscheinlichstem Wertepaar. 11/6

Das Standardmodell der Kosmologie

Das Standardmodell der Kosmologie Stefan Fryska 10.06.2010 Gliederung Gliederung 1. Umbruch: erste Hinweise auf nicht statisches Universum 2. Theoretische Beschreibung eines dynamischen Universums 3. Experimentelle Bestimmung der kosmologischen

Mehr

Sterne, Galaxien und das Universum

Sterne, Galaxien und das Universum Sterne, Galaxien und das Universum Teil 9: Kosmologie Peter Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 18. April 2017 1 / 38 Entfernte Galaxien 2 / 38 Übersicht

Mehr

Ist das Universum ein 3-Torus?

Ist das Universum ein 3-Torus? 1 / 20 Ist das Universum ein 3-Torus? RHO-Sommercamp, Waren Martin Haufschild 19. August 2009 2 / 20 Krümmung Kosmologische Räume werden gewöhnlich nach ihrer (Gaußschen) Krümmung K unterschieden: positive

Mehr

Aus was besteht unser Universum?

Aus was besteht unser Universum? Aus was besteht unser Universum? Inhalt der Vorlesung Moderne Kosmologie. 1. Von Aristoteles zu Kopernikus 2. Die beobachtbaren Fakten: Kosmologisches Prinzip; Hintergrundstrahlung; Rotverschiebung; dunkle

Mehr

Der Urknall und die Kosmische Hintergrundstrahlung

Der Urknall und die Kosmische Hintergrundstrahlung und die Kosmische Hintergrundstrahlung Seminar Astroteilchenphysik in der Theorie und Praxis Physik Department Technische Universität München 12.02.08 und die Kosmische Hintergrundstrahlung 1 Das Standardmodell

Mehr

7. Expansion des Universums

7. Expansion des Universums Vorlesung ASTOPHYSIK UND KOSMOLOGIE an der TUCh im WS 006/07 7 Expansion des Universums Heuristishe Prinzipien Hubble-Gesetz und Kinematik der Expansion Dynamik der Expansion Kosmologishe Parameter heute

Mehr

Standardmodell der Kosmologie

Standardmodell der Kosmologie ! "# $! "# # % & Standardmodell der Kosmologie Urknall und Entwicklung des Universums Inhalt Einleitung Experimentelle Hinweise auf einen Urknall Rotverschiebung der Galaxien kosmische Hintergrundstrahlung

Mehr

Die einfachsten Lösungen sind auch die wichtigsten

Die einfachsten Lösungen sind auch die wichtigsten Die einfachsten Lösungen sind auch die wichtigsten F. Herrmann und M. Pohlig www.physikdidaktik.uni-karlsruhe.de 1. Was versteht man unter einer Lösung der Einstein-Gleichung? 2. Die Schwarzschild-Lösung

Mehr

Die Expansion des Kosmos

Die Expansion des Kosmos Die Expansion des Kosmos Mythos und Wirklichkeit Dr. Wolfgang Steinicke MNU-Tagung Freiburg 2012 Eine Auswahl populärer Mythen und Probleme der Kosmologie Der Urknall vor 13,7 Mrd. Jahren war eine Explosion

Mehr

Schnecke auf expandierendem Ballon

Schnecke auf expandierendem Ballon Schnecke auf expandierendem Ballon Kann in einem sich expandierenden Uniersum das Licht einer Galaxie auch die Punkte erreichen, die sich on ihr mit mehr als Lichtgeschwindigkeit entfernen? 1 Als einfaches

Mehr

Modelle des Universums. Max Camenzind Akademie HD Januar 2015

Modelle des Universums. Max Camenzind Akademie HD Januar 2015 Modelle des Universums Max Camenzind Akademie HD Januar 2015 Unsere Themen Weltmodelle: Einsteins statisches Universum von 1917. das desitter Modell die Friedmann Modelle 1922/1924. das Lemaître Universum

Mehr

Messung der kosmischen Expansion mittels Supernovae. Benedikt Hegner

Messung der kosmischen Expansion mittels Supernovae. Benedikt Hegner Messung der kosmischen Expansion mittels Supernovae Benedikt Hegner 14.07.2003 Inhalt Erste Hinweise Was ist eine Supernova? Kosmologische Modelle Aktuelle Beobachtungen Diskussion Erste Beobachtungen

Mehr

Kosmologische Konstante. kosmischer Mikrowellen-Hintergrund. Strukturbildung im frühen Universum

Kosmologische Konstante. kosmischer Mikrowellen-Hintergrund. Strukturbildung im frühen Universum Kosmologische Konstante kosmischer Mikrowellen-Hintergrund und Strukturbildung im frühen Universum Philip Schneider, Ludwig-Maximilians-Universität 31.05.005 Gliederung Geschichte: Die letzten 100 Jahre

Mehr

Die beschleunigte Expansion

Die beschleunigte Expansion Die beschleunigte Expansion Franz Embacher Fakultät für Physik Universität Wien Vortrag im Rahmen von University Meets Public VHS Meidling, 12. 3. 2012 Nobelpreis 2011 an Saul Perlmutter, Brian P. Schmidt

Mehr

Moderne Theoretische Physik IIIa WS 18/19

Moderne Theoretische Physik IIIa WS 18/19 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik IIIa WS 8/9 Prof. Dr. Alexander Mirlin Lösungen zu Blatt 7 Dr. Stefan Rex Besprechung: 9..9.

