Mathematische Grundlagen (Bayes sches Lernen)

Größe: px
Ab Seite anzeigen:

Download "Mathematische Grundlagen (Bayes sches Lernen)"

Transkript

1 Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Mathematische Grundlagen (Bayes sches Lernen) Tobias Scheffer Michael Großhans Paul Prasse Uwe Dick

2 Anwendungsbeispiel 1: Diagnostik Neuer Test wurde entwickelt Frage: Wie sicher ist die Person krank, wenn positives Testergebnis vorliegt? Studie: Auf kranken und gesunden Testpersonen (Zustand ist bekannt) wird Test angewandt Scheffer/Großhans/Prasse: Sprachtechnologie 2

3 Anwendungsbeispiel 2: Impfstoff Neuer Impfstoff wurde entwickelt Frage: Wie wirksam ist er? Wie oft verhindert er eine Infektion? Studie: Testpersonen werden geimpft; später wird untersucht, ob sie sich angesteckt haben Scheffer/Großhans/Prasse: Sprachtechnologie 3

4 Was untersucht man? Deskriptive Statistik: Beschreibung, Untersuchung von Eigenschaften von Stichproben (langweilig). Welcher Anteil der Testpersonen ist gesund geblieben? (= abzählen) Induktive Statistik: Welche Schlussfolgerungen über die Grundgesamtheit lassen sich aus Stichproben ziehen? (spannend, maschinelles Lernen). Wie viele Personen werden in Zukunft gesund bleiben? Wie sicher sind wir uns dessen? 4

5 Wahrscheinlichkeiten Frequentistische objektive Wahrscheinlichkeiten Wahrscheinlichkeit als relative Häufigkeit mit der ein Ereignis bei einer großen Zahl unabhängiger und wiederholter Experimente eintritt. Bayes sche, subjektive Wahrscheinlichkeiten Wahrscheinlichkeit als persönliche Überzeugung, dass ein Ereignis eintritt. Unsicherheit bedeutet hier Mangel an Information. Wie wahrscheinlich ist es, dass der Impfstoff wirkt? Neue Informationen (z.b. Studienergebnisse) können diese subjektive Wahrscheinlichkeiten verändern. 5

6 Wahrscheinlichkeitstheorie Zufallsexperiment: Definierter Prozess in dem eine Beobachtung ω erzeugt wird (Elementarereignis). Ereignisraum Ω: Menge aller möglichen Elementarereignisse; Anzahl aller Elementarereignisse ist Ω. Ereignis A: Teilmenge des Ereignisraums. Wahrscheinlichkeit P: Funktion welche Wahrscheinlichkeitsmasse auf Ereignisse A aus Ω verteilt. P( A) : P A 6

7 Wahrscheinlichkeitstheorie Wahrscheinlichkeit = normiertes Maß definiert durch Kolmogorow-Axiome: Wahrscheinlichkeit von Ereignis : Sicheres Ereignis: Wahrscheinlichkeit dass Ereignis oder Ereignis B eintritt mit A B (beide Ereignisse sind inkompatibel): Allgemein gilt: P( ) 1 A 0 PA ( ) 1 A P( A B) P( A) P( B) P( A B) P( A) P( B) P( A B) 7

8 Zufallsvariablen Zufallsvariable X ist Abbildung eines elementaren Ereignisses auf numerischen Wert X : x bzw. auf m-dimensionalen Vektor X :. x Maschinelles Lernen: auch Abbildungen auf Bäume und andere Strukturen möglich. Maschinelles Lernen: gleichgesetzt mit Ereignisraum. Bild der Zufallsvariable: X : X ( ) m 8

9 Diskrete Zufallsvariablen X nennt man eine diskrete Zufallsvariable, wenn sie nur diskrete Werte annehmen kann. Wahrscheinlichkeitsfunktion P weist jedem möglichen Wert einer Zufallsvariable eine Wahrscheinlichkeit zu. Summe der Verteilungsfunktion über alle Werte xx P X x 1 P X x 0;1 9

10 Stetige Zufallsvariablen X nennt man eine stetige Zufallsvariable, wenn sie sie kontinuierliche Werte annehmen kann. Die Werte der Verteilungsfunktion P entsprechen an jeder Stelle den kumulierten Wahrscheinlichkeiten P x P X x 0;1 Die Werte der Dichtefunktion p entsprechen an jeder Stelle den Änderungen der Verteilungsfunktion P X x px a mit px x dx x xa X 1 10

11 Zufallsvariablen Diskret: Z.B. Münzwurf Stegig: Z.B. Gaußsche Normalverteilung 11

12 Feinheiten der Notation P X Wahrscheinlichkeitsfunktion bzw. p X Dichtefunktion über alle möglichen Werte von X P X x konkreter Wahrscheinlichkeitswert bzw. p x konkreter Wert der Dichtefunktion X P x verkürzte Schreibweise von P X x p bzw. von px x wenn eindeutig ist, x welche Zufallsvariable gemeint ist. Meist werden Wahrscheinlichkeitsfunktion und Dichtefunktion nicht getrennt. 12

13 Erwartungswert Der Erwartungswert E(X) ist der gewichtete Mittelwert der möglichen Werte von X diskrete Zufallsvariable: E X xp X x xx kontinuierliche Zufallsvariable: E X xpx x dx X Die Varianz Var(X) ist der erwarte quadratische Abstand zum Erwartungswert von X 2 Var X E X E X 13

14 Erwartungswert: Beispiel St. Petersburger Spiel: Werfen einer Münze, bis sie zum ersten Mal Kopf zeigt passiert dies gleich beim ersten Wurf, gewinnt man 1 Euro falls nicht, verdoppelt sich der Gewinn so oft man Zahl geworfen hat der Gewinn den man am Ende erhält ist Zufallsvariable X Erwarteter (durchschnittlicher) Gewinn: E X xp X x xx

15 Gemeinsame Wahrscheinlichkeit ist die gemeinsame Wahrscheinlichkeitsverteilung der Zufallsvariablen X 1 und X 2 gemeinsamer Wertebereich: z.b.: X X 1 2 X kartesisches Produkt X 1 2 { (infiziert,infiziert), (infiziert, gesund), (gesund, infiziert), (gesund, gesund) } 15

16 Bedingte Wahrscheinlichkeiten Bedingte Wahrscheinlichkeit: Wahrscheinlichkeit eines der möglichen Werte von X mit Zusatzinformation: Diskrete Zufallsvariable: Stetige Zufallsvariable: P X x zusätzliche Information p X x zusätzliche Information 16

17 Abhängige Zufallsvariablen Zufallsvariablen X 1 und X 2 können abhängig oder unabhängig sein Unabhängig: P(X 1, X 2 ) = P(X 1 ) P(X 2 ) Beispiel: 2 aufeinanderfolgende Münzwürfe Ergebnis des zweiten hängt nicht vom ersten ab Impliziert: P(X 2 X 1 ) = P(X 2 ) Abhängig: P(X 1, X 2 )= P(X 1 ) P(X 2 X 1 ) P(X 1 ) P(X 2 ) Beispiel: Grippeinfektionen von 2 Sitznachbarn 17

18 Bedingte Unabhängigkeit Zufallsvariablen können abhängig sein, jedoch unabhängig gegeben eine weitere Zufallsvariable Die Zufallsvariablenvariablen X 1 und X 2 heißen bedingt unabhängig gegeben Y wenn gilt: P(X 1,X 2 Y) = P(X 1 Y) P(X 2 Y) Beispiel: Wirkrate des Impfstoffs bekannt Infektionswahrscheinlichkeiten der Personen unabhängig Wirkrate des Impfstoffs unbekannt Beobachtung eines Teils der Testpersonen gibt Information über restliche Testpersonen 18

19 Rechenregeln Produktregel: verallgemeinert: Summenregel: Sind Ereignisse A, B inkombatibel: P( A B) P( A) P( B) Randverteilung: 19

20 Rechenregeln Satz von Bayes: Inferiere P X Y aus P Y X, P X und P Y, P Y, X P X Y P Y P Y X P X PY X P X P X Y PY P X Y 20

21 Anwendungsbeispiel 1: Diagnostik Neuer Test wurde entwickelt Frage: Wie sicher ist die Person krank, wenn positives Testergebnis vorliegt? Studie: Auf kranken und gesunden Testpersonen (Zustand ist bekannt) wird Test angewandt Scheffer/Großhans/Prasse: Sprachtechnologie 21

22 Anwendungsbeispiel 2: Impfstoff Neuer Impfstoff wurde entwickelt Frage: Wie wirksam ist er? Wie oft verhindert er eine Infektion? Studie: Testpersonen werden geimpft; später wird untersucht, ob sie sich angesteckt haben Scheffer/Großhans/Prasse: Sprachtechnologie 22

23 Satz von Bayes: Beispiel Diagnostik-Beispiel: P(positiv krank) = 0,98 P(positiv gesund) = 0,05 P(krank) = 0,02 Gesucht für Testergebnis Test: Wahrscheinlichkeit, dass der Patient krank ist: Plausibelste Ursache arg max P Test P P krank, gesund Wahrscheinlichste Ursache P P krank Test arg max P P Test krank, gesund 23

24 Satz von Bayes Wahrscheinlichkeit der Ursache Urs. für eine Beobachtung Beob.: PUrs. PUrs. Beob. PBeob. Urs. P Beob. Beob. Beob. P P u P u uursachen P(Urs.): A-Priori-Wahrscheinlichkeit, Prior. P(Beob. Urs.): Likelihood. P(Urs. Beob.): A-Posteriori-Wahrscheinlichkeit, Posterior. 24

25 Prior, Likelihood und Posterior Subjektive Einschätzung, bevor man die Daten gesehen hat (a priori): Prior-Verteilung über die Modelle P(Krankheit) P(q), q Wirksamkeit des Impfstoffes Wie gut passen die Daten zum Modell: Likelihood P(Test Krankheit) P(Studie q), Subjektive Einschätzung, nachdem man die Daten gesehen hat (a posteriori): Posterior-Verteilung P(Krankheit Test) P(q Studie) 25

26 Prior Woher bekommt man die Prior-Verteilung? P(Krankheit) relativ naheliegend; diskret P(q): schwieriger; stetig; z.b. aus allen bisherigen Studien anderer Impfstoffe schätzen Es gibt keine richtige Prior-Verteilung! aber: unterschiedliche Prior-Verteilungen ermöglichen unterschiedlich gute Vorhersagen für die Zukunft Posterior-Verteilung ergibt sich deterministisch aus Prior und Likelihood der Beobachtungen durch Satz von Bayes 26

27 Beispiel Likelihood: Bernoulli-Verteilung Eine diskrete Verteilung mit den 2 möglichen Ereignissen 0 und 1 ist eine Bernoulli-Verteilung bestimmt durch genau einen Parameter: Verteilungsfunktion: 27

28 Beispiel Likelihood: Binomialverteilung Zusammenfassung mehrerer Bernoulli-verteilter Zufallsvariablen X 1,,X n mit gleichem Parameter q neue Zufallsvariable Y, die angibt, wie viele der X i positiv n sind: Y i1 Y ist Binomial-verteilt mit Parametern q und n Verteilungsfunktion: Binomialkoeffizient: Anzahl der Möglichkeiten, aus n Elementen y auszuwählen X Wahrscheinlichkeit, dass y der X i positiv sind i n y y, 1 P Y y n n y q q q Wahrscheinlichkeit, dass n-y der X i negativ sind 28

29 Beispiel Prior: Beta-Verteilung Verteilung über alle Wirkraten keine diskrete, sondern kontinuierliche Verteilung P(q) beschreibt eine Dichtefunktion Häufige Wahl (bei Parameterraum ): Beta-Verteilung definiert durch 2 Parameter a und b Beta-Funktion; dient der Normalisierung 29

30 Beispiel Prior: Beta-Verteilung Spezialfall: a = b = 1 ist Gleichverteilung 30

31 Schema für Ermittlung der Posterior- Verteilung Gegeben: Prior-Verteilung P(q) Beobachtungen x 1,,x n Likelihood P(x 1,,x n q) Gesucht: Posterior-Verteilung P(q x 1,,x n ) 1. Satz von Bayes anwenden 2. Randverteilung für kontinuierliche Parameter einsetzen 31

32 Ermittlung der Posterior-Verteilung: Beispiel Gegeben: Modellparameterraum Beta-Prior mit Parametern a und b : P(q)=Beta(q a,b) Bernoulli-Likelihood binäre Beobachtungen x 1,,x n, bedingt unabhängig gegeben Modellparameter q Gesucht: a positive Beobachtungen, b negative Posterior P(q x 1,,x n ) 32

33 Ermittlung der Posterior-Verteilung P q x x 1,, n,, q q /,, P x x P P x x 1 n 1 n P xi q P q / P x1,, xn i1 1 a b P X q P X 0 q P q / P x1,, x n a q a 1 b 1 b q 1 q 1 q / P x1,, x, n B ab a1 bb1 aa1 bb1 1 1 / dq Ba, b Ba, b a q q q q bb 1 aa q 1 1 q B a a, b b / B a, b Ba, b Beta q a a, b b n Satz von Bayes Bedingte Unabhängigkeit a positive, b negative Bernoulli- und Beta-Verteilung einsetzen Terme zusammenfassen, Randverteilungsformel Definition der Beta-Funktion Kürzen, Definition der Beta-Verteilung 33

34 Konjugierter Prior Im vorherigen Beispiel: Übergang vom Prior Beta(q a,b) durch a positive und b negative Beobachtungen zum Posterior Beta(q a+a,b+b) algebraische Form von Posterior und Prior identisch Die Beta-Verteilung ist der konjugierte Prior zur Bernoulli-Likelihood Immer vorteilhaft, den konjugierten Prior zu verwenden, um zu garantieren, dass der Posterior effizient berechenbar ist 34

35 Rechenbeispiel: Impfstudie Prior: Beta mit a=1, b=5 8 gesunde Testpersonen, 2 infizierte ergibt Posterior: Beta mit a=9, b=7 35

36 Parameterschätzung Bayes sche Inferenz liefert keinen Modellparameter, sondern Verteilung über Modellparameter Ermittlung des Modells mit der höchsten Wahrscheinlichkeit: MAP-Schätzung maximum-a-posteriori = maximiert den Posterior q MAP = argmax q P(q Beobachtungen) Im Gegensatz dazu: plausibelstes Modell = ML- Schätzung maximum-likelihood = maximiert die Likelihood ohne Berücksichtigung des Priors q ML = argmax q P(Beobachtungen q) 36

37 Parameterschätzung: Beispiel Impfstudie: Prior: Beta mit a=1, b=5 8 gesunde Testpersonen, 2 infizierte ergibt Posterior: Beta mit a=9, b=7 ML-Schätzung: q ML = argmax q P(Beob. q) MAP-Schätzung: q MAP = argmax q P(q Beob.) Likelihood-Funktion (keine Wahrscheinlichkeitsverteilung) 37

38 Vorhersage Welche Beobachtungen kann man in Zukunft erwarten, gegeben die Beobachtungen der Vergangenheit? Vorhersage für Testdaten, gegeben eine Menge von Trainingsdaten P(X neu X alt ) Vorhersage mit MAP-Schätzung: erst q MAP bestimmen durch q MAP = argmax q P(q X alt ) dann P(X neu q MAP ) bestimmen (Likelihood-Verteilung) Mit Informationsverlust verbunden: q MAP nicht echter Parameter, sondern wahrscheinlichster ignoriert, dass auch andere Modelle in Frage kommen 38

39 Bayes-optimale Vorhersage Kein Zwischenschritt über das MAP-Modell, sondern direkte Herleitung der Vorhersage: P X neu X alt 1. Randverteilung 2. bedingte Unabhängigkeit mitteln über alle Modelle (Bayesian Model-Averaging) q q, P X q X P q X dq neu alt alt P X q P q X dq neu Vorhersage gegeben Modell alt gewichtet durch: wie gut passt das Modell zu den früheren Beobachtungen? (Posterior) 39

40 Vorhersage: Beispiel Impfstudie: Mit welcher Wahrscheinlichkeit bleibt neue Person gesund, gegeben die Studie? Vorhersage mit MAP-Modell: q MAP = argmax q P(q Beob.) = 4/7 P(gesund q MAP ) = q MAP = 4/7 Bayes-optimale Vorhersage: P gesund X P gesund q P q X dq alt q q Beta q 9,7 dq Erwartungswert einer Beta-Verteilung q alt

41 Rekapitulation Bayes sches Lernen: einfacher besser subjektiver Prior: Ausgangsverteilung über die Modelle Beobachtungen aus der Vergangenheit: Likelihood gegeben Modellparameter ergibt durch Satz von Bayes Posterior: Verteilung über Modelle gegeben die Beobachtungen Mögliche Wege für Vorhersagen in der Zukunft: MAP-Modell berechnen (Maximierung des Posteriors), dann Vorhersage mit MAP-Modell Bayes-optimale Vorhersage: über alle Modelle mitteln, gewichtet mit ihrer Posterior-Wahrscheinlichkeit 41

42 Fragen? 42

Mathematische Grundlagen

Mathematische Grundlagen Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Mathematische Grundlagen Tobias Scheffer Peter Haider Paul Prasse Bayes sches Lernen: Anwendungsbeispiel Neuer Impfstoff wurde

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Sprachtechnologie. Tobias Scheffer Thomas Vanck

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Sprachtechnologie. Tobias Scheffer Thomas Vanck Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Sprachtechnologie Tobias Scheffer Thomas Vanck Statistik & Maschinelles Lernen Statistik: Deskriptive Statistik: Beschreibung (Tabellen,

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayes sches Lernen. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayes sches Lernen. Niels Landwehr Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayes sches Lernen Niels Landwehr Überblick Grundkonzepte des Bayes schen Lernens Wahrscheinlichstes Modell gegeben Daten Münzwürfe

Mehr

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus

Mehr

Wahrscheinlichkeitstheorie 2

Wahrscheinlichkeitstheorie 2 Wahrscheinlichkeitstheorie 2 Caroline Sporleder Computational Linguistics Universität des Saarlandes Sommersemester 2011 19.05.2011 Caroline Sporleder Wahrscheinlichkeitstheorie 2 (1) Wiederholung (1):

Mehr

1 Grundlagen der Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsräume. Ein erster mathematischer Blick auf Zufallsexperimente...

1 Grundlagen der Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsräume. Ein erster mathematischer Blick auf Zufallsexperimente... Inhaltsverzeichnis 1 Grundlagen der Wahrscheinlichkeitsrechnung 1 1.1 Wahrscheinlichkeitsräume Ein erster mathematischer Blick auf Zufallsexperimente.......... 1 1.1.1 Wahrscheinlichkeit, Ergebnisraum,

Mehr

Bayessche Lineare Regression

Bayessche Lineare Regression Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Baessche Lineare Regression Niels Landwehr Überblick Baessche Lernproblemstellung. Einführendes Beispiel: Münzwurfexperimente.

Mehr

Überblick. Grundkonzepte des Bayes schen Lernens. Wahrscheinlichstes Modell gegeben Daten Münzwürfe Lineare Regression Logistische Regression

Überblick. Grundkonzepte des Bayes schen Lernens. Wahrscheinlichstes Modell gegeben Daten Münzwürfe Lineare Regression Logistische Regression Überblick Grundkonzepte des Baes schen Lernens Wahrscheinlichstes Modell gegeben Daten Münzwürfe Lineare Regression Logistische Regression Baes sche Vorhersage Münzwürfe Lineare Regression 57 Erinnerung:

Mehr

Elementare Wahrscheinlichkeitslehre

Elementare Wahrscheinlichkeitslehre Elementare Wahrscheinlichkeitslehre Vorlesung Computerlinguistische Techniken Alexander Koller 13. November 2015 CL-Techniken: Ziele Ziel 1: Wie kann man die Struktur sprachlicher Ausdrücke berechnen?

Mehr

Statistik III. Walter Zucchini Fred Böker Andreas Stadie

Statistik III. Walter Zucchini Fred Böker Andreas Stadie Statistik III Walter Zucchini Fred Böker Andreas Stadie Inhaltsverzeichnis 1 Zufallsvariablen und ihre Verteilung 1 1.1 Diskrete Zufallsvariablen........................... 1 1.2 Stetige Zufallsvariablen............................

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Unabhängigkeit von Ereignissen A, B unabhängig:

Mehr

Modelle diskreter Zufallsvariablen

Modelle diskreter Zufallsvariablen Statistik 2 für SoziologInnen Modelle diskreter Zufallsvariablen Univ.Prof. Dr. Marcus Hudec Zufallsvariable Eine Variable (Merkmal) X, deren numerische Werte als Ergebnisse eines Zufallsvorgangs aufgefasst

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Thema: Wahrscheinlichkeit. Übungsklausur Wahrscheinlichkeit und Regression

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Thema: Wahrscheinlichkeit. Übungsklausur Wahrscheinlichkeit und Regression Übungsklausur Wahrscheinlichkeit und Regression 1. Welche der folgenden Aussagen treffen auf ein Zufallsexperiment zu? a) Ein Zufallsexperiment ist ein empirisches Phänomen, das in stochastischen Modellen

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Zufallsvariable Erinnerung: Merkmal, Merkmalsausprägung Deskriptive Statistik:

Mehr

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler Philipp Sibbertsen Hartmut Lehne Statistik Einführung für Wirtschafts- und Sozialwissenschaftler 2., überarbeitete Auflage 4^ Springer Gabler Inhaltsverzeichnis Teil I Deskriptive Statistik 1 Einführung

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier Diskrete Strukturen und Logik WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik & Mengenlehre

Mehr

Grundgesamtheit, Merkmale, Stichprobe. Eigenschaften der Stichprobe. Klasseneinteilung, Histogramm. Arithmetisches Mittel, empirische Varianz

Grundgesamtheit, Merkmale, Stichprobe. Eigenschaften der Stichprobe. Klasseneinteilung, Histogramm. Arithmetisches Mittel, empirische Varianz - 1 - Grundgesamtheit, Merkmale, Stichprobe Dimension, Umfang Skalierung Eigenschaften der Stichprobe kennzeichnende Größen Eigenschaften der Stichprobe kennzeichnende Größen Punktediagramm, Regressionsgerade,

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Einführung in die Wahrscheinlichkeitsrechnung

Einführung in die Wahrscheinlichkeitsrechnung Marco Cattaneo Institut für Statistik Ludwig-Maximilians-Universität München Sommersemester 2011 1. Wahrscheinlichkeitsrechnung 2. Diskrete Zufallsvariable 3. Stetige Zufallsvariable 4. Grenzwertsätze

Mehr

5 Binomial- und Poissonverteilung

5 Binomial- und Poissonverteilung 45 5 Binomial- und Poissonverteilung In diesem Kapitel untersuchen wir zwei wichtige diskrete Verteilungen d.h. Verteilungen von diskreten Zufallsvariablen): die Binomial- und die Poissonverteilung. 5.1

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 206 Prof. Dr. Stefan Etschberger HSA Unabhängigkeit von Ereignissen A, B unabhängig: Eintreten von A liefert keine Information über P(B). Formal: P(A

Mehr

Stochastik für Ingenieure

Stochastik für Ingenieure Otto-von-Guericke-Universität Magdeburg Fakultät für Mathematik Institut für Mathematische Stochastik Stochastik für Ingenieure (Vorlesungsmanuskript) von apl.prof. Dr. Waltraud Kahle Empfehlenswerte Bücher:

Mehr

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Wahrscheinlichkeitstheorie und Statistik Definitionen und Sätze Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2018 2.5.2018 Diskrete Wahrscheinlichkeitsräume Diskreter

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Review)

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Review) Einige Konzepte aus der Wahrscheinlichkeitstheorie (Review) 1 Diskrete Zufallsvariablen (Random variables) Eine Zufallsvariable X(c) ist eine Variable (genauer eine Funktion), deren Wert vom Ergebnis c

Mehr

Multivariate Zufallsvariablen

Multivariate Zufallsvariablen Kapitel 7 Multivariate Zufallsvariablen 7.1 Diskrete Zufallsvariablen Bisher haben wir immer nur eine Zufallsvariable betrachtet. Bei vielen Anwendungen sind aber mehrere Zufallsvariablen von Interesse.

Mehr

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Version: 22. September 2015 Evelina Erlacher 1 Mengen Es sei Ω eine Menge (die Universalmenge ) und A, B seien Teilmengen von Ω. Dann schreiben

Mehr

1. Grundbegri e der Stochastik

1. Grundbegri e der Stochastik Wiederholung von Grundwissen der Stochastik. Grundbegri e der Stochastik Menge der Ereignisse. Die Elemente! der Menge heißen Elementarereignisse und sind unzerlegbare Ereignisse. Das Ereignis A tritt

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2016 Prof. Dr. Stefan Etschberger Hochschule Augsburg Zufallsvariablen Beschreibung von Ereignissen

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Unabhängigkeit Prof. Dr. Achim Klenke http://www.aklenke.de 6. Vorlesung: 02.12.2011 1/30 Inhalt 1 Wahrscheinlichkeit 2 2/30 Wahrscheinlichkeit

Mehr

Clusteranalyse: Gauß sche Mischmodelle

Clusteranalyse: Gauß sche Mischmodelle Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Clusteranalyse: Gauß sche Mischmodelle iels Landwehr Überblick Problemstellung/Motivation Deterministischer Ansatz: K-Means Probabilistischer

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Niels Landwehr Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Clusteranalyse Niels Landwehr Überblick Problemstellung/Motivation Deterministischer Ansatz: K-Means Probabilistischer Ansatz:

Mehr

Wahrscheinlichkeitstheorie. Alea iacta est!

Wahrscheinlichkeitstheorie. Alea iacta est! Wahrscheinlichkeitstheorie Alea iacta est! "Wissenschaftliche Theorien, die auf Eigenschaften einer großen Zahl von Individuen rekurrieren, [...] werden anfällig gegen Fehlinterpretationen, wenn man die

Mehr

Konversatorium -Vorbereitung für die erste Diplomprüfung - Stochas0k. -Wahrscheinlichkeitstheorie-

Konversatorium -Vorbereitung für die erste Diplomprüfung - Stochas0k. -Wahrscheinlichkeitstheorie- Konversatorium -Vorbereitung für die erste Diplomprüfung - Stochas0k -Wahrscheinlichkeitstheorie- Begriffsdefini=on Stochas=k altgriechisch stochas=kē technē, lateinisch ars conjectandi, Die Kunst des

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilung diskreter Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Statistik für Bachelorund Masterstudenten

Statistik für Bachelorund Masterstudenten Walter Zucchini Andreas Schlegel Oleg Nenadic Stefan Sperlich Statistik für Bachelorund Masterstudenten Eine Einführung für Wirtschaftsund Sozialwissenschaftler 4y Springer 1 Der Zufall in unserer Welt

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 stheorie: Grundbegriffe Prof. Dr. Achim Klenke http://www.aklenke.de 5. Vorlesung: 25.11.2011 1/33 Inhalt 1 Zufallsvariablen 2 Ereignisse 3 2/33 Zufallsvariablen Eine Zufallsvariable

Mehr

Übung Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung mit

Übung Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung mit Übung 2 24..23 Ü b u n g 2 Aufgabe Die Poissonverteilung P(λ) hat die Wahrscheinlichkeitsfunktion p(x) = λx e λ (x ) x! Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung

Mehr

Stochastik Wiederholung von Teil 1

Stochastik Wiederholung von Teil 1 Stochastik Wiederholung von Teil 1 Andrej Depperschmidt Sommersemester 2016 Wahrscheinlichkeitsraum Definition Das Tripple (Ω, A, P) heißt Wahrscheinlichkeitsraum, falls gilt: (i) A ist eine σ-algebra,

Mehr

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal Beispiel 37 Wir werfen eine Münze so lange, bis zum ersten Mal Kopf erscheint. Dies geschehe in jedem Wurf unabhängig mit Wahrscheinlichkeit p. Wir definieren dazu die Zufallsvariable X := Anzahl der Würfe.

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilung diskreter Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit 3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate

Mehr

Modellanpassung und Parameterschätzung. A: Übungsaufgaben

Modellanpassung und Parameterschätzung. A: Übungsaufgaben 7 Modellanpassung und Parameterschätzung 1 Kapitel 7: Modellanpassung und Parameterschätzung A: Übungsaufgaben [ 1 ] Bei n unabhängigen Wiederholungen eines Bernoulli-Experiments sei π die Wahrscheinlichkeit

Mehr

Kapitel XI - Die n-fache unabhängige Wiederholung eines Experiments

Kapitel XI - Die n-fache unabhängige Wiederholung eines Experiments Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XI - Die n-fache unabhängige Wiederholung eines Experiments Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig

Mehr

Kapitel IV - Spezielle Verteilungen: Diskrete Verteilungen

Kapitel IV - Spezielle Verteilungen: Diskrete Verteilungen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel IV - Spezielle Verteilungen: Diskrete Verteilungen Markus Höchstötter Lehrstuhl

Mehr

Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec

Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec Binomialverteilung Jakob Bernoulli (1654-1705) Ars Conjectandi Klassisches Verteilungsmodell für die Berechnung der Wahrscheinlichkeit für die Häufigkeit des Eintretens von Ereignissen in bestimmten noch

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 6 Genzwertsätze Einführung 1 Wahrscheinlichkeit: Definition und Interpretation

Mehr

Kapitel VII - Funktion und Transformation von Zufallsvariablen

Kapitel VII - Funktion und Transformation von Zufallsvariablen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VII - Funktion und Transformation von Zufallsvariablen Markus Höchstötter Lehrstuhl

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 20. April 2017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 18.

Mehr

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.)

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) 1 Zusammenfassung Bedingte Verteilung: P (y x) = P (x, y) P (x) mit P (x) > 0 Produktsatz P (x, y) = P (x y)p (y) = P (y x)p (x) Kettenregel

Mehr

Satz von der totalen Wahrscheinlichkeit

Satz von der totalen Wahrscheinlichkeit htw saar 1 Satz von der totalen Wahrscheinlichkeit Sei (Ω, P) ein Wahrscheinlichkeitsraum, und B 1,, B n seien paarweise disjunkte Ereignisse mit B i = Ω. Für jedes Ereignis A gilt dann: P(A) = P(A B 1

Mehr

Kapitel ML:IV. IV. Statistische Lernverfahren. Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen

Kapitel ML:IV. IV. Statistische Lernverfahren. Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen Kapitel ML:IV IV. Statistische Lernverfahren Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen ML:IV-1 Statistical Learning c STEIN 2005-2011 Definition 1 (Zufallsexperiment,

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik. PD Dr. U. Ludwig. Vorlesung 7 1 / 19

Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik. PD Dr. U. Ludwig. Vorlesung 7 1 / 19 Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik PD Dr. U. Ludwig Vorlesung 7 1 / 19 2.2 Erwartungswert, Varianz und Standardabweichung (Fortsetzung) 2 / 19 Bedingter Erwartungswert

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik. Mögliche Ergebnisse, auch Elementarereignisse bezeichnet

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik. Mögliche Ergebnisse, auch Elementarereignisse bezeichnet Kapitel 10 Zufall und Wahrscheinlichkeit 10.1. Grundbegriffe Wahrscheinlichkeitsrechnung Zufallsvorgang Klein-Omega ω Groß-Omega Ω Stellt Modelle bereit, die es erlauben zufallsabhängige Prozesse abzuschätzen

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de lordsofthebortz.de lordsofthebortz.de/g+

Mehr

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5 4 Verteilungen und ihre Kennzahlen 1 Kapitel 4: Verteilungen und ihre Kennzahlen A: Beispiele Beispiel 1: Eine diskrete Zufallsvariable X, die nur die Werte 1,, 3, 4, 5 mit positiver Wahrscheinlichkeit

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Wahrscheinlichkeitsfunktionen

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

4 Diskrete Wahrscheinlichkeitsverteilungen

4 Diskrete Wahrscheinlichkeitsverteilungen 4 Diskrete Wahrscheinlichkeitsverteilungen 4.1 Wahrscheinlichkeitsräume, Ereignisse und Unabhängigkeit Definition: Ein diskreter Wahrscheinlichkeitsraum ist ein Paar (Ω, Pr), wobei Ω eine endliche oder

Mehr

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung 2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von

Mehr

10. Vorlesung. Grundlagen in Statistik. Seite 291. Martin-Luther-Universität Halle/Wittenberg

10. Vorlesung. Grundlagen in Statistik. Seite 291. Martin-Luther-Universität Halle/Wittenberg . Vorlesung Grundlagen in Statistik Seite 29 Beispiel Gegeben: Termhäufigkeiten von Dokumenten Problemstellung der Sprachmodellierung Was sagen die Termhäufigkeiten über die Wahrscheinlichkeit eines Dokuments

Mehr

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück STOCHASTISCHE UNABHÄNGIGKEIT Annika Pohlmann Philipp Oel Wilhelm Dück 1 GLIEDERUNG 1) Bedingte Wahrscheinlichkeiten 2) Unabhängigkeit für mehr als zwei Ereignisse 3) Unabhängigkeit für Zufallsvariable

Mehr

Institut für Biometrie und klinische Forschung. WiSe 2012/2013

Institut für Biometrie und klinische Forschung. WiSe 2012/2013 Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie (3) Überblick. Deskriptive Statistik I 2. Deskriptive

Mehr

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit 3 Bedingte Wahrscheinlichkeit, Unabhängigkeit Bisher : (Ω, A, P) zur Beschreibung eines Zufallsexperiments Jetzt : Zusatzinformation über den Ausgang des Experiments, etwa (das Ereignis) B ist eingetreten.

Mehr

Mehrdimensionale Zufallsvariablen

Mehrdimensionale Zufallsvariablen Mehrdimensionale Zufallsvariablen Im Folgenden Beschränkung auf den diskreten Fall und zweidimensionale Zufallsvariablen. Vorstellung: Auswerten eines mehrdimensionalen Merkmals ( ) X Ỹ also z.b. ω Ω,

Mehr

Beispiel 6 (Einige Aufgaben zur Gleichverteilung)

Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Aufgabe (Anwendung der Chebyshev-Ungleichung) Sei X eine Zufallsvariable mit E(X) = µ und var(x) = σ a) Schätzen Sie die Wahrscheinlichkeit dafür, daß

Mehr

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung Heute Die Binomialverteilung Poissonverteilung Approximation der Binomialverteilung durch die Normalverteilung Arbeiten mit Wahrscheinlichkeitsverteilungen Die Binomialverteilung Man werfe eine Münze n

Mehr

STATISTISCHE METHODEN UND IHRE ANWENDUNGEN

STATISTISCHE METHODEN UND IHRE ANWENDUNGEN STATISTISCHE METHODEN UND IHRE ANWENDUNGEN Von Dr. rer. nat. Erwin Kreyszig o. Professor für Statistik an der Universität Karlsruhe mit 82 Abbildungen und zahlreichen Tabellen Vierter, unveränderter Nachdruck

Mehr

Überblick. Grundkonzepte des Bayes schen Lernens. Wahrscheinlichstes Modell gegeben Daten Münzwürfe Lineare Regression Logistische Regression

Überblick. Grundkonzepte des Bayes schen Lernens. Wahrscheinlichstes Modell gegeben Daten Münzwürfe Lineare Regression Logistische Regression Überblic Grundonepte des Bayes schen Lernens Wahrscheinlichstes Modell gegeben Daten Münwürfe Lineare Regression Logistische Regression Bayes sche Vorhersage Münwürfe Lineare Regression 14 Modell für Münwürfe

Mehr

Basiswissen Daten und Zufall Seite 1 von 8 1 Zufallsexperiment Ein Zufallsexperiment ist ein Versuchsaufbau mit zufälligem Ausgang, d. h. das Ergebnis kann nicht vorhergesagt werden. 2 Ergebnis (auch Ausgang)

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Sprechstunde zur Klausurvorbereitung

Sprechstunde zur Klausurvorbereitung htw saar 1 Sprechstunde zur Klausurvorbereitung Mittwoch, 15.02., 10 12 + 13.30 16.30 Uhr, Raum 2413 Bei Interesse in Liste eintragen: Max. 20 Minuten Einzeln oder Kleingruppen (z. B. bei gemeinsamer Klausurvorbereitung)

Mehr

WAHRSCHEINLICHKEITSRECHNUNG

WAHRSCHEINLICHKEITSRECHNUNG WAHRSCHEINLICHKEITSRECHNUNG Mathematischer Teil In der Wahrscheinlichkeitsrechnung haben wir es mit Zufallsexperimenten zu tun, d.h. Ausgang nicht vorhersagbar. Grundbegriffe Zufallsexperiment und Ergebnisse

Mehr

Inhaltsverzeichnis. Dozent: Andreas Nestke Lehrfach: Mathe 3 Thema: Wahrscheinlichkeitstheorie Datum: Autor: René Pecher

Inhaltsverzeichnis. Dozent: Andreas Nestke Lehrfach: Mathe 3 Thema: Wahrscheinlichkeitstheorie Datum: Autor: René Pecher Dozent: Andreas Nestke Lehrfach: Mathe 3 Thema: Wahrscheinlichkeitstheorie Datum: 24.01.2011 Autor: René Pecher Inhaltsverzeichnis 1 Permutation 1 1.1 ohne Wiederholungen........................... 1 1.2

Mehr

Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen

Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen

Mehr

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen Zusammenfassung: e und e Verteilungen Woche 4: Gemeinsame Verteilungen Wahrscheinlichkeitsverteilung p() Wahrscheinlichkeitsdichte f () WBL 15/17, 11.05.2015 Alain Hauser P(X = k

Mehr

Beispiel: Zufallsvariable

Beispiel: Zufallsvariable Beispiel: Zufallsvariable 3 Münzen werden unabhängig voneinander geworfen. Jede Münze kann entweder Kopf oder Zahl zeigen. Man ist nur an der Zahl der Köpfe interessiert. Anzahl Kopf Elementarereignis

Mehr

Klausur: Diskrete Strukturen I

Klausur: Diskrete Strukturen I Universität Kassel Fachbereich 0/ 5.03.0 Dr. Sebastian Petersen Klausur: Diskrete Strukturen I Aufgabe. (8 Punkte) a) Sei X = {0, }. Geben Sie die Potenzmenge P (X) (durch Auflisten ihrer Elemente) an.

Mehr

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen.

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen. Dieses Quiz soll Ihnen helfen, Kapitel 2.5-2. besser zu verstehen. Frage Wir betrachten ein Würfelspiel. Man wirft einen fairen, sechsseitigen Würfel. Wenn eine oder eine 2 oben liegt, muss man 2 SFr zahlen.

Mehr

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung lausthal Begriffe Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Definition: Unter einem Zufallsexperiment versteht man einen,

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de

Mehr

Statistik für Ingenieure und Naturwissenschaftler

Statistik für Ingenieure und Naturwissenschaftler Sheldon M. Ross Statistik für Ingenieure und Naturwissenschaftler 3. Auflage Aus dem Amerikanischen übersetzt von Carsten Heinisch ELSEVIER SPEKTRUM AKADEMISCHER VERLAG Spektrum Inhalt Vorwort zur dritten

Mehr

Formelsammlung: Statistik und Wahrscheinlichkeitstheorie

Formelsammlung: Statistik und Wahrscheinlichkeitstheorie Formelsammlung: Statistik und Wahrscheinlichkeitstheorie Kapitel 1: Deskriptive und explorative Statistik Empirische Verteilungsfkt (S15): Quantile (S24): Bei Typ7 1.Pkt = 0 Danach 1/(n-1) Median (S24):

Mehr

Statistik I für Betriebswirte Vorlesung 2

Statistik I für Betriebswirte Vorlesung 2 Statistik I für Betriebswirte Vorlesung 2 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 16. April 2018 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 2 Version: 9. April

Mehr

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung lausthal Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Begriffe Definition: Unter einem Zufallsexperiment versteht man einen,

Mehr

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen Vorlesung 3a Der Erwartungswert von diskreten reellwertigen Zufallsvariablen X sei eine Zufallsvariable, deren Zielbereich R (die Menge der reellen Zahlen) (oder eine Teilmenge davon) ist. Es existiere

Mehr

Diskrete Verteilungen

Diskrete Verteilungen Diskrete Verteilungen Bernoulli-Verteilung: X Bernoulli( ) Symbol für «verteilt wie» «Eperiment» mit zwei Ausgängen: «Erfolg» (X 1) oder «Misserfolg» (X ). Die Erfolgswahrscheinlichkeit sei. Wertebereich:

Mehr

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Stefan Etschberger für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2017 Rechenregeln für den Erwartungswert Ist f symmetrisch bzgl. a, so gilt E(X)

Mehr

Numerische Methoden und Algorithmen in der Physik

Numerische Methoden und Algorithmen in der Physik Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 08.01.2009 Numerische Methoden und Algorithmen in der Physik Hartmut Stadie 1/ 32 Einführung Wahrscheinlichkeit Verteilungen

Mehr

Konzept diskreter Zufallsvariablen

Konzept diskreter Zufallsvariablen Statistik 1 für SoziologInnen Konzept diskreter Zufallsvariablen Univ.Prof. Dr. Marcus Hudec Beispiel: Zufallsvariable 3 Münzen werden unabhängig voneinander geworfen. Jede Münze kann entweder Kopf oder

Mehr

3. Kombinatorik und Wahrscheinlichkeit

3. Kombinatorik und Wahrscheinlichkeit 3. Kombinatorik und Wahrscheinlichkeit Es geht hier um die Bestimmung der Kardinalität endlicher Mengen. Erinnerung: Seien A, B, A 1,..., A n endliche Mengen. Dann gilt A = B ϕ: A B bijektiv Summenregel:

Mehr

Diskrete Verteilungen

Diskrete Verteilungen Diskrete Verteilungen Bernoulli-Verteilung: X Bernoulli(p) Symbol für «verteilt wie» «Eperiment» mit zwei Ausgängen: «Erfolg» ( 1) oder «Misserfolg» ( ). Die Erfolgswahrscheinlichkeit sei p. Wertebereich

Mehr