1. Schularbeit / Gruppe A
|
|
|
- Ulrich Elmar Schenck
- vor 6 Jahren
- Abrufe
Transkript
1 1. Schularbeit / Gruppe A Berechnen Sie: x y 3x b a) : = 1 3ab a y 8 7 b) = 3 a) Formulieren Sie die Rechenregeln für Potenzen mit rationalem Exponenten b) Berechnen und vereinfachen Sie: 7 3 x x (1) = 1 10 x 3 ( 3) (9 ) ( ) 3 () : = 3 16 ( 7) a) Ermitteln Sie mit dem Taschenrechner Ti-9 die Wertetabelle der Funktion Intervall [-;], Schrittweite 1, und fertigen Sie eine genaue Zeichnung an. f(x) 6, = im x 3b) Geben Sie den Funktionsterm an: 3c) Stellen Sie mit rationalem Nenner dar: 6 (1) 8 6 () x 8x. Lösen Sie in R: x x 8 = x +
2 1. Schularbeit / Gruppe B Berechnen Sie: by y a a) : = 1 a x 3b x 80 b) = a) Formulieren Sie die Rechenregeln für Potenzen mit rationalem Exponenten b) Berechnen und vereinfachen Sie: x x (1) = 1 10 x 3 () ( 8 3 ) ( 3) () : = 3 7 ( 16) 9 3a) Ermitteln Sie mit dem Taschenrechner Ti-9 die Wertetabelle der Funktion Intervall [-;], Schrittweite 1, und fertigen Sie eine genaue Zeichnung an.,8 f (x) = im x 3b) Geben Sie den Funktionsterm an: 3c) Stellen Sie mit rationalem Nenner dar: 3 7 (1) 10 7 () 9x 3 7x. Lösen Sie in R: 3 x + x 1 = x + 8
3 . Schularbeit / Gruppe A a) Verwandeln Sie " in Radiant 1b) Verwandeln Sie 0,876 rad in Grad, Minuten und Sekunden 1c) Berechnen Sie unter Verwendung des Einheitskreises: sin 10 - cos + cos sin = a) Ermitteln Sie den Winkel im Intervall [0;360 ] ( Lösungen): (1) sin α = -0,37 () cos α = 0,78 3π 11π b) Vereinfachen Sie: sin( α + ) cos(160 + α) + sin( α) = 3a) Zeichnen Sie mit der Geometrie-Applikation Ihres Ti-9 das folgende Dreieck und ermitteln Sie dessen Flächeninhalt: A(-/-0,), B(1/-1), C(1,/1). 3b) Ermitteln Sie die Wertetabelle der Funktion f(x) = sin(x+ ) im Intervall [0;360] (30 Schritte) und fertigen Sie eine Zeichnung an.. Von einem Dreieck kennt man: b = 3 cm, α = 1,, ß = 67,8. Berechnen Sie den fehlenden Winkel, die fehlenden Seiten, alle Höhen und den Flächeninhalt.. Schularbeit / Gruppe B a) Verwandeln Sie " in Radiant 1b) Verwandeln Sie,379 rad in Grad, Minuten und Sekunden 1c) Berechnen Sie unter Verwendung des Einheitskreises: sin 10 - cos 13 - cos 60 + cos = a) Ermitteln Sie den Winkel im Intervall [0;360 ] ( Lösungen): (1) sin α = 0,87 () cos α = -0,3 π 11π b) Vereinfachen Sie: cos(900 α) + sin( + α) cos( + α) = 3a) Zeichnen Sie mit der Geometrie-Applikation Ihres Ti-9 das folgende Dreieck und ermitteln Sie dessen Flächeninhalt: A(-1,/0,), B(/-1), C(0,/1). 3b) Ermitteln Sie die Wertetabelle der Funktion f(x) = cos(x+ ) im Intervall [0;360] (30 Schritte) und fertigen Sie eine Zeichnung an.. Von einem Dreieck kennt man: a = 8 cm, c = 67 cm, α = 36,. Berechnen Sie die fehlenden Winkel, die fehlende Seite, alle Höhen und den Flächeninhalt.