Mehr

Kosmologie: Die Expansion des Universums

Kosmologie: Die Expansion des Universums Kosmologie: Die Expansion des Universums Didaktik der Astronomie SS 2008 Franz Embacher Fakultät für Physik Universität Wien 13 Aufgaben Kosmologisches Prinzip, Skalenfaktor, Rotverschiebung Kosmologisches

Mehr

DAS WELTBILD DER MODERNEN PHYSIK

DAS WELTBILD DER MODERNEN PHYSIK DAS WELTBILD DER MODERNEN PHYSIK XII: Kosmologie Claus Kiefer Institut für Theoretische Physik Universität zu Köln Ein Blick in das frühe Universum Abbildungsnachweis: NASA Warum ist es nachts dunkel?

Mehr

Einiges zu den Potenzfunktionen. Exponentialfunktionen

Einiges zu den Potenzfunktionen. Exponentialfunktionen Einiges zu den Potenzfunktionen Es sind zunächst zwei Arten der Potenzfunktionen zu unterscheiden. Erstens die eigentlichen Potenzfunktionen, bei denen die Variable x als Basis von Potenzen vorkommt. Diese

Mehr

7. Expansion des Universums

7. Expansion des Universums 7. Expansion des Universums Heuristische Prinzipien Hubble-Gesetz und Kinematik der Expansion Dynamik der Expansion Kosmologische Parameter heute 7.4 Kosmologische Parameter heute Expansion: Anfangs gebremst

Mehr

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2 Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II Wiederholungsblatt: Analysis Sommersemester 2011 W. Werner, F. Springer erstellt von: Max Brinkmann Aufgabe 1: Untersuchen Sie, ob die

Mehr

Abitur 2010 Mathematik GK Infinitesimalrechnung I

Abitur 2010 Mathematik GK Infinitesimalrechnung I Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 2010 Mathematik GK Infinitesimalrechnung I Teilaufgabe 2 (4 BE) Gegeben ist für k R + die Schar von Funktionen f k : x 1 Definitionsbereich D k. Der

Mehr

v = z c (1) m M = 5 log

v = z c (1) m M = 5 log Hubble-Gesetz Das Hubble-Gesetz ist eines der wichtigsten Gesetze der Kosmologie. Gefunden wurde es 1929 von dem amerikanischen Astronom Edwin Hubble. Hubble maß zunächst die Rotverschiebung z naher Galaxien

Mehr

Polynome. Ein Term der Form. mit n und a 0 heißt Polynom. Die Zahlen a, a, a,... heißen Koeffizienten des Polynoms.

Polynome. Ein Term der Form. mit n und a 0 heißt Polynom. Die Zahlen a, a, a,... heißen Koeffizienten des Polynoms. Polynome Ein Term der Form a x + a x + a x + a x +... + a x + a x + a n n 1 n 2 n 3 2 1 2 3 4 n 2 n 1 n mit n und a 0 heißt Polynom. 1 Die Zahlen a, a, a,... heißen Koeffizienten des Polynoms. 1 2 3 Als

Mehr

Kosmologie. Wintersemester 2015/16 Vorlesung # 2,

Kosmologie. Wintersemester 2015/16 Vorlesung # 2, DE k Kosmologie Wintersemester 2015/16 Vorlesung # 2, 27.10.2015 Strahlung Materie Guido Drexlin, Institut für Experimentelle Kernphysik Expandierendes Universum - Hubble-Expansion - Urknall: Grundlagen

Mehr

Ausarbeitung zum Vortrag Weltmodelle II

Ausarbeitung zum Vortrag Weltmodelle II Kompaktseminar: Das frühe Universum Ausarbeitung zum Vortrag Weltmodelle II OLIVER BURGER Mathematisches Institut, Fakultät für Mathematik und Physik Eberhard-Karls-Universität Tübingen Wintersemester

Mehr

Kurvendiskussion von Polynomfunktionen

Kurvendiskussion von Polynomfunktionen Kurvendiskussion von Polynomfunktionen Theorie: Für die weiteren Berechnungen benötigen wie die 1. f (x) und 2. f (x) Ableitung der zu untersuchenden Funktion f (x). Wir werden viele Gleichungen lösen

Mehr

Die Expansion des Universums. Und sein Schicksaal

Die Expansion des Universums. Und sein Schicksaal Die Expansion des Universums Und sein Schicksaal Was ist das Universum eigentlich? Statisches, unveränderliches, räumlich gekrümmtes Universum von ewiger Dauer mit endlicher Größe? Die größte Eselei Einsteins

Mehr

Experimentelle Astroteilchenphysik. Prof. Dr. Dieter Horns Dr. Tanja Kneiske

Experimentelle Astroteilchenphysik. Prof. Dr. Dieter Horns Dr. Tanja Kneiske Experimentelle Astroteilchenphysik Prof. Dr. Dieter Horns Dr. Tanja Kneiske Experimentelle Astroteilchenphysik 1. Einführung und Überblick 2. Kosmische Strahlung auf der Erde 3. Kosmische Strahlung in

Mehr

Die untere Abb. ist die Differenz zu einem Modell mit q 0 = 0, also (m M) = log (1 q 0 ) z +...

Die untere Abb. ist die Differenz zu einem Modell mit q 0 = 0, also (m M) = log (1 q 0 ) z +... Das Universum heute Inhalt der Vorlesung Kosmologische Konstante und Beschleunigung Die Dichte der Materie Die Dichte der Strahlung Die seltsame Rezeptur 18 Kosmologische Konstante und Beschleunigung Die

Mehr

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik III (Theorie F Statistische Mechanik SS 7 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 6

Mehr

Vom Urknall. bis heute Zeit. Kosmologie. Christian Stegmann Universität Erlangen-Nürnberg

Vom Urknall. bis heute Zeit. Kosmologie. Christian Stegmann Universität Erlangen-Nürnberg Vom Urknall bis heute Kosmologie Christian Stegmann Universität Erlangen-Nürnberg Die Erde Heute einer von acht Planeten Heute Sterne Heute Die Milchstrasse Heute Voller Sterne Heute Und Nebel Heute Unsere

Mehr

Kai Zuber Institut für Kern- und Teilchenphysik TU Dresden

Kai Zuber Institut für Kern- und Teilchenphysik TU Dresden Kai Zuber Institut für Kern- und Teilchenphysik TU Dresden Historische Einführung Das Alter des Universums Warum eine dunkle Seite? Was ist die dunkle Seite? Wie kann man sie nachweisen? Inka-Kultur Navajo-Indianer

Mehr

Kosmologie für die Schule

Kosmologie für die Schule Kosmologie für die Schule Matthias Bartelmann 1 & Tobias Kühnel 1 Max-Planck-Institut für Astrophysik Kosmologie für die Schule p.1/0 Ein symmetrisches Universum Die moderne Kosmologie beruht auf Einsteins

Mehr

Einführung. Ablesen von einander zugeordneten Werten

Einführung. Ablesen von einander zugeordneten Werten Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,

Mehr

Das Moderne Weltmodell

Das Moderne Weltmodell Das Moderne Weltmodell coldcreation.blogspot.com Max Camenzind Akademie HD Januar 2015 Welt-Revolution 1998 (SCP & Hz): Entfernte Supernovae sind weiter entfernt als in einem flachen expandierenden Einstein-de-Sitter

Mehr

Frühes Universum in Newton scher Kosmologie. Tobias Lautenschlager 27. Juni 2007

Frühes Universum in Newton scher Kosmologie. Tobias Lautenschlager 27. Juni 2007 Frühes Universum in Newton scher Kosmologie Tobias Lautenschlager 7. Juni 7 Inhaltsverzeichnis 1 Annahmen 1.1 Das kosmologische Prinzip...................... 1. Die Bewegung von Galaxien.....................

Mehr

10. Kosmologie. Kosmologie = Lehre vom Bau des Weltalls kosmologische Weltmodelle = zeitliche & räumliche Entwicklung des Weltalls

10. Kosmologie. Kosmologie = Lehre vom Bau des Weltalls kosmologische Weltmodelle = zeitliche & räumliche Entwicklung des Weltalls 10. Kosmologie Kosmologie = Lehre vom Bau des Weltalls kosmologische Weltmodelle = zeitliche & räumliche Entwicklung des Weltalls Lexikon: die Kosmologie stützt sich auf Beobachtungsbefunde der Astronomie

Mehr

Zum Schluss berechnen wir die Steigung, indem wir

Zum Schluss berechnen wir die Steigung, indem wir Einführung Grafisches Differenzieren (auch grafische Ableitung genannt) gibt uns zum einen die Möglichkeit, die Steigung des Graphen einer Funktion in einem bestimmten Punkt zu ermitteln, ohne dass wir

Mehr

Kosmologie. Eine kurze Einführung. Sarah Aretz CERN

Kosmologie. Eine kurze Einführung. Sarah Aretz CERN Kosmologie Eine kurze Einführung Sarah Aretz CERN Worum geht es in der Kosmologie? Κοσμολογία = Lehre von der Welt Physikalische Kosmologie Beschreibung des Universums durch physikalische Gesetze Kosmologische

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Mathematik für Wirtschaftswissenschaftler Yves Schneider Universität Luzern Frühjahr 2016 Repetition Kapitel 1 bis 3 2 / 54 Repetition Kapitel 1 bis 3 Ausgewählte Themen Kapitel 1 Ausgewählte Themen Kapitel

Mehr

Kai Zuber Institut für Kern- und Teilchenphysik TU Dresden

Kai Zuber Institut für Kern- und Teilchenphysik TU Dresden Kai Zuber Institut für Kern- und Teilchenphysik TU Dresden Historische Einführung Das Alter des Universums Warum eine dunkle Seite? Was ist die dunkle Seite? Wie kann man sie nachweisen? Inka-Kultur Navajo-Indianer

Mehr

Entfernungsbestimmung im Kosmos 10

Entfernungsbestimmung im Kosmos 10 Entfernungsbestimmung im Kosmos 10 10.1 Folgerungen aus dem Hubble-Gesetz 10.2 Allgemeine Relativitätstheorie 10.3 Robertson-Walker - Metrik 10.4 Entfernungsdefinitionen 10.5 Dynamik der Expansion 10.6

Mehr

Die Entwicklung des Universums

Die Entwicklung des Universums Die Entwicklung des Universums Thomas Hebbeker RWTH Aachen September 2003 Grundlegende Beobachtungen Das Big-Bang Modell Die Entwicklung des Universums 1.1 Blick ins Universum: Sterne und Galaxien Die

Mehr

Vortrag zum Thema "Robertson-Walker Raumzeiten"

Vortrag zum Thema Robertson-Walker Raumzeiten Vortrag zum Thema "Robertson-Walker Raumzeiten" Johannes Nielsen 3.5.16 1 Einleitung Robertson-Walker Raumzeiten (teils auch Friedmann-Robertson-Walker oder Lemaître- Friedmann-Robertson-Walker) sind kosmologische

Mehr

Kurvendiskussion. Mag. Mone Denninger 10. Oktober Extremwerte (=Lokale Extrema) 2. 5 Monotonieverhalten 3. 6 Krümmungsverhalten 4

Kurvendiskussion. Mag. Mone Denninger 10. Oktober Extremwerte (=Lokale Extrema) 2. 5 Monotonieverhalten 3. 6 Krümmungsverhalten 4 Mag. Mone Denninger 10. Oktober 2004 Inhaltsverzeichnis 1 Definitionsmenge 2 1.1 Verhalten am Rand und an den Lücken des Definitionsbereichs............................ 2 2 Nullstellen 2 3 Extremwerte

Mehr

Die dunkle Seite der Kosmologie

Die dunkle Seite der Kosmologie Die dunkle Seite der Kosmologie Franz Embacher Fakultät für Physik Universität Wien Vortrag im Rahmen von UNIorientiert Universität Wien, 16. September 2010 Kapitel 1 Schwarze Löcher Nebel, WeißerZwerg,

Mehr

Übungsaufgaben Folgen und Reihen

Übungsaufgaben Folgen und Reihen Kallenrode, www.sotere.uos.de Übungsaufgaben Folgen und Reihen. Untersuchen Sie die folgenden Folgen auf Monotonie, Beschränktheit und Konvergenz (geben Sie gegebenenfalls den Grenzwert an): inverse Fakultäten:,,

Mehr

Eigenschaften von Funktionen

Eigenschaften von Funktionen Eigenschaften von Funktionen Mag. Christina Sickinger HTL v 1 Mag. Christina Sickinger Eigenschaften von Funktionen 1 / 48 Gegeben sei die Funktion f (x) = 1 4 x 2 1. Berechnen Sie die Steigung der Funktion

Mehr

Urknall und Entwicklung des Universums

Urknall und Entwicklung des Universums Urknall und Entwicklung des Universums Thomas Hebbeker RWTH Aachen University Dies Academicus 11.06.2008 Grundlegende Beobachtungen Das Big-Bang Modell Die Entwicklung des Universums 1.0 Blick ins Universum:

Mehr

Abitur 2014 Mathematik Infinitesimalrechnung I

Abitur 2014 Mathematik Infinitesimalrechnung I Seite http://www.abiturloesung.de/ Seite 2 Abitur 204 Mathematik Infinitesimalrechnung I Die Abbildung zeigt den Graphen einer Funktion f. Teilaufgabe Teil A (5 BE) Gegeben ist die Funktion f : x x ln

Mehr

In dem unser Universum beschreibenden kosmologischen Modell erfüllt die sogenannte Friedmann-Lemaitre-Gleichung diese Bedingungen.

In dem unser Universum beschreibenden kosmologischen Modell erfüllt die sogenannte Friedmann-Lemaitre-Gleichung diese Bedingungen. Entfernungen im Universum Die Bestimmung von Objektentfernungen gehört zu den wichtigsten Aufgaben der Kosmologie. Hierfür gibt es eine ganze Palette an Verfahren, z.b. die Parallaxen- und die Cepheiden-Methode

Mehr

(Anti-) de Sitter Metriken in Kosmologie und theoretischer Physik

(Anti-) de Sitter Metriken in Kosmologie und theoretischer Physik (Anti-) de Sitter Metriken in Kosmologie und theoretischer Physik Patrick Mangat Referat zur Vorlesung Kosmologie 16. November 2011 Idee und Eigenschaften der de Sitter Metrik Die Geburt der kosmologischen

Mehr

Übungen mit dem Applet Kurven in Polarkoordinaten

Übungen mit dem Applet Kurven in Polarkoordinaten Kurven in Polarkoordinaten 1 Übungen mit dem Applet Kurven in Polarkoordinaten 1 Ziele des Applets...2 2 Wie entsteht eine Kurve in Polarkoordinaten?...3 3 Kurvenverlauf für ausgewählte r(ϕ)...4 3.1 r

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

Lösung - Serie 7. D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe)

Lösung - Serie 7. D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe) D-MAVT/D-MATL Analysis I HS 016 Dr. Andreas Steiger Lösung - Serie 7 1. MC-Aufgaben Online-Abgabe 1. Gegeben sind die Kurven K 1 links und K rechts, die beide für wachsenden Parameter t von aussen nach

Mehr

Skript Analysis. sehr einfach. Erstellt: Von:

Skript Analysis. sehr einfach. Erstellt: Von: Skript Analysis sehr einfach Erstellt: 2017 Von: www.mathe-in-smarties.de Inhaltsverzeichnis Vorwort... 2 1. Funktionen... 3 2. Geraden... 6 3. Parabeln... 9 4. Quadratische Gleichungen... 11 5. Ableitungen...

Mehr

Das Universum rennt... [18. Jun.] Und das Universum dehnt sich noch schneller aus... Hubble und das Universum

Das Universum rennt... [18. Jun.] Und das Universum dehnt sich noch schneller aus... Hubble und das Universum Das Universum rennt... [18. Jun.] Und das Universum dehnt sich noch schneller aus... Hubble und das Universum Vor rund 100 Jahren entdeckte der US-amerikanische Astronom Edwin Hubble [1], dass die Fluchtgeschwindigkeit

Mehr

Proseminar: Kosmologie und Astroteilchen Wintersemester 2011/12 Tobias Behrendt. Kosmologisches Standardmodell

Proseminar: Kosmologie und Astroteilchen Wintersemester 2011/12 Tobias Behrendt. Kosmologisches Standardmodell Proseminar: Kosmologie und Astroteilchen Wintersemester 2011/12 Tobias Behrendt Kosmologisches Standardmodell Übersicht Einführung und kosmologisches Prinzip ART und Metriken Robertson-Walker-Metrik und

Mehr

Kosmologie und Astroteilchenphysik

Kosmologie und Astroteilchenphysik Kosmologie und Astroteilchenphysik Prof. Dr. Burkhard Kämpfer, Dr. Daniel Bemmerer Einführung in die Kosmologie Weltmodelle und kosmologische Inflation Thermische Geschichte des Universums Urknall-Nukleosynthese

Mehr

Urknall und. Entwicklung des Universums. Grundlegende Beobachtungen Das Big-Bang Modell Die Entwicklung des Universums 1.1

Urknall und. Entwicklung des Universums. Grundlegende Beobachtungen Das Big-Bang Modell Die Entwicklung des Universums 1.1 Urknall und Entwicklung des Universums Thomas Hebbeker RWTH Aachen Dies Academicus 08.06.2005 Grundlegende Beobachtungen Das Big-Bang Modell Die Entwicklung des Universums 1.1 Blick ins Universum: Sterne

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.

Mehr

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Arbeitsblätter zur Vergleichsklausur EF Arbeitsblatt I.1 Nullstellen Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Beachte den Satz: Ein Produkt wird null, wenn einer der

Mehr

Arbeitsblätter Förderplan EF

Arbeitsblätter Förderplan EF Arbeitsblätter Förderplan EF I.1 Nullstellen bestimmen Lösungen I.2 Parabeln: Nullstellen, Scheitelpunkte,Transformationen Lösungen I.3 Graphen und Funktionsterme zuordnen Lösungen II.1 Transformationen

Mehr

Abb lokales Maximum und Minimum

Abb lokales Maximum und Minimum .13 Lokale Extrema, Monotonie und Konvexität Wir kommen nun zu den ersten Anwendungen der Dierentialrechnung. Zwischen den Eigenschaten einer Funktion, dem Verlau des zugehörigen Graphen und den Ableitungen

Mehr

Kosmologie. Eine kurze Einführung. Rolf Landua CERN

Kosmologie. Eine kurze Einführung. Rolf Landua CERN Kosmologie Eine kurze Einführung Rolf Landua CERN Das Universum Vor dem 20. Jahrhundert schien das Universum ein ruhiger Platz zu sein. Es war nicht viel los. Die meisten Physiker glaubten das Universum

Mehr

Bayern Teil 1. Aufgabe 1. Abitur Mathematik: Musterlösung. Der Term unter der Wurzel darf nicht negativ werden. Es muss also gelten:

Bayern Teil 1. Aufgabe 1. Abitur Mathematik: Musterlösung. Der Term unter der Wurzel darf nicht negativ werden. Es muss also gelten: Abitur Mathematik: Bayern 2013 Teil 1 Aufgabe 1 a) 1. SCHRITT: DEFINITIONSMENGE BESTIMMEN Der Term unter der Wurzel darf nicht negativ werden. Es muss also gelten: 3x + 9 0 x 3 2. SCHRITT: NULLSTELLEN

Mehr

Theoretische Physik II Quantenmechanik

Theoretische Physik II Quantenmechanik Michael Czopnik Bielefeld, 11. Juli 014 Fakultät für Physik, Universität Bielefeld Theoretische Physik II Quantenmechanik Sommersemester 014 Lösung zur Probeklausur Aufgabe 1: (a Geben Sie die zeitabhängige

Mehr

Mikrowellen-Hintergrundstrahlung

Mikrowellen-Hintergrundstrahlung Mikrowellen-Hintergrundstrahlung Norbert Elsässer Universität Würzburg 22.1.2008 1 / 36 1 Eigenschaften 2 3 Bedeutung für die Kosmolgie 4 Unstimmigkeiten und Ausblick 2 / 36 Eigenschaften Eigenschaften

Mehr

Integral. Jörn Loviscach. Versionsstand: 5. Januar 2010, 16:36

Integral. Jörn Loviscach. Versionsstand: 5. Januar 2010, 16:36 Integral Jörn Loviscach Versionsstand: 5. Januar 2010, 16:36 1 Idee des Integrals Gegeben eine Funktion f, die auf dem Intervall [a, b] definiert ist, soll das bestimmte Integral [definite integral] b

Mehr

Raum, Zeit, Universum Die Rätsel des Beginns. Bild : pmmagazin

Raum, Zeit, Universum Die Rätsel des Beginns. Bild : pmmagazin Raum, Zeit, Universum Die Rätsel des Beginns Bild : pmmagazin Der Urknall Wie unser Universum aus fast Nichts entstand Inflationäres Universum Überall fast Nichts nur Fluktuationen Explosionsartige Expansion

Mehr

Dynamische Systeme in der Kosmologie

Dynamische Systeme in der Kosmologie 4. Theoretiker-Workshop der jungen Deutschen Physikalischen Gesellschaft auf dem Dürerhof in Waldkappel-Gehau Vortrag am 05. Januar 2013 1. In der Kosmologie macht man als Ansatz für ein Universum, dass

Mehr

Moderne Kosmologie. Michael H Soffel. Lohrmann Observatorium TU Dresden

Moderne Kosmologie. Michael H Soffel. Lohrmann Observatorium TU Dresden Moderne Kosmologie Michael H Soffel Lohrmann Observatorium TU Dresden Die Expansion des Weltalls NGC 1300 1 Nanometer = 1 Millionstel mm ; 10 Å = 1 nm Fraunhofer Spektrum Klar erkennbare Absorptionslinien

Mehr

Der Urknall. Wie unser Universum aus fast Nichts entstand

Der Urknall. Wie unser Universum aus fast Nichts entstand Der Urknall Wie unser Universum aus fast Nichts entstand Die großen Fragen Woraus besteht das Universum? Wie sah das Universum am Anfang aus? Plasma! und vorher? Woraus haben sich Strukturen entwickelt?

Mehr

Experimentelle Evidenzen für dunkle Materie. Ralf Koehler

Experimentelle Evidenzen für dunkle Materie. Ralf Koehler Experimentelle Evidenzen für dunkle Materie Ralf Koehler Content Einleitung und Motivation Zusammensetzung des Universums Messung der Hubble Konstanten Gesamtdichte Ω Dunkle Materie Ω DM Rotationskurven

Mehr

Matthias Bartelmann 1 & Tobias Kühnel 1 Max-Planck-Institut für Astrophysik. Kosmologie für die Schule p.1/30

Matthias Bartelmann 1 & Tobias Kühnel 1 Max-Planck-Institut für Astrophysik. Kosmologie für die Schule p.1/30 Kosmologie für die Schule Matthias Bartelmann 1 & Tobias Kühnel 1 Max-Planck-Institut für Astrophysik Kosmologie für die Schule p.1/30 Ein symmetrisches Universum Die moderne Kosmologie beruht auf Einsteins

Mehr

Algebraische Kurven. Vorlesung 25

Algebraische Kurven. Vorlesung 25 Prof. Dr. H. Brenner Osnabrück SS 2012 Algebraische Kurven Vorlesung 25 Lösung in Potenzreihen für algebraische Kurven Sei F 0 ein Polynom, das die ebene algebraische Kurve C beschreibe, und sei P = (0,0)

Mehr

Basisprüfung, Gruppe A Analysis I/II

Basisprüfung, Gruppe A Analysis I/II Offene Aufgaben. Jeder der folgenden sieben offenen Aufgaben ist eine einzelne thematisch verwandte Single Choice-Aufgabe vorangestellt. Beantworten Sie die Single Choice Aufgabe auf dem Antwortzettel.

Mehr

6 Metrische Klassifikation der Quadriken

6 Metrische Klassifikation der Quadriken 6 Metrische Klassifikation der Quadriken A Wiederholung von Kap V, 5 Sei A = (a ij ) eine symmetrische n n Matrix. n x 1 q(x) := x t Ax = a ij x i x j, x =. i,j=1 ist dann ein quadratisches Polynom in

Mehr

Die Entstehung des Universums - was wir wissen und wo wir rätseln

Die Entstehung des Universums - was wir wissen und wo wir rätseln Die Entstehung des Universums - was wir wissen und wo wir rätseln vor 8 Minuten vor vielen Tausenden von Jahren vor vielen Millionen von Jahren Galaxien Hubble deep field vor Milliarden Jahren Was

Mehr

Wie messen wir die Expansion des Universums?

Wie messen wir die Expansion des Universums? Wie messen wir die Expansion des Universums? die Schwierigkeiten kosmologischer Distanzmessung Ruth Durrer Département de physique théorique Winterhur, 17. Januar, 2010 Ruth Durrer (Université de Genève)

Mehr

Messung der kosmologischen Expansion mit Supernovae

Messung der kosmologischen Expansion mit Supernovae Übersicht Messung der kosmologischen Expansion mit Supernovae Erste Beobachtungen Supernovae Kosmologische Modelle Aktuelle Messungen und ihre Ergebnisse Diskussion der Ergebnisse Adrian Vogel, 17.06.2002

Mehr

Ort: Raum in der Mittelspange. Zeit: Mo 15-17h Mi 15-17h. Beginn Mo d

Ort: Raum in der Mittelspange. Zeit: Mo 15-17h Mi 15-17h. Beginn Mo d Spezialvorlesung WS 11/12. Vorl.Verz. 52302 Wolfgang Gebhardt: Vom Urknall zu den Sternen. Eine Einführung in die Kosmologie mit Übungen Ort: Raum 5.1.01 in der Mittelspange Zeit: Mo 15-17h Mi 15-17h Beginn

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13 Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten

Mehr

Themen. 1. Experimentelle Beobachtungen und Hubble. 2. Die Kosmologischen Epochen. 3. Die Hintergrundstrahlung

Themen. 1. Experimentelle Beobachtungen und Hubble. 2. Die Kosmologischen Epochen. 3. Die Hintergrundstrahlung 1 Themen 1. Experimentelle Beobachtungen und Hubble 2. Die Kosmologischen Epochen 3. Die Hintergrundstrahlung 4. Dunkle Materie / Energie als notwendige Konsequenz 5. Schwächen der Urknalltheorie 2 Allgemeines

Mehr

Und es werde Licht. Die kosmische Hintergrundstrahlung

Und es werde Licht. Die kosmische Hintergrundstrahlung Und es werde Licht Die kosmische Hintergrundstrahlung Vermessung der Hintergrundstrahlung WMAP COBE Planck Planck Foto des Urknalls COBE Foto des Urknalls WMAP Foto des Urknalls Planck Was sehen wir? Zustand

Mehr

Lösung - Serie 8. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) 1. Was für eine Kurve stellt die Parametrisierung

Lösung - Serie 8. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) 1. Was für eine Kurve stellt die Parametrisierung D-MAVT/D-MATL Analysis I HS 018 Dr. Andreas Steiger Lösung - Serie 8 MC-Aufgaben Online-Abgabe 1. Was für eine Kurve stellt die Parametrisierung sin1 t rt = cos1 t, t R dar? a Ein Kreis. Es gilt x t +

Mehr

1 Die Schrödinger Gleichung

1 Die Schrödinger Gleichung 1 Die Schrödinger Gleichung 1.1 Die Wellenfunktion und ihre Wahrscheinlichkeitsinterpretation Aus den Versuchen der Elektronenbeugung, hat ein Elektron auch Welleneigenschaften. Für freie Elektronen mit

Mehr

Wie. ist die Welt entstanden? (und nicht warum) Andreas Müller. 08. Februar MPI für extraterrestrische Physik Garching

Wie. ist die Welt entstanden? (und nicht warum) Andreas Müller. 08. Februar MPI für extraterrestrische Physik Garching Wie (und nicht warum) ist die Welt entstanden? 08. Februar 2007 Evangelisches Bildungswerk Feldkirchen Andreas Müller MPI für extraterrestrische Physik Garching Übersicht Eine Zeitreise an den Anfang Zeugen

Mehr

1 Q12: Lösungen bsv 2.2

1 Q12: Lösungen bsv 2.2 Q: Lösungen bsv... 3. 4. Graphisches Bestimmen einer Integralfunktion a) Nullstellen (laut Graph): x = 0; x = VZT x < 0 x = 0 0 < x < x > f(x) - 0 + 0 - G Io TIP HOP b) Aus der Abbildung ergibt sich: VZT

Mehr

Kosmologische Modelle Vortrag im Rahmen des Ausbildungsseminars Vom Urknall zu den Galaxien

Kosmologische Modelle Vortrag im Rahmen des Ausbildungsseminars Vom Urknall zu den Galaxien Kosmologische Modelle Vortrag im Rahmen des Ausbildungsseminars Vom Urknall zu den Galaxien von Marius Schmidl Universität Regensburg, Fachbereich Physik November 007 Kosmologische Modelle sind wie eben

Mehr

Das Standardmodell der Kosmologie Die Friedmann-Gleichung

Das Standardmodell der Kosmologie Die Friedmann-Gleichung Seminar: Theorie der Teilchen und Felder Das Standardmodell der Kosmologie Die Friedmann-Gleichung Bastian Brandt 1 1 bastianbrandt@uni-muenster.de Inhaltsverzeichnis 1 Inhaltsverzeichnis 1 Einleitung

Mehr

Kosmologische Evidenz für Dunkle Materie

Kosmologische Evidenz für Dunkle Materie Kosmologische Evidenz für Dunkle Materie Matthias Steinmetz (AIP) Überblick Klassische astronomische Evidenz für dunkle Materie und dunkle Energie Rotationskurven Galaxienhaufen Großskalige Strömungen

Mehr

Supernova Kosmologie Projekt

Supernova Kosmologie Projekt 1 [1] Heutiges Thema Supernova Kosmologie Projekt Neuere Entwicklungen der Kosmologie Supernova Kosmologie Projekt Achter Vortrag zum Thema Neuere Entwicklungen der Kosmologie im Rahmen des Astronomie

Mehr

Urs Wyder, 4057 Basel Funktionen. f x x x x 2

Urs Wyder, 4057 Basel Funktionen. f x x x x 2 Urs Wyder, 4057 Basel Urs.Wyder@edubs.ch Funktionen f 3 ( ) = + f ( ) = sin(4 ) Inhaltsverzeichnis DEFINITION DES FUNKTIONSBEGRIFFS...3. NOTATION...3. STETIGKEIT...3.3 ABSCHNITTSWEISE DEFINIERTE FUNKTIONEN...4

Mehr

1 Polynome III: Analysis

1 Polynome III: Analysis 1 Polynome III: Analysis Definition: Eine Eigenschaft A(x) gilt nahe bei a R, falls es ein δ > 0 gibt mit A(x) gilt für alle x (a δ, a + δ)\{a} =: U δ (a) Beispiele: x 2 5 nahe bei 0 (richtig). Allgemeiner:

Mehr

Einsteins kosmologische Konstante Unsinn oder eine neue Kraft?

Einsteins kosmologische Konstante Unsinn oder eine neue Kraft? Einsteins kosmologische Konstante Unsinn oder eine neue Kraft? Dominik Vilsmeier 21. November 2013 1 Inhaltsverzeichnis 1 Die Einstein-Gleichung erweitert um eine kosmologische Konstante Λ 3 1.1 statische

Mehr

Expansion+Dunkle- Energie.ppt

Expansion+Dunkle- Energie.ppt Expansion+Dunkle- Energie.ppt AC-Rathaus, 2. Februar 2006 J. Jersák, Theoretische Physik, RWTH Aachen 1 Expansion des Universums und dunkle Energie 2 Geschichte des Universums CMB Aus Dorn-Bader Schulbuch,

Mehr

11. Vorlesung Wintersemester

11. Vorlesung Wintersemester 11. Vorlesung Wintersemester 1 Ableitungen vektorieller Felder Mit Resultat Skalar: die Divergenz diva = A = A + A y y + A z z (1) Mit Resultat Vektor: die Rotation (engl. curl): ( rota = A Az = y A y

Mehr

BKO WFH11 - Material Vertretung-Mathematik Übungsaufgaben Differentialrechnung einschließlich Wendepunkte 68

BKO WFH11 - Material Vertretung-Mathematik Übungsaufgaben Differentialrechnung einschließlich Wendepunkte 68 Übungsaufgaben Differentialrechnung einschließlich Wendepunkte 68 Aufgabe Terme umformen, Gleichungen lösen und Polynomdivision 1 Gegeben ist f mit f ( x ) = ( x + 2 ) ( x - 5 ) ; x IR. 2 Gegeben ist f

Mehr

Vorlesung 2: 3. November 2006 Kosmologie, WS 06/07, Prof. W. de Boer 1

Vorlesung 2: 3. November 2006 Kosmologie, WS 06/07, Prof. W. de Boer 1 Vorlesung 2: Roter Faden: 0. Wiederholung 1. Mitbewegende Koordinaten 2. Wie berechnet man Skalenfaktor? 3. Alter des Universums 4. Größe des Universums 3. November 2006 Kosmologie, WS 06/07, Prof. W.

Mehr