1 Wahrscheinlichkeitsdichtefunktion

Größe: px
Ab Seite anzeigen:

Download "1 Wahrscheinlichkeitsdichtefunktion"

Transkript

1 1 Wahrscheinlichkeitsdichtefunktion Es wird zunächst der Begriff der Wahrscheinlichkeitsdichtefunktion vorgestellt, die zur statistischen Beschreibung von zufälligen Prozessen oder zufälligen Signalen herangezogen werden kann. Beispielsweise tritt in elektronischen Schaltungen oder aber auch bei einer nachrichtentechnischen Übertragung als unerwünschter Nebeneffekt Rauschen auf. Bei Rauschen handelt es sich um ein Zufallssignal, bei dem man, ausgehend von einem aktuellen Signalwert, meist keine Prognose über den weiteren Signalverlauf anstellen kann. Die diesem Rauschprozess zugeordnete Wahrscheinlichkeitsdichtefunktion kann man zu Hilfe nehmen, um die Wahrscheinlichkeit p() für das Auftreten eines bestimmten Amplitudenwerts in dem Signalverlauf anzugeben. Der Ausschnitt eines solchen Rauschsignals sowie die zugehörige Wahrscheinlichkeitsdichtefunktion sind im nachstehenden Bild dargestellt. Zeitlicher Signalverlauf und Wahrscheinlichkeitsdichtefunktion eines normalverteilten Zufallssignals H.G. Hirsch 1 CBM Praktikum-WS 005/06

2 Integriert man die Wahrscheinlichkeitsdichtefunktion über alle mögliche Amplitudenwerte, so muss sich dabei der Wert 1 ergeben, da man damit, anschaulich gesprochen, die Wahrscheinlichkeiten aller möglichen Amplitudenwerte zusammenfassend betrachtet: p ( ) d = 1 Für das zuvor genannte Beispiel erhält man eine kontinuierliche Wahrscheinlichkeitsdichtefunktion. Bei Prozessen, bei denen nur eine endliche Anzahl diskreter Zustände auftreten, erhält man eine diskrete Wahrscheinlichkeitsdichtefunktion, die die Wahrscheinlichkeitswerte für jeden der diskreten Zustände beinhaltet. Ein Beispiel dafür ist das Würfeln, bei dem nur 6 Zustände auftreten. Ein Beispiel aus der Nachrichtenübertragungstechnik ist die Betrachtung der Übertragung eines binären Datenstroms über einen gestörten Kanal. Dabei interessiert den Nachrichtentechniker die Wahrscheinlichkeit, dass innerhalb eines Blocks von n übertragenen Bits durch die Störungen auf dem Kanal k Bits gestört werden und dabei ihren Wert von 0 nach 1 oder umgekehrt ändern. Die Kenntnis dieses Wahrscheinlichkeitswerts kann benutzt werden, um sich geeignete Sicherungsmaßnahmen zu überlegen, die eine Erkennung oder sogar eine Korrektur von Übertragungsfehlern ermöglichen. Die Wahrscheinlichkeit für eine Störung von k Bits innerhalb eines Blocks von n Bits lässt sich aus der sogenannten Binomialverteilung bestimmen: n k p k q ( n k ), wobei p die Wahrscheinlichkeit für die Störung eines einzelnen Bits beschreibt und q = 1 p die Wahrscheinlichkeit einer störungsfreien Übertragung eines einzelnen Bits beinhaltet. Die Bitfehlerwahrscheinlichkeit p nimmt auf einem ISDN Kanal beispielsweise den sehr kleinen Wert von 10-7 an. Auf anderen Kanälen, z.b. im Mobilfunk, kann die Bitfehlerwahrscheinlichkeit sehr viel größere Werte annehmen. H.G. Hirsch CBM Praktikum-WS 005/06

3 Darstellung und Rechnung mit diskreter Wahrscheinlichkeitsdichtefunktion Die Wahrscheinlichkeitswerte einer Binomialverteilung sollen im folgenden mit Hilfe der bereits in Matlab vorhandenen Funktion binopdf bestimmt und graphisch dargestellt werden. Die Möglichkeiten des Aufrufs der Funktion können Sie mit help binopdf in Erfahrung bringen. Bestimmen Sie mit Hilfe der Funktion binopdf die Werte der Wahrscheinlichkeit für keinen, einen, zwei, bis hin zu 100 Bitfehlern in einem Block von 100 Bits. Nehmen Sie einen Wert von 0,1 (= 10%) für die Bitfehlerwahrscheinlichkeit an. Zur graphischen Darstellung der Wahrscheinlichkeitswerte können Sie beispielsweise die Funktion stem verwenden (siehe help stem). Stellen Sie damit die Wahrscheinlichkeitswerte über der Anzahl von 0 bis 30 Bitfehlern graphisch dar. Im weiteren ist es sinnvoll, die Aufrufe der Matlab Funktionen nicht auf der Kommandozeile durchzuführen, sondern diese in einem Matlab Skript zusammenzustellen. Öffnen Sie dazu ein Editor Fenster, in dem Sie in der oberen Menüleiste File New M-file auswählen. In einem Matlab Skript können Sie die Aufrufe mehrerer Matlab Funktionen zeilenweise zusammenstellen und diese in einer Tetdatei unter einem von Ihnen gewählten Namen abspeichern, der die Dateierweiterung.m besitzen muss. Im Matlab Kommandofenster können Sie Ihr Skript dann unter dem von Ihnen gewählten Namen (ohne.m!) aufrufen. Die prinzipielle Vorgehensweise zur Erstellung eines Skripts mit Hilfe des Editors wird im nachstehenden Bild veranschaulicht. H.G. Hirsch 3 CBM Praktikum-WS 005/06

4 Im folgenden sollen Sie die Wahrscheinlichkeiten für 0 bis hin zu 30 Bitfehlern innerhalb eines Blocks von 100 Bits für Bitfehlerwahrscheinlichkeit von 0,05, 0,1 und 0,15 bestimmen und graphisch darstellen. Erweitern Sie dazu Ihr Matlab Skript und verwenden Sie die Funktion subplot, mit der sich ein Graphikfenster zur Darstellung mehrerer Graphiken unterteilen lässt. Überprüfen Sie, dass die Summe aller Wahrscheinlichkeiten (für 0 bis 100 Bitfehler!) in den 3 Fällen gleich eins wird. Realisieren Sie die Summenbildung durch eine for Schleife. Zur Tetausgabe des Ergebnisses im Kommandofenster können Sie den Befehl fprintf verwenden. Bestimmen Sie für den Fall einer Bitfehlerwahrscheinlichkeit von 0,1 die a) Wahrscheinlichkeit des Auftretens von 0 bis einschließlich 10 Bitfehlern b) Wahrscheinlichkeit des Auftretens von 5 bis einschließlich 10 Bitfehlern in einem Block von 100 Bits. 3 Darstellung und Rechnung mit kontinuierlicher Wahrscheinlichkeitsdichtefunktion Als Beispiel einer kontinuierlichen Wahrscheinlichkeitsdichtefunktion wird die sogenannte Normaloder Gaußverteilung betrachtet. Bestimmen Sie in einem weiteren, neu zu erstellenden Matlab Skript mit Hilfe der Funktion normpdf die Werte der Normalverteilung mit einem Mittelwert von und einer Standardabweichung von,5 im Wertebereich von 5 bis +10 im Abstand von 0,01. Stellen Sie die Werte der Normalverteilung mit Hilfe der Funktion plot dar. Berechnen Sie die Wahrscheinlichkeit, dass ein normalverteiltes Zufallssignal einen Amplitudenwert kleiner gleich 1 annimmt bei Annahme des Mittelwerts von und der Standardabweichung von,5. Dazu muss eine Integration von - bis 1 über der Normalverteilung durchgeführt werden. Sie können dieses Integral durch eine numerische Integration mit Hilfe der Funktion quad bestimmen (Hinweis: Dazu müssen Sie die Funktion der Normalverteilung in einer separaten Matlab Funktion beschreiben, wie es in dem unter help quad angeführten Beispiel gezeigt wird!). Setzen Sie den Wert 0 (als Ersatz für -) als untere Integrationsgrenze ein. H.G. Hirsch 4 CBM Praktikum-WS 005/06

5 Überprüfen Sie den mit Hilfe der Funktion quad bestimmten Wert durch eine alternative Bestimmung dieses Werts als Wert der Verteilungsfunktion (cumulative distribution function) mit Hilfe der Matlab Funktion normcdf. 4 Mittelwert, Leistung und Varianz eines Signals Die Wahrscheinlichkeitsdichtefunktion kann zur Bestimmung des Mittelwerts und der Leistung eines Rauschsignals verwendet werden. Den Mittelwert bezeichnet man in der Elektrotechnik häufig als den Gleichanteil des Signals. Der Mittelwert eines Rauschsignals lässt sich aus dem zeitlichen Signalverlauf (t) berechnen zu µ 1 = lim T ( t) dt T 0 T Zur eakten Berechnung benötigt man einen möglichst langen zeitlichen Abschnitt des Signals. Besitzt man Kenntnis über die Wahrscheinlichkeitsdichtefunktion des Signals, so lässt sich der Mittelwert einfacher als der sogenannte Erwartungswert der Signalamplitude berechnen zu µ { } = = E p( d ) Man integriert dabei über den gesamten Amplitudenbereich, in dem dieses Signal Amplituden aufweist. Dabei wird durch die Betrachtung des Produktterms p( ) die Wahrscheinlichkeit für das Auftreten eines speziellen Amplitudenwerts jeweils mit berücksichtigt. Erweitern Sie das Matlab Skript, mit dem die Darstellung der Normalverteilung und die Rechnung mit dieser Verteilung durchgeführt wurde, um die Berechnung des Mittelwerts als Erwartungswert der Signalamplitude. Die Integration können Sie wiederum mit Hilfe der Funktion quad durchführen. Setzen Sie dabei als Integrationsgrenzen die Werte 0 und +0 (als Ersatz für - und +) ein. Das Ergebnis der Berechnung können Sie entweder im Kommandofenster (z.b. mit fprintf) ausgeben oder aber mit Hilfe der Funktion tet in der Graphik darstellen. Analog zur Bestimmung des Gleichanteils eines Signals lässt sich auch die Leistung eines Signals aus dem zeitlichen Signalverlauf bestimmen zu P 1 = lim T T T 0 ( t) dt H.G. Hirsch 5 CBM Praktikum-WS 005/06

6 Mit Hilfe der Wahrscheinlichkeitsdichtefunktion berechnet sich die Leistung als Erwartungswert der quadrierten Signalamplitude zu P E{ } = = p( ) d Erweitern Sie das Matlab Skript um die Berechnung der Leistung. Eine weitere, häufig benutzte Beschreibungsgröße stellt die Varianz des Signalverlaufs dar, die sich berechnen lässt zu σ E ( µ ) { } = p( ) ( µ ) = d Elektrotechnisch kann man die Varianz als die Leistung des Wechselanteils ansehen. Die Wurzel σ bezeichnet man als die Streuung. Erweitern Sie das Matlab Skript um eine Bestimmung der Varianz und der Streuung. Um die Bestimmung der zuvor eingeführten Größen nochmals zu testen, können Sie bei der Normalverteilung die Werte für den Mittelwert und die Varianz ändern. Überlegen Sie sich dabei im vorhinein, welche Werte sich für die Leistungen ergeben sollten. 5 Bestimmung der Wahrscheinlichkeitsdichte, des Mittelwerts und der Varianz für eine Würfelsumme Es wird das Würfeln mit 3 Würfeln betrachtet. Dabei sollen die Wahrscheinlichkeiten für das Auftreten einer bestimmten Augenzahlsumme (z.b. 1.Würfel zeigt,.würfel zeigt 6, 3.Würfel zeigt 3 Augenzahlsumme = +6+3=11) bestimmt werden. Wie groß ist die minimale Augenzahlsumme: Wie groß ist die maimale Augenzahlsumme: Schreiben Sie zunächst ein Matlab Skript, mit dem alle Kombinationsmöglichkeiten durchgespielt werden, die beim Würfeln mit 3 Würfeln auftreten. Für einen Würfel ließe sich das durch eine for Schleife realisieren, die für Werte von 1 bis 6 durchlaufen wird. Durch Verschachtelung weiterer for Schleifen lassen sich alle Kombinationsmöglichkeiten für, 3 und auch noch mehr Würfel durchspielen. Realisieren Sie dies in einem Matlab Skript für den Fall mit 3 Würfeln. Lassen Sie sich H.G. Hirsch 6 CBM Praktikum-WS 005/06

7 die Augenzahl jedes Würfels und die sich ergebende Summe für jede mögliche Kombination der Würfel anzeigen. Wie viele Kombinationsmöglichkeiten gibt es insgesamt bei 3 Würfeln: Definieren Sie sich nun in dem Matlab Skript vor dem Durchlaufen der for Schleifen mit der Funktion zero ein entsprechendes Feld von Werten, das sie zum Zählen der Häufigkeit jeder möglichen Augenzahlsumme benutzen können. Benutzen Sie dieses Zähl feld, um beim Durchspielen aller Kombinationsmöglichkeiten die Häufigkeit jeder Augenzahlsumme zu bestimmen. Stellen Sie die Häufigkeiten über der zugehörigen Augenzahlsumme mit Hilfe der Funktion bar graphisch dar. Bestimmen Sie aus den Häufigkeiten die Werte der Wahrscheinlichkeitsdichtefunktion. Ermitteln Sie Mittelwert und Varianz mit Hilfe der entsprechenden Erwartungswerte. H.G. Hirsch 7 CBM Praktikum-WS 005/06

Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung

Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung R. Brinkmann http://brinkmann-du.de Seite 5.05.0 Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung Erwartungswert binomialverteilter Zufallsgrößen Wird ein Bernoulli- Versuch, bei

Mehr

Gruppe. Kanalcodierung

Gruppe. Kanalcodierung Kanalcodierung Ziele Mit diesen rechnerischen und experimentellen Übungen wird die prinzipielle Vorgehensweise zur Kanalcodierung mit linearen Block-Codes und mit Faltungscodes erarbeitet. Die konkrete

Mehr

Puls-Code-Modulation. Thema: PCM. Ziele

Puls-Code-Modulation. Thema: PCM. Ziele Puls-Code-Modulation Ziele Mit diesen rechnerischen und experimentellen Übungen wird die Vorgehensweise zur Abtastung und linearen Quantisierung eines analogen Signals erarbeitet. Bei der Abtastung werden

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

Vorlesung Gesamtbanksteuerung Mathematische Grundlagen II Dr. Klaus Lukas Carsten Neundorf. Vorlesung 04 Mathematische Grundlagen II,

Vorlesung Gesamtbanksteuerung Mathematische Grundlagen II Dr. Klaus Lukas Carsten Neundorf. Vorlesung 04 Mathematische Grundlagen II, Vorlesung Gesamtbanksteuerung Mathematische Grundlagen II Dr. Klaus Lukas Carsten Neundorf 1 Was sollen Sie heute lernen? 2 Agenda Wiederholung stetige Renditen deskriptive Statistik Verteilungsparameter

Mehr

Woche 2: Zufallsvariablen

Woche 2: Zufallsvariablen Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 17/19, 24.04.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Teil III Zufallsvariablen Wahrscheinlichkeit

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Eindimensionale Zufallsvariablen

Eindimensionale Zufallsvariablen Eindimensionale Grundbegriffe Verteilungstypen Diskrete Stetige Spezielle Maßzahlen für eindimensionale Erwartungswert Varianz Standardabweichung Schwankungsintervalle Bibliografie Bleymüller / Gehlert

Mehr

Prof. Dr. Stefan Weinzierl Aufgabe: Amplitudenstatistik analoger Audiosignale. Abb. 1: WDF eines Audiosignals. p X.

Prof. Dr. Stefan Weinzierl Aufgabe: Amplitudenstatistik analoger Audiosignale. Abb. 1: WDF eines Audiosignals. p X. Audiotechnik II 1.Übungstermin Prof. Dr. Stefan Weinzierl 21.1.21 1. Aufgabe: Amplitudenstatistik analoger Audiosignale a. Ein Signal x(t) hat die durch Abb. 1 gegebene Wahrscheinlichkeitsdichtefunktion

Mehr

Mathematik für Informatiker III im WS 05/06 Musterlösung zur 4. Übung

Mathematik für Informatiker III im WS 05/06 Musterlösung zur 4. Übung Mathematik für Informatiker III im WS 5/6 Musterlösung zur. Übung erstellt von K. Kriegel Aufgabe : Wir betrachten den Wahrscheinlichkeitsraum der Punkte P =(a, b) aus dem Einheitsquadrat [, ] [, ] mit

Mehr

Hypothesentest, ein einfacher Zugang mit Würfeln

Hypothesentest, ein einfacher Zugang mit Würfeln R. Brinkmann http://brinkmann-du.de Seite 4..4 ypothesentest, ein einfacher Zugang mit Würfeln Von einem Laplace- Würfel ist bekannt, dass bei einmaligem Wurf jede einzelne der Zahlen mit der Wahrscheinlichkeit

Mehr

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung Heute Die Binomialverteilung Poissonverteilung Approximation der Binomialverteilung durch die Normalverteilung Arbeiten mit Wahrscheinlichkeitsverteilungen Die Binomialverteilung Man werfe eine Münze n

Mehr

Wird ein Bernoulli- Versuch, bei dem die Trefferwahrscheinlichkeit p = 0,2 ist, n = 40 mal durchgeführt, dann erwarten wir im Mittel 8 Treffer.

Wird ein Bernoulli- Versuch, bei dem die Trefferwahrscheinlichkeit p = 0,2 ist, n = 40 mal durchgeführt, dann erwarten wir im Mittel 8 Treffer. R. Brinkmann http://brinkmann-du.de Seite 1 06.1008 Erwartungswert binomialverteilter Zufallsgrößen. Wird ein Bernoulli- Versuch, bei dem die Trefferwahrscheinlichkeit p = 0,2 ist, n = 40 mal durchgeführt,

Mehr

4 MEHRDIMENSIONALE VERTEILUNGEN

4 MEHRDIMENSIONALE VERTEILUNGEN 4 MEHRDIMENSIONALE VERTEILUNGEN 4.14 Stochastische Vektoren 1. Der Merkmalraum des stochastischen Vektors (X, Y ) sei M = R 2. Betrachten Sie die folgenden Ereignisse und ihre Wahrscheinlichkeiten: A 1

Mehr

A3.Die Lebensdauer eines elektronischen Gerätes werde als normalverteilt angenommen. Der Erwartungswert betrage

A3.Die Lebensdauer eines elektronischen Gerätes werde als normalverteilt angenommen. Der Erwartungswert betrage Aufgaben ~ Beispiele A1. Wir spielen Roulette mit einem Einsatz von 5 mit der Glückszahl 15. Die Wahrscheinlichkeiten und Auszahlungen beim Roulette sind in folgender Tabelle zusammengefasst: Ereignis

Mehr

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5 4 Verteilungen und ihre Kennzahlen 1 Kapitel 4: Verteilungen und ihre Kennzahlen A: Beispiele Beispiel 1: Eine diskrete Zufallsvariable X, die nur die Werte 1,, 3, 4, 5 mit positiver Wahrscheinlichkeit

Mehr

Übungen mit dem Applet Zentraler Grenzwertsatz

Übungen mit dem Applet Zentraler Grenzwertsatz Zentraler Grenzwertsatz 1 Übungen mit dem Applet Zentraler Grenzwertsatz 1 Statistischer Hintergrund... 1.1 Zentraler Grenzwertsatz... 1. Beispiel Würfeln... 1.3 Wahrscheinlichkeit und relative Häufigkeit...3

Mehr

Statistik für Ingenieure Vorlesung 3

Statistik für Ingenieure Vorlesung 3 Statistik für Ingenieure Vorlesung 3 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 14. November 2017 3. Zufallsgrößen 3.1 Zufallsgrößen und ihre Verteilung Häufig sind

Mehr

Kapitel VII. Einige spezielle stetige Verteilungen

Kapitel VII. Einige spezielle stetige Verteilungen Kapitel VII Einige spezielle stetige Verteilungen D. 7.. (Normalverteilung) Eine stetige Zufallsgröße X sei als normalverteilt bezeichnet, wenn sie folgende Wahrscheinlichkeitsdichte besitzt: µ f ( ; µ,

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler [email protected] Mainz, 29. Oktober 2007 1. Statistik 1.1 Wahrscheinlichkeit Pragmatisch: p(e) = n(e) N für N sehr groß Kombination von Wahrscheinlichkeiten p(a oder B) =

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 20/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt 4 Lösungshinweise (ohne Ganantie auf Fehlerfreiheit. Wenn man beim Roulette auf Rot oder Schwarz setzt, erhält

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr 1.4.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen Sei X eine kontinuierliche Zufallsvariable. Wir können aus X leicht eine diskrete Zufallsvariable konstruieren, indem wir

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best [email protected] Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Wahrscheinlichkeitsfunktionen

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 15. April 2019 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 1. April

Mehr

3) Testvariable: T = X µ 0

3) Testvariable: T = X µ 0 Beispiel 4.9: In einem Molkereibetrieb werden Joghurtbecher abgefüllt. Der Sollwert für die Füllmenge dieser Joghurtbecher beträgt 50 g. Aus der laufenden Produktion wurde eine Stichprobe von 5 Joghurtbechern

Mehr

WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X.

WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X. Fragenkatalog zur Übung Methoden der empirischen Sozialforschung WS 2014/15 Hier finden Sie die denkbaren Fragen zum ersten Teil der Übung. Das bedeutet, dass Sie zu diesem Teil keine anderen Fragen im

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

Der Zentrale Grenzwertsatz

Der Zentrale Grenzwertsatz QUALITY-APPS Applikationen für das Qualitätsmanagement Der Zentrale Grenzwertsatz Autor: Dr. Konrad Reuter Für ein Folge unabhängiger Zufallsvariablen mit derselben Verteilung und endlichem Erwartungswert

Mehr

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Wahrscheinlichkeitstheorie und Statistik Definitionen und Sätze Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2018 2.5.2018 Diskrete Wahrscheinlichkeitsräume Diskreter

Mehr

Vorlesung Gesamtbanksteuerung Mathematische Grundlagen II Dr. Klaus Lukas Carsten Neundorf

Vorlesung Gesamtbanksteuerung Mathematische Grundlagen II Dr. Klaus Lukas Carsten Neundorf Vorlesung Gesamtbanksteuerung Mathematische Grundlagen II Dr. Klaus Lukas Carsten Neundorf 1 Agenda Wiederholung stetige Renditen deskriptive Statistik Verteilungsparameter Erwartsungswert und Varianz

Mehr

Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung?

Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung? Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße Von Florian Modler In diesem Artikel möchte ich einen kleinen weiteren Exkurs zu meiner Serie Vier Wahrscheinlichkeitsverteilungen geben

Mehr

und mit t in Sekunden wird mit einer Frequenz von 8000 Hz abgetastet. Die Abtastung beginnt bei t=0 mit dem Zeitindex n=0.

und mit t in Sekunden wird mit einer Frequenz von 8000 Hz abgetastet. Die Abtastung beginnt bei t=0 mit dem Zeitindex n=0. Aufgabe 1 Das periodische Signal x t) 0,5 sin(2 f t) 0,5 cos(2 f t) mit f 1000Hz und mit f 2000Hz ( 1 2 1 2 und mit t in Sekunden wird mit einer Frequenz von 8000 Hz abgetastet. Die Abtastung beginnt bei

Mehr

Auswertung und Lösung

Auswertung und Lösung Dieses Quiz soll Ihnen helfen, Kapitel 4.6 und 4.7 besser zu verstehen. Auswertung und Lösung Abgaben: 59 / 265 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: 0 Durchschnitt: 4.78 1 Frage

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:

Mehr

Statistik III. Walter Zucchini Fred Böker Andreas Stadie

Statistik III. Walter Zucchini Fred Böker Andreas Stadie Statistik III Walter Zucchini Fred Böker Andreas Stadie Inhaltsverzeichnis 1 Zufallsvariablen und ihre Verteilung 1 1.1 Diskrete Zufallsvariablen........................... 1 1.2 Stetige Zufallsvariablen............................

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Statistik I für Betriebswirte Vorlesung 4

Statistik I für Betriebswirte Vorlesung 4 Statistik I für Betriebswirte Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 25. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

1. Was ist eine Wahrscheinlichkeit P(A)?

1. Was ist eine Wahrscheinlichkeit P(A)? 1. Was ist eine Wahrscheinlichkeit P(A)? Als Wahrscheinlichkeit verwenden wir ein Maß, welches die gleichen Eigenschaften wie die relative Häufigkeit h n () besitzt, aber nicht zufallsbehaftet ist. Jan

Mehr

Berechnung von W für die Elementarereignisse einer Zufallsgröße

Berechnung von W für die Elementarereignisse einer Zufallsgröße R. Albers, M. Yanik Skript zur Vorlesung Stochastik (lementarmathematik) 5. Zufallsvariablen Bei Zufallsvariablen geht es darum, ein xperiment durchzuführen und dem entstandenen rgebnis eine Zahl zuzuordnen.

Mehr

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Aufgabe 1: Wieviele der folgenden Variablen sind quantitativ stetig? Schulnoten, Familienstand, Religion, Steuerklasse, Alter, Reaktionszeit, Fahrzeit,

Mehr

Stetige Verteilungen Rechteckverteilung

Stetige Verteilungen Rechteckverteilung Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a

Mehr

Spezielle Eigenschaften der Binomialverteilung

Spezielle Eigenschaften der Binomialverteilung Spezielle Eigenschaften der Binomialverteilung Wir unterscheiden: 1) die Wahrscheinlichkeitsfunktion einer diskreten Variablen 2) die Verteilungsfunktion einer diskreten Variablen. 1) Die Wahrscheinlichkeitsfunktion

Mehr

Chi-Quadrat-Verteilung

Chi-Quadrat-Verteilung Chi-Quadrat-Verteilung Wikipedia http://de.wikipedia.org/wiki/chi-quadrat-verteilung 1 von 7 6/18/2009 6:13 PM Chi-Quadrat-Verteilung aus Wikipedia, der freien Enzyklopädie Die Chi-Quadrat-Verteilung ist

Mehr

Dr. Quapp: Statistik für Mathematiker mit SPSS. Lösungs Hinweise 1. Übung Beschreibende Statistik & Verteilungsfunktion

Dr. Quapp: Statistik für Mathematiker mit SPSS. Lösungs Hinweise 1. Übung Beschreibende Statistik & Verteilungsfunktion Dr. Quapp: Statistik für Mathematiker mit SPSS Lösungs Hinweise. Übung Beschreibende Statistik & Verteilungsfunktion. Die folgende Tabelle enthält die Pulsfrequenz einer Versuchsgruppe von 39 Personen:

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 11. November 2010 1 Erwartungswert und Varianz Erwartungswert Varianz und Streuung Rechenregeln Binomialverteilung

Mehr

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments 73 Hypothesentests 73.1 Motivation Bei Hypothesentests will man eine gewisse Annahme über eine Zufallsvariable darauf hin überprüfen, ob sie korrekt ist. Beispiele: ( Ist eine Münze fair p = 1 )? 2 Sind

Mehr

Modellierung- und Simulation Mathis Plewa ( )

Modellierung- und Simulation Mathis Plewa ( ) Inhaltsverzeichnis Abbildungsverzeichnis... 1 Übungsaufgabe: Zufallsgeneratoren und Histogramme... 2 Standard Gleichverteilung... 2 Gaußverteilung... 3 Exponentialverteilung... 4 Übungsaufgabe: Geometrische

Mehr

Optimalcodierung. Thema: Optimalcodierung. Ziele

Optimalcodierung. Thema: Optimalcodierung. Ziele Optimalcodierung Ziele Diese rechnerischen und experimentellen Übungen dienen der Vertiefung der Kenntnisse im Bereich der Optimalcodierung, mit der die Zeichen diskreter Quellen codiert werden können.

Mehr

Demokurs. Modul Grundlagen der Wirtschaftsmathematik Grundlagen der Statistik

Demokurs. Modul Grundlagen der Wirtschaftsmathematik Grundlagen der Statistik Demokurs Modul 31101 Grundlagen der Wirtschaftsmathematik und Statistik Kurs 40601 Grundlagen der Statistik 13. Juli 2010 KE 1 2.4 Schiefe und Wölbung einer Verteilung Seite: 53 2.4 Schiefe und Wölbung

Mehr

Pfadregel. 400 Kugeln durchlaufen die möglichen Pfade. Das Diagramm zeigt das Ergebnis am Ende der Versuchsdurchführung.

Pfadregel. 400 Kugeln durchlaufen die möglichen Pfade. Das Diagramm zeigt das Ergebnis am Ende der Versuchsdurchführung. Würfelsimulation 1) Bezeichnen Sie in den Säulendiagrammen (Histogrammen - 2. Graphik) die senkrechten Achsen und vervollständigen Sie im ersten Diagramm die Achseneinteilung. Lesen Sie im Histogramm für

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Klausur vom

Klausur vom UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Dominik Faas Stochastik Wintersemester 00/0 Klausur vom 09.06.0 Aufgabe (++4=9 Punkte) Bei einer Umfrage wurden n Personen befragt, an wievielen Tagen

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Statistik für NichtStatistiker

Statistik für NichtStatistiker Statistik für NichtStatistiker Zufall und Wahrscheinlichkeit von Prof. Dr. Karl Bosch 5., verbesserte Auflage R. Oldenbourg Verlag München Wien Inhaltsverzeichnis 1. ZufalLsexperimente und zufällige Ereignisse

Mehr

Die Normalverteilung. Mathematik W30. Mag. Rainer Sickinger LMM, BR. v 0 Mag. Rainer Sickinger Mathematik W30 1 / 51

Die Normalverteilung. Mathematik W30. Mag. Rainer Sickinger LMM, BR. v 0 Mag. Rainer Sickinger Mathematik W30 1 / 51 Mathematik W30 Mag. Rainer Sickinger LMM, BR v 0 Mag. Rainer Sickinger Mathematik W30 1 / 51 Einführung Heute nehmen wir uns die Normalverteilung vor. Bis jetzt konnte unsere Zufallsvariable (das X in

Mehr

Linearer und quadratischer Mittelwert

Linearer und quadratischer Mittelwert Linearer und quadratischer ittelwert Erwartungswerte (auch Schar- oder Ensemblemittelwerte) betrachtet wird zunächst eine große Anzahl von Zufallssignalen; dabei ist x k (t) die k-te von insgesamt Realisierungen

Mehr

Auswertung von Messungen Teil II

Auswertung von Messungen Teil II Auswertung von Messungen Teil II 1. Grundgesamtheit und Stichprobe. Modellverteilungen.1 Normalverteilung. Binominalverteilung.3 Poissonverteilung.4 Näherungen von Binominal- und Poissonverteilung 3. Zentraler

Mehr

Zuverlässigkeitstheorie

Zuverlässigkeitstheorie 3. Grundbegriffe der Wahrscheinlichkeitsrechnung Prof. Jochen Seitz Fachgebiet Kommunikationsnetze 20. November 2008 Übersicht Gesetz der großen Zahlen von Bernoulli 1 Gesetz der großen Zahlen von Bernoulli

Mehr

Übung 1: Wiederholung Wahrscheinlichkeitstheorie

Übung 1: Wiederholung Wahrscheinlichkeitstheorie Übung 1: Wiederholung Wahrscheinlichkeitstheorie Ü1.1 Zufallsvariablen Eine Zufallsvariable ist eine Variable, deren numerischer Wert solange unbekannt ist, bis er beobachtet wird. Der Wert einer Zufallsvariable

Mehr

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.)

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) 1 Zusammenfassung Bedingte Verteilung: P (y x) = P (x, y) P (x) mit P (x) > 0 Produktsatz P (x, y) = P (x y)p (y) = P (y x)p (x) Kettenregel

Mehr

TU DORTMUND Sommersemester 2018

TU DORTMUND Sommersemester 2018 Fakultät Statistik. April 08 Blatt Aufgabe.: Wir betrachten das Zufallsexperiment gleichzeitiges Werfen zweier nicht unterscheidbarer Würfel. Sei A das Ereignis, dass die Augensumme beider Würfel ungerade

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 8. Vorlesung Pseudozufallszahlen sind, wie der Name schon sagt, keine echten Zufallszahlen, sondern werden durch Generatoren erzeugt. Als Pseudozufallszahlen bezeichnet man Zahlenfolgen die durch einen

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und

Mehr

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung Mathematik: LehrerInnenteam Arbeitsblatt 7-7. Semester ARBEITSBLATT Erwartungswert, Varianz und Standardabweichung Die Begriffe Varianz und Standardabweichung sind uns bereits aus der Statistik bekannt

Mehr

Übungen zum MATLAB Kurs Teil

Übungen zum MATLAB Kurs Teil Übungen zum MATLAB Kurs Teil 1 29.09.04 Indizierung Erzeugen Sie eine 5 x 5 Matrix A mit der Funktion rand Überlegen und testen Sie die Ergebnisse der folgende Ausdrücke: A([3 5],:) A(2,:) A([3,5]) A(:)

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung 11. Vorlesung Jochen Köhler 10.05.011 1 Inhalt der heutigen Vorlesung Zusammenfassung Parameterschätzung Übersicht über Schätzung und Modellbildung Modellevaluation

Mehr

Bachelorprüfung: Statistik (1 Stunde)

Bachelorprüfung: Statistik (1 Stunde) Prof. H.R. Künsch D-BIOL, D-CHAB Winter 2010 Bachelorprüfung: Statistik (1 Stunde) Bemerkungen: Es sind alle mitgebrachten schriftlichen Hilfsmittel und der Taschenrechner erlaubt. Natels sind auszuschalten!

Mehr

Approximation der Binomialverteilung durch die Normalverteilung

Approximation der Binomialverteilung durch die Normalverteilung R. Brinkmann http://brinkmann-du.de Seite 4.0.007 Approimation der Binomialverteilung durch die Normalverteilung Histogramme von Binomialverteilungen sind für nicht zu kleine n glockenförmig. Mit größer

Mehr

Übungsscheinklausur,

Übungsscheinklausur, Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilung diskreter Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

1.5.4 Quantile und Modi. Bem [Quantil, Modus]

1.5.4 Quantile und Modi. Bem [Quantil, Modus] 1.5.4 Quantile und Modi 1.5 Erwartungswert und Varianz Bem. 1.73. [Quantil, Modus] und Vertei- Analog zu Statistik I kann man auch Quantile und Modi definieren. Gegeben sei eine Zufallsvariable X mit Wahrscheinlichkeitsverteilung

Mehr

Die tatsächlichen Breiten und Höhen der Säulen und damit der Flächeninhalt bleiben unverändert:

Die tatsächlichen Breiten und Höhen der Säulen und damit der Flächeninhalt bleiben unverändert: Flächeninhalte als Wahrscheinlichkeiten Eine Zufallsvariable X kann die Werte, 2, 3, 4, 5 oder 6 annehmen. Die zugehörigen Wahrscheinlichkeiten sind rechts in einem Stabdiagramm dargestellt. k 2 3 4 5

Mehr

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung 2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 20. April 2017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 18.

Mehr

Wahrscheinlichkeit und Statistik BSc D-INFK

Wahrscheinlichkeit und Statistik BSc D-INFK Prof. Dr. P. Bühlmann ETH Zürich Winter 2010 Wahrscheinlichkeit und Statistik BSc D-INFK 1. (10 Punkte) Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete

Mehr

Serie 9, Musterlösung

Serie 9, Musterlösung WST www.adams-science.org Serie 9, Musterlösung Klasse: 4U, 4Mb, 4Eb Datum: FS 18 1. Mädchen vs. Knaben 442187 Unter 3000 in einer Klinik neugeborenen Kindern befanden sich 1578 Knaben. Testen Sie mit

Mehr

1 Dichte- und Verteilungsfunktion

1 Dichte- und Verteilungsfunktion Tutorium Yannick Schrör Klausurvorbereitungsaufgaben Statistik Lösungen [email protected] 9.2.26 ID /455 Dichte- und Verteilungsfunktion Ein tüchtiger Professor lässt jährlich 2 Bücher drucken. Die

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

5.4 Verteilungsfunktion Verteilungsfunktion diskreten Zufallsvariablen stetigen Zufallsvariablen Verteilungsfunktion

5.4 Verteilungsfunktion Verteilungsfunktion diskreten Zufallsvariablen stetigen Zufallsvariablen Verteilungsfunktion 5. Verteilungsfunktion Die Verteilungsfunktion gibt an welche Wahrscheinlichkeit sich bis zu einem bestimmten Wert der Zufallsvarialben X kumuliert Die Verteilungsfunktion F() gibt an, wie groß die die

Mehr

Binomialverteilung. Häufigkeit, mit der Ereignis A bei n unabhängigen Versuchen eintritt. Träger von X : X = {0, 1, 2,..., n}.

Binomialverteilung. Häufigkeit, mit der Ereignis A bei n unabhängigen Versuchen eintritt. Träger von X : X = {0, 1, 2,..., n}. Binomialverteilung Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder nicht. X = Häufigkeit, mit

Mehr