4 3. Schularbeit / Gruppe A Von einem Trapez kennt man a =,3 cm, b = 8,6 cm, c = 6, cm, ß = 1,7. Berechnen Sie: d, e, f, h, α, γ, δ, A a) Auf einem Haus der Höhe a befindet sich eine Funkantenne, die in einer Entfernung b vom Fußpunkt des Hauses unter dem Sehwinkel ε erscheint. Berechnen Sie allgemein die Höhe der Funkantenne. b) In einem See befindet sich eine Insel. Um die Länge dieser Insel zu bestimmen, wird am Seeufer eine Standlinie s = 30 m zwischen den Punkten C und D abgesteckt. Anschließend werden zu den Endpunkten A und B der Insel die folgenden Winkel gemessen: ACB = 6,8, BCD = 61,1, ADC = 3,8, ADB = 68,7. Ermitteln Sie die Insellänge AB. 3a) Berechnen Sie: (1) x 3 log 1 7 = () log = 6 3b) Berechnen Sie in R: lg(x-3) = lg(3x+1) - 0, (3) log x = 0, 7 a a 16 a) Der folgende Term ist additiv zu zerlegen: log 7 3 b b b) Schreiben Sie als Logarithmus eines einzigen Terms: loga logb + [ 3logb loga] = Schularbeit / Gruppe B Von einem Trapez kennt man a = 1,8 cm, c =,7 cm, d =,1 cm, α = 7,8 Berechnen Sie: d, e, f, h, ß, γ, δ, A. a) Auf einem Turm der Höhe h befindet sich ein Blitzableiter, der in einer Entfernung a vom Fußpunkt des Turmes unter dem Sehwinkel ε erscheint. Berechnen Sie allgemein die Höhe des Blitzableiters. b) In einem See befindet sich eine Insel. Um die Länge dieser Insel zu bestimmen, wird am Seeufer eine Standlinie s = 30 m zwischen den Punkten C und D abgesteckt. Anschließend werden zu den Endpunkten A und B der Insel die folgenden Winkel gemessen: ACB = 3,, BCD = 6,, ADC = 39,1, ADB = 1,3. Ermitteln Sie die Insellänge AB. 3a) Berechnen Sie: (1) x log = () log = 81 3b) Berechnen Sie in R: lg(x+) - 0,7711 = lg(x-3) 7 (3) log x = 1, 3x x a) Der folgende Term ist additiv zu zerlegen: log y 7y b) Schreiben Sie als Logarithmus eines einzigen Terms: 3logx logy + [ logy logx] =
5 . Schularbeit / Gruppe A a) Von einer arithmetischen Folge kennt man Ermitteln Sie: a 1, d, s a 3 = und a 8 = 19. 1b) In einem rechtwinkeligen Dreieck bilden die Längen der Seiten eine arithmetische Folge. Berechnen Sie den Umfang und den Flächeninhalt des Dreieckes, wenn die kürzere Kathete 1 cm lang ist. a) Ein Ball wird 16 m in die Höhe geworfen. Bei jedem Aufprall verliert er % der Höhe. Berechnen Sie: (1) Wie hoch springt der Ball nach dem. Aufprall? () Welchen Weg legt er bis zum Stillstand zurück? (3) Wieviel Zeit vergeht bis zum. Aufprall? b) Berechnen Sie die Länge und Breite eines DIN A3 Blattes. 3. Ein zunächst weitgehend unbekannter Politiker kandidiert in einer Stadt mit 000 Wahlberechtigten für das Bürgermeisteramt. Zur Überprüfung der Wirkung der im Wahlkampf eingesetzten Werbemaßnahmen werden wöchentlich die Anzahl der Wahlberechtigten erhoben, denen der Politiker bereits bekannt ist. Dabei ergibt sich folgende Tabelle der ersten Wochen: Woche Anzahl a) Geben Sie ein geeignetes Wachstumsmodell an und begründen Sie dieses. b) Geben Sie die Ti-9 Notation an. c) Ergänzen Sie die Werte in der Tabelle. d) Der Kandidat möchte am Ende des Wahlkampfes mindestens 90% der Wahlberechtigten bekannt sein. In welcher Woche sollte dann frühestens die Wahl sein? e) Welche Wachstumsrate ist mindestens notwendig, um diesen Bekanntheitsgrad von 90% in Woche 13 zu erreichen?. Berechnen Sie in R: a) Formulieren Sie jene Fälle, die beim Lösen einer Exponentialgleichung auftreten können und geben Sie den Lösungsweg an. b) 9 x 3 x 1 3 x+ 1 = 6 x
6 . Schularbeit / Gruppe B a) Von einer arithmetischen Folge kennt man Ermitteln Sie: a 1, d, s a 3 = und a 8 = 13. 1b) In einem rechtwinkeligen Dreieck bilden die Längen der Seiten eine arithmetische Folge. Berechnen Sie den Umfang und den Flächeninhalt des Dreieckes, wenn die kürzere Kathete 1 cm lang ist. a) Ein Ball wird 18 m in die Höhe geworfen. Bei jedem Aufprall verliert er 8% der Höhe. Berechnen Sie: (1) Wie hoch springt der Ball nach dem. Aufprall? () Welchen Weg legt er bis zum Stillstand zurück? (3) Wieviel Zeit vergeht bis zum. Aufprall? b) Berechnen Sie die Länge und Breite eines DIN A Blattes. 3. Ein zunächst weitgehend unbekannter Politiker kandidiert in einer Stadt mit Wahlberechtigten für das Bürgermeisteramt. Zur Überprüfung der Wirkung der im Wahlkampf eingesetzten Werbemaßnahmen werden wöchentlich die Anzahl der Wahlberechtigten erhoben, denen der Politiker bereits bekannt ist. Dabei ergibt sich folgende Tabelle der ersten Wochen: Woche Anzahl a) Geben Sie ein geeignetes Wachstumsmodell an und begründen Sie dieses. b) Geben Sie die Ti-9 Notation an. c) Ergänzen Sie die Werte in der Tabelle. d) Der Kandidat möchte am Ende des Wahlkampfes mindestens 90% der Wahlberechtigten bekannt sein. In welcher Woche sollte dann frühestens die Wahl sein? e) Welche Wachstumsrate ist mindestens notwendig, um diesen Bekanntheitsgrad von 90% in Woche 1 zu erreichen?. Berechnen Sie in R: a) Formulieren Sie jene Fälle, die beim Lösen einer Exponentialgleichung auftreten können und geben Sie den Lösungsweg an. b) 39 6 x 3 6 x x+ 1 = 3 x 1
7 . Schularbeit / Gruppe A Gegeben ist das Dreieck ABC[A(-6/-), B(10/-), C(8/10)]. a) Berechnen Sie die Innenwinkel dieses Dreieckes. b) Berechnen Sie den Höhenschnittpunkt. c) Ermitteln Sie den Flächeninhalt mit der Formel für Vektoren. a) Ermitteln Sie die Lagebeziehung der beiden gegebenen Ebenen: ε : x y + 3z = ε : x + y + z = 1 1 b) Errichten Sie über der Strecke AB[A(-3/-), B(3/-1)] ein Rechteck, dessen Seite BC doppelt so lang wie AB ist. Berechnen Sie die Koordinaten der Eckpunkte C, D ( Lösungen). c) Geben Sie die Gleichung der Streckensymmetrale der Strecke AB[A(-1/), B(/-)] in allen Formen an. 3a) Lösen Sie das folgende Gleichungssystem in 3 Variablen in RxRxR (Methode nach freier Wahl): -6x + y - z = -3-3x + y - z = 30 9x - 3y + 8z = -10 3b) Ermitteln Sie die Parameterform und die parameterfreie Form der Ebene ε[a(1/0/), B(/3/6), C(/7/1)].. Das Dreieck ABC[A(1/-/-3), B(/1/), C(-/0/-)] ist die Grundfläche einer dreiseitigen Pyramide mit der Spitze S(/13/-8). a) Berechnen Sie die Oberfläche. b) Berechnen Sie das Volumen.
8 . Schularbeit / Gruppe B Gegeben ist das Dreieck ABC[A(-8/-3), B(8/-3), C(6/11)]. a) Berechnen Sie die Innenwinkel dieses Dreieckes. b) Berechnen Sie den Umkreismittelpunkt. c) Ermitteln Sie den Flächeninhalt mit der Formel für Vektoren. a) Ermitteln Sie die Lagebeziehung der beiden gegebenen Ebenen: ε : x y + z = 3 ε : x + y 3z 1 = b) Errichten Sie über der Strecke AB[A(-/-3), B(1/-)] ein Rechteck, dessen Seite BC doppelt so lang wie AB ist. Berechnen Sie die Koordinaten der Eckpunkte C, D ( Lösungen). c) Geben Sie die Gleichung der Streckensymmetrale der Strecke AB[A(/-3), B(-8/1)] in allen Formen an. 3a) Lösen Sie das folgende Gleichungssystem in 3 Variablen in RxRxR (Methode nach freier Wahl): 6x + 1y - 8z = 8 x - 3y + z = -10 -x - 9y + z = -1 3b) Ermitteln Sie die Parameterform und die parameterfreie Form der Ebene ε[a(1/1/7), B(-/3/), C(8/0/-1)].. Das Dreieck ABC[A(1/3/6), B(-7//), C(-/0/1)] ist die Grundfläche einer dreiseitigen Pyramide mit der Spitze S(1/1/-). a) Berechnen Sie die Oberfläche. b) Berechnen Sie das Volumen.
Zweidimensionale Vektorrechnung:
Zweidimensionale Vektorrechnung: Gib jeweils den Vektor AB und seine Länge an! (a A(, B(6 5 (b A(, B( 4 (c A(, B( 0 (d A(0 0, B(4 (e A(0, B( 0 (f A(, B( Gib jeweils die Summe a + b und die Differenz a
4. Mathematikschulaufgabe
Achtung! Alle Ergebnisse auf zwei Stellen nach dem Komma runden. 1 1.0 Gegeben ist die Funktion f 1 mit y = x + bx + c (b, c ). Der Graph zu f 3 1 ist die Parabel p 1, die durch die Punkte A(-/-4) und
Koordinatengeometrie:
Koordinatengeometrie: Gib jeweils den Vektor AB und seine Länge an! (a A( B(6 5 (b A( B( 4 (c A( B( (d A( B(4 (e A( B( (f A( B( Ermittle (i die Koordinaten des Endpunktes E der Wanderung (ii die Koordinaten
1. Schularbeit - Gruppe A M 0 1(1) 6C A
. Schularbeit - Gruppe A M 0 () 6C 3 0 97 A. Ergänze folgende Tabelle: Potenz Bruch / Wurzel numerischer Wert 3-5 n -5 8 0,00 3 5 4 x 3 8 7. Berechne: a) ( x y) ( x + y) 0 = b) 9x 6ax : = 5 4a 3 3. Rechne
Brückenkurs Mathematik zum Sommersemester 2015
HOCHSCHULE HANNOVER UNIVERSITY OF APPLIED SCIENCES AND ARTS Dipl.-Math. Xenia Bogomolec Brückenkurs Mathematik zum Sommersemester 2015 Übungsblatt 1 (Grundlagen) Aufgabe 1. Multiplizieren Sie folgende
I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE
I. Reelle Zahlen 1. Die Menge der rationalen Zahlen und die Menge der irrationalen Zahlen bilden zusammen die Menge der reellen Zahlen. Nenne Beispiele für rationale und irrationale Zahlen.. Aus negativen
Informationsblatt für den Einstieg ins 2. Mathematikjahr AHS Kursleiter: Manfred Gurtner
Informationsblatt für den Einstieg ins 2. Mathematikjahr AHS Kursleiter: Manfred Gurtner Stoff für den Einstufungstest Mathematik in das 2. Jahr AHS 1) Gleichungen/ Gleichungssysteme/ Terme Lineare Gleichungen
Studienberechtigungsprüfung Mathematik VHS Floridsdorf
Studienberechtigungsprüfung Mathematik VHS Floridsdorf von Dr. Manfred Gurtner Würl 0/ Teil für : ) Zahlenrechnen und Taschenrechner: a) Berechnen Sie: [( 6) ( ) (+)] [( 0)+(+)] (+5) + ( ) = 5 b) Berechnen
1. Schularbeit R
1. Schularbeit 23.10.1997... 3R 1a) Stelle die Rechnung 5-3 auf der Zahlengerade durch Pfeile dar! Gibt es mehrere Möglichkeiten der Darstellung? Wenn ja, zeichne alle diese auf! 1b) Ergänze die Tabelle:
Abschlussprüfung 150 Minuten an den Realschulen in Bayern
Prüfungsdauer: Abschlussprüfung 150 Minuten an den Realschulen in Bayern 009 Mathematik II Nachtermin Aufgabe A 1 Name: Vorname: Klasse: Platzziffer: Punkte: A 1 Die nebenstehende Skizze zeigt den Axialschnitt
Vektoren, Skalarprodukt, Ortslinien
.0 Gegeben sind die Punkte A(0/-4), C(0/4), sowie die Pfeile mit α [ 90 ; 90 ]. 4cosα AB = 4sinα+ 4. Zeichne die drei Punkte B, B und B 3 mit α { 30;0;30 } in ein KOS.. Zeige: 4cosα CB =. 4sinα 4.3 Zeige,
1. Mathematikschulaufgabe
1.0 Gegeben ist die Funktion f: y = 1 ( ) 1 x + in G= x. 1.1 Tabellarisiere f für x = [ -1; 7 ] mit x = 1 sowie für x =,5 und x =,5. 1. Zeichne den Graphen von f. Für die Zeichnung: 1 LE = 1 cm - 1 x 8-1
1. Schularbeit. Gruppe A
1. Schularbeit Gruppe A 18.10.1997 1)a) Berechne den Term (4a+3b-5c). 7x-(5a-4b+6c). 3x (2) und mache die Probe für a=b=5, c=-2, x=3. Gib die Befehle für den TI92 an, erkläre, was sie bewirken (sowohl
1 Mengenlehre. Maturavorbereitung GF Mathematik. Aufgabe 1.1. Aufgabe 1.2. Bestimme A \ B. Aufgabe 1.3. Aufgabe 1.4. Bestimme B \ A. Aufgabe 1.
Maturavorbereitung GF Mathematik Kurzaufgaben 1 Mengenlehre Aufgabe 1.1 Gegeben sind die Mengen A = {1, 2, 3} und B = {2, 3, 6, 8}. Bestimme A B. Aufgabe 1.2 Gegeben sind die Mengen A = {1, 2, 3} und B
Aufgaben. Aufgabe A1. Prüfungsdauer: 150 Minuten
Prüfungsdauer: 150 Minuten Aufgaben Aufgabe A1 A 1.0 In einer Medikamentenstudie wird in drei zeitgleich beginnenden Laborversuchen die Vermehrung von Krankheitserregern untersucht. Bei allen Versuchen
Übungsbeispiele- Mathematik 2. Schularbeit, am
011 Übungsbeispiele- Mathematik. Schularbeit, am 7.1.011 M 3b/I. KL, KV 1.11.011 . Schularbeit: MTHEMTIK KL.: M3b/I. - S. 1) Ergänze die Tabelle! a 1 3 4 5 6 7 8 9 10 a ) Fasse zusammen und schreibe als
1. Aufgabe: Es seien A, B und C Aussagen. Zeigen Sie, dass die folgenden Rechenregeln richtig sind: (c) A B = A B und A B = A B.
. Aufgabe: Es seien A, B und C Aussagen. Zeigen Sie, dass die folgenden Rechenregeln richtig sind: (a) (A B) C = (A C) (B C) und (A B) C = (A C) (B C). (b) A (A B) = A und A (A B) = A. (c) (A B) = A B
Sinus- und Kosinussatz
Sinus- und Kosinussatz Aufgabe 1 Bestimme für 0 α 360 die zwei Winkel, für die gilt a) sin α = 0,2 b) sin α = -0,74 c) cos α = 0,84 d) cos α = -0,05 e) tan α = 21 f) tan α = -0,51 g) cos α = -0,9 h) tan
Aufgaben zum Basiswissen 10. Klasse
Aufgaben zum Basiswissen 10. Klasse 1. Berechnungen an Kreisen und Dreiecken 1. Aufgabe: In einem Kreis mit Radius r sei α ein Mittelpunktswinkel mit zugehörigem Kreisbogen der Länge b und Kreissektor
KOMPETENZHEFT ZUR TRIGONOMETRIE, II
KOMPETENZHEFT ZUR TRIGONOMETRIE, II 1. Aufgabenstellungen Aufgabe 1.1. Bestimme alle Winkel in [0 ; 360 ], die Lösungen der gegebenen Gleichung sind, und zeichne sie am Einheitskreis ein. 1) sin(α) = 0,4
Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK
Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK 1. In einem kartesischen Koordinatensystem sind der Punkt C(4 4, die Ebene E 1 : x 1 x +x 3 + = und die Gerade g: x = ( + λ( 1 gegeben. a Zeigen Sie,
K2 KLAUSUR MATHEMATIK
K2 KLAUSUR MATHEMATIK NACHTERMIN 16.02.2012 Pflichtteil: Aufgabe 1 2 3 4 5 6 7 8 (max) 2 2 3 4 5 3 4 3 Wahlteil Analysis Aufgabe a b c (max) 10 3 5 Wahlteil Geometrie Aufgabe a b c (max) 7 4 5 Gesamtpunktzahl
Abschlussprüfung 2011 an den Realschulen in Bayern
Prüfungsdauer: 150 Minuten Abschlussprüfung 2011 an den Realschulen in Bayern Mathematik I Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Nachtermin A 1.0 Lebensmittelchemiker untersuchten das
MATHEMATIK 7. Schulstufe Schularbeiten
MATHEMATIK 7. Schulstufe Schularbeiten 1. S c h u l a r b e i t Grundrechnungsarten mit ganzen Zahlen Koordinatensystem rationale Zahlen Prozentrechnung a) Berechne: [( 26) : (+ 2) ( 91) : ( 7)] + ( 12)
1. Schularbeit
1. Schularbeit 3.10.1997 1a) Stelle die Rechnung 5-3 auf der Zahlengerade durch Pfeile dar! Gibt es mehrere Möglichkeiten der Darstellung? Wenn ja, zeichne alle diese auf! 1b) Ergänze die Tabelle x y x
Übungen Mathematik I, M
Übungen Mathematik I, M Übungsblatt, Lösungen (Stoff aus Mathematik 0).0.0. Berechnen Sie unter Verwendung des binomischen Lehrsatzes ( x + y) 7 Lösung: Nach dem binomischen Lehrsatz ist ( x + y) 7 = 7
1. Schularbeit, am 23. Oktober 1997
Name:............ 3GR 1. Schularbeit, am 23. Oktober 1997 1) Eine 30 m lange Standlinie AB wird in einem Plan durch die Punkte A (0 0) und B (6 0) dargestellt. Einheit = 1 cm. Zu einem Geländepunkt P werden
Erweiterte Beispiele 1 1/1
Erweiterte Beispiele 1 1/1 Gegeben ist das Dreieck ABC [A(-20/-9), B(30/-9), C(12/15)]. Die Seitenmittelpunkte D, E, F bilden ein Dreieck. Zeige, dass der Umkreis dieses Dreiecks den Inkreis des Dreiecks
Verkaufspreis Bruttopreis MWSt
1.SA 1. Löse die angegebene Formel nach c auf: x = aa ( + c) ( a+ b+ c) 6. Schreibe den Ansatz in Form einer Gleichung und löse diese: a) Nach Abzug von 3% Skonto werden für eine Ware S 15510,30 bezahlt.
1. Schularbeit Stoffgebiete:
1. Schularbeit Stoffgebiete: Grundrechnungsarten mit ganzen Zahlen Koordinatensystem a) Berechne: 6 Punkte [( 36) + ( 64)] : ( 4) + ( 144) : ( 12) 16 ( 2) = b) Löse die drei Gleichungen und mache die Probe:
BMT A BAYERISCHER MATHEMATIK-TEST FÜR DIE JAHRGANGSSTUFE 8 DER GYMNASIEN PUNKTE: / 21 NOTE:
BMT8 2009-1 - A BAYERISCHER MATHEMATIK-TEST FÜR DIE JAHRGANGSSTUFE 8 DER GYMNASIEN NAME: KLASSE: PUNKTE: 1 NOTE: Aufgabe 1 Ein Würfel der Kantenlänge 2 cm wird, wie in der Abbildung dargestellt, durch
1. Schularbeit 6C / RG
1. Schularbeit 6C / RG 28.10.1997 1a) Beweise die Regel (a b) n = a n b n für a,b R und n N. Als bekannt ist vorauszusetzen: Rechengesetze für das Rechnen mit reellen Zahlen in den 4 Grundrechnungsarten;
Berufsmaturitätsprüfung 2013 Mathematik
GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmaturitätsschule Berufsmaturitätsprüfung 2013 Mathematik Zeit: Hilfsmittel: Hinweise: Punkte: 180 Minuten Formel- und Tabellensammlung ohne gelöste
Grundwissensaufgaben Klasse 10
Grundwissensaufgaben Klasse 10 1.Grundwissensaufgaben zu Potenz- und Wurzelgesetzen: [Verwendung willkürlicher Zahlen und Buchstaben; eigene Aufgabenstellung] Fasse soweit wie möglich zusammen. a) ( 1,456)
Serie 1 Klasse Vereinfache. a) 2(4a 5b) b) 3. Rechne um. a) 456 m =... km b) 7,24 t =... kg
Serie 1 Klasse 10 1. Berechne. 1 a) 4 3 b) 0,64 : 8 c) 4 6 d) ³. Vereinfache. 1x²y a) (4a 5b) b) 4xy 3. Rechne um. a) 456 m =... km b) 7,4 t =... kg 4. Ermittle. a) 50 % von 30 sind... b) 4 kg von 480
Themen: Strahlensätze, Trigonometrie, trigonometrische Funktionen
Mathematik Klasse 10c Vorbereitung Klassenarbeit Nr. 3 am 1.3.019 Themen: Strahlensätze, Trigonometrie, trigonometrische Funktionen Checkliste Was ich alles können soll Ich erkennen die Strahlensatzfiguren
Raumgeometrie - schiefe Pyramide
1.0 Das gleichseitige Dreieck ABC mit AB = 8 cm ist Grundfläche einer Pyramide ABCS. Die Spitze S liegt senkrecht über dem Mittelpunkt M der Seite [AC]. Die Höhe [MS] ist 6 cm lang. 1.1 Zeichne ein Schrägbild
ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter
Berufsmaturitätsschule GIB Bern Aufnahmeprüfung 2005 Mathematik Teil A Zeit: 45 Minuten Name / Vorname:... ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese
3. Mathematikschulaufgabe
Arbeitszeit 40min 1.0 Gegeben sind die Punkte A (-I1) und B (6I-1), sowie die Gerade g mit der Gleichung y = 0,5x + 3. Führe die folgenden Berechnungen jeweils auf zwei Stellen gerundet aus. 1.1 Berechne
Aufgabe 1 Vereinfachen Sie die folgenden Ausdrücke soweit wie möglich. Vorsicht: Einige Terme können nicht weiter vereinfacht werden!
Bachelor Bauingenieurwesen Reto Spöhel Repetitionsblatt BMS-Stoff Mathematik Alle Aufgaben sind ohne Taschenrechner zu lösen! Aufgabe 1 Vereinfachen Sie die folgenden Ausdrücke soweit wie möglich. Vorsicht:
Mathematik I Nachtermin Aufgabe P 1. Name: Vorname: Klasse: Platzziffer: Punkte: O 1
Prüfungsdauer: Abschlussprüfung 007 150 Minuten an den Realschulen in Bayern R4/R6 Mathematik I Nachtermin Aufgabe P 1 Name: Vorname: Klasse: Platzziffer: Punkte: P 1.0 Gegeben ist die Funktion f 1 mit
Raumgeometrie - schiefe Pyramide
1.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 14 cm; f = 10 cm;
Raumgeometrie - gerade Pyramide
1.0 Das Quadrat ABCD mit der Seitenlänge 7 cm ist Grundfläche einer geraden Pyramide ABCDS mit der Höhe h = 8 cm. S ist die Pyramidenspitze. 1.1 Fertige ein Schrägbild der Pyramide ABCDS an. 1.2 Berechne
Einstiegsvoraussetzungen für das 3. Semester Angewandte Mathematik AM
Einstiegsvoraussetzungen für das 3. Semester Angewandte Mathematik AM 1. Siehe: Einstiegsvoraussetzungen für das 1. Semester 2. Bereich: Zahlen und Maße 2.1. Fehlerrechnung (Begriffe absoluter und relativer
Haupttermin Pflichtteil - Aufgaben Aufgabe : ( VP) Bilden Sie die Ableitung der Funktion f mit Aufgabe : ( VP) f() 3 e =. Bestimmen Sie eine Stammfunktion der Funktion f mit Aufgabe 3: (3 VP) 5 3 Lösen
Vorkurs Mathematik für Naturwissenschaftler und Ingenieure
Institut für Mathematik Vorkurs Mathematik für Naturwissenschaftler und Ingenieure Ausführliches Inhaltsverzeichnis mit thematischen Links Prof. Dr. Konrad Engel Prof. Dr. Roger Labahn {konrad.engel,roger.labahn}@uni-rostock.de
Mathematik I Pflichtteil - Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte:
Prüfungsdauer: Abschlussprüfung 2006 150 Minuten an den Realschulen in Bayern R4/R6 Mathematik I Pflichtteil - Nachtermin Aufgabe P 1 Name: Vorname: Klasse: Platzziffer: Punkte: P 1.0 Gegeben sind der
Abitur 2010 Mathematik LK Geometrie V
Seite http://www.abiturloesung.de/ Seite Abitur Mathematik LK Geometrie V Gegeben sind in einem kartesischen Koordinatensystem des R der Punkt A( ) und die Menge der Punkte B k ( k) mit k R. Die Punkte
Trigonometrische Berechnungen
Trigonometrische Berechnungen Aufgabe 1 Berechnen Sie im rechtwinkligen Dreieck die fehlenden Seiten und Winkel: a) p = 4,93, β = 70,3 b) p = 28, q = 63 c) a = 12,5, p = 4,4 d) h = 9,1, q = 6,0 e) a =
TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG MATHEMATIK
TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG TEST IM FACH MATHEMATIK FÜR STUDIENBEWERBER MIT BERUFSQUALIFIKATION NAME : VORNAME : Bearbeitungszeit : 180 Minuten Hilfsmittel : Formelsammlung, Taschenrechner.
Mathematik Grundlagen Teil 1
BBZ Biel-Bienne Eine Institution des Kantons Bern CFP Biel-Bienne Une institution du canton de Berne Berufsmaturität Maturité professionnelle Berufsbildungszentrum Mediamatiker Médiamaticiens Centre de
4 x
Quadratwurzeln und reelle Zahlen. Bestimme die Definitionsmenge des Wurzelterms in G = R a) T(x) = x b) x c) x d) x e) x +. Vereinfache a) 0 + 90 b) 6 7 + 08 7 7 c) 0 0 + d) 6. Mache den Nenner rational
Abitur 2011 G8 Abitur Mathematik Geometrie VI
Seite http://www.abiturloesung.de/ Seite Abitur 0 G8 Abitur Mathematik Geometrie VI In einem kartesischen Koordinatensystem sind die Punkte A( 7 ), B(6 7 ) und C( ) gegeben. Teilaufgabe a (4 BE) Weisen
Aufnahmeprüfung Mathematik
Zeit Reihenfolge Hilfsmittel Bewertung Lösungen 90 Minuten Die Aufgaben dürfen in beliebiger Reihenfolge gelöst werden. Taschenrechner ohne Grafik und CAS Beiliegende Formelsammlung Aus der Summe der bei
Grundwissen Jahrgangsstufe 9. Lösungen. 144c 6 + = ( d)² 144c6 + = ( d)². Berechne ohne Taschenrechner: a) 2,
Grundwissen Jahrgangsstufe 9 Lösungen Berechne ohne Taschenrechner: a) 2,25 + 7 1 9 b) 16 000 000 4 c) 81a 8 Gib die Lösungsmenge der folgenden Gleichungen an: a) ( x)² = 9 b) x² = 5 c) 2x² + 50 = 0 Sind
Ergänzungsprüfung. zum Erwerb der Fachhochschulreife Mathematik (nichttechnische Ausbildungsrichtung)
Ergänzungsprüfung zum Erwerb der Fachhochschulreife 2006 Prüfungsfach: Mathematik (nichttechnische Ausbildungsrichtung) Prüfungstag: Donnerstag, 22. Juni 2006 Prüfungsdauer: 09:00 12:00 Uhr Hilfsmittel:
Aufgabe A1. Prüfungsdauer: 150 Minuten
Prüfungsdauer: 150 Minuten Aufgabe A1 A1 Die nebenstehende Skizze dient als Vorlage für eine Pflanzschale. Sie zeigt den Axialschnitt ABCDEF eines Rotationskörpers mit der Rotationsachse KL. Es gilt: =1,4
Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus.
bschlussprüfung 204 athematik II usterlösung Prüfungsdauer: 50 inuten iese Lösung wurde erstellt von ornelia Sanzenbacher. Sie ist keine offizielle Lösung des ayerischen Staatsministeriums für Unterricht
3e 1. Schularbeit/ A
3e 1. Schularbeit/ A 27.10.1997 1) Löse folgende Gleichung: 5 + 4 x = 7 ( 4 P ) 10 2) Berechne und kürze das Ergebnis so weit es geht: 2 1 11 : 3 3 + 1 1 * 2 2 = ( 9 P ) 16 12 4 24 15 3 a) Konstruiere
Mathematik II Pflichtteil Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte:
Prüfungsdauer: Abschlussprüfung 006 50 Minuten an den Realschulen in Bayern R4/R6 Mathematik II Pflichtteil Nachtermin Aufgabe P Name: Vorname: Klasse: Platzziffer: Punkte: 3 P.0 Der Punkt A 3 3 4 liegt
Berufsmaturitätsprüfung 2006 Mathematik
GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmaturitätsschule Berufsmaturitätsprüfung 2006 Mathematik Zeit: 180 Minuten Hilfsmittel: Hinweise: Formel- und Tabellensammlung ohne gelöste Beispiele,
Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt
1 7 Flächeninhalt 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt A = cm 2 und die Grundlinie a = 4 cm haben. Rechteck: h = 2,5 cm Parallelogramm:
Passerelle Mathematik Frühling 2005 bis Herbst 2006
Passerelle Mathematik Frühling 2005 bis Herbst 2006 www.mathenachhilfe.ch [email protected] 079 703 72 08 Inhaltsverzeichnis 1 Algebra 3 1.1 Termumformungen..................................... 3
Mittlere-Reife-Prüfung 2007 Mathematik I Aufgabe B2
Seite http://www.realschulrep.de/ Seite 2 Mittlere-Reife-Prüfung 2007 Mathematik I Aufgabe B2 Aufgabe B2. Der Punkt A 2 2 ist gemeinsamer Eckpunkt von Rauten A B n C n D n. Die Eckpunkte B n 3 liegen auf
MATHEMATIK K1 EINSTIEGSARBEIT (OHNE GTR)
MATHEMATIK K EINSTIEGSARBEIT (OHNE GTR Einige Stichworte: Bruchrechnen: bei Addition und Subtraktion beide Brüche auf den Hauptnenner bringen Man teilt durch einen Bruch, indem man mit dessen Kehrwert
SCHRIFTLICHE ABSCHLUSSPRÜFUNG 2010 REALSCHULABSCHLUSS MATHEMATIK. Arbeitszeit: 180 Minuten
Arbeitszeit: 180 Minuten Es sind die drei Pflichtaufgaben und zwei Wahlpflichtaufgaben zu bearbeiten. Seite 1 von 6 Pflichtaufgaben Pflichtaufgabe 1 (erreichbare BE: 10) a) Berechnen Sie den Wert des Terms
1. Aufgabe: Grundwissen
NAME: Mathematik 3. Klassenarbeit Klasse 10e- Gr. A 06. Feb. 2007 Trigonometrie für Winkel bis 90 Grad - ups - Teil A: Arbeitsblatt ohne Nutzung von Tafelwerk, Formelsammlung und Taschenrechner 1. Aufgabe:
Trigonometrie. bekannte Zusammenhänge. 4-Streckensatz: groß/klein = groß/klein. Zusammenhänge im allgemeinen Dreieck:
Trigonometrie bekannte Zusammenhänge 4-Streckensatz: groß/klein = groß/klein Zusammenhänge im allgemeinen Dreieck: Summe zweier Seiten größer als dritte Seitenlänge: a + b > c Innenwinkelsumme: Summe der
Prüfungsaufgaben zum Realschulabschluss - Flächenberechnung
Prüfungsaufgaben zum Realschulabschluss - Flächenberechnung Die Giebelseite eines 4,8 m breiten Gebäudes soll verbrettert werden. Die Dachsparren auf der einen Seite sind 7 m, auf der anderen Seite m lang.
Lösungen zu den Übungsaufgaben Übergang 10/ /2009 0hne Gewähr!
Lösungen zu den Übungsaufgaben Übergang 0/ 008/009 0hne Gewähr!. Lineare Funktionen und lineare Gleichungen; Terme 4 a. g : y = x h : y = 4 x - 4 b. A = 4 = FE U = ( + 9 + 6 ) = 6LE c. Bestimmung von Z(,5
Studienberechtigungsprüfung Mathematik 1 VHS polycollege Siebenbrunnengasse, von 9:00 bis 11:00 Seite 1 von 2
Studienberechtigungsprüfung Mathematik 1 VHS polycollege Siebenbrunnengasse, 19.1.201 von 9:00 bis 11:00 Seite 1 von 2 Der Rechenvorgang ist ausführlich darzustellen! Maximale Punkteanzahl: 20 1. ( Punkte)
Bayern Aufgabe 1. Abitur Mathematik: Musterlösung. V = 1 G h, wobei G die Fläche des quadratischen Bodens und h die Höhe V = = 384 [VE]
Abitur Mathematik: Bayern 2 Aufgabe a). SCHRITT: KOORDINATEN DES PUNKTS B ANGEBEN 2 2 OB = OA + AB = OA + DC = ( ) + ( 2) = ( 2) B(2 2 ) 2. SCHRITT: VOLUMEN BERECHNEN V = G h, wobei G die Fläche des quadratischen
Ermitteln Sie die Koordinaten des Schnittpunktes dieser beiden Geraden und erklären Sie Ihre Vorgehensweise!
Aufgabe 2 Lagebeziehungen von Geraden im Raum Gegeben sind zwei Geraden g und h in 3. =( 3 Die Gerade g ist durch eine Parameterdarstellung X 4 2 Die Gerade h verläuft durch die Punkte A = (0 8 0 und B
1. Schularbeit Stoffgebiete:
1. Schularbeit Stoffgebiete: Terme binomische Formeln lineare Gleichungen mit einer Variablen Maschine A produziert a Werkstücke, davon sind 2 % fehlerhaft, Maschine B produziert b Werkstücke, davon sind
Geometrie in der Ebene und im Raum
KAPITEL Geometrie in der Ebene und im Raum. Koordinaten Wir beschreiben nach einer Idee von René Descartes (596 650) jeden Punkt in der Ebene durch ein Paar reeller Zahlen. Die Menge der Paare reeller
Serie W1 Klasse 8 RS. 1. 7,4 dm³ = cm³ 2. 5 (13-6) = 3. Berechne für a = - 4,5 b = - 3
Serie W1 Klasse 8 RS 1. 7,4 dm³ = cm³ 2. 5 (13-6) = 3. Berechne für a = - 4,5 b = - 3 3 c = 4 2a - b; a + b; b : c 4. 36:0,4 = 5. Vergleiche. 30+2 10+5 30+2 (10+5) 6. Kürze 12 44 7. Berechne a 8a - 28
Aufgabe A1. Prüfungsdauer: 150 Minuten
Prüfungsdauer: 150 Minuten Aufgabe A1 A 1.0 Gegeben ist das rechtwinklige Dreieck ABC mit der Hypotenuse [AC]. Punkte P n liegen auf der Kathete [AB] und legen zusammen mit den Punkten B und C Dreiecke
St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung 2016 Mathematik 2: Korrekturanleitung Einige Hinweise:
Kanton St.Gallen Bildungsdepartement St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung 2016 Mathematik 2: (mit Taschenrechner) Korrekturanleitung Die Korrekturanleitung legt die Verteilung der Punkte
Schriftliche Abschlussprüfung Mathematik
Sächsisches Staatsministerium für Kultus Schuljahr 1999/ Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Mathematik Realschulabschluss
Kreissektoren und Bogenmaß
M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius r gilt für einen Kreissektor mit Mittelpunktswinkel α: Länge des Kreisbogens Fläche des Kreissektors b = α α 2rπ A = 360 360 πr2 Das Bogenmaß
Terme Allgemeines/Aufstellen von Termen, Formeln und Gleichungen:
Terme Allgemeines/Aufstellen von Termen, Formeln und Gleichungen: Allgemeines zu Termen: https://www.youtube.com/watch?v=ghxszhk2dv8 1.1 Martin kauft im Supermarkt drei Liter Milch um je m, zwei Packungen
Mathematik, 2. Sekundarschule (Neues Lehrmittel, Erprobungsversion)
Zentrale Aufnahmeprüfung 2011 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 2. Sekundarschule (Neues Lehrmittel, Erprobungsversion) Von der Kandidatin oder vom Kandidaten
Zusammenstellung aus ehemaligen DDR Prüfungsaufgaben (Aufgabe 6)
(Aufgabe 6) 0. Klasse Abschlussprüfungen Jahrgänge 970 99 Fach Mathematik Material für Fachberater, gedacht als Beispiele für die Aufgabe der neuen brandenburger Prüfungsaufgaben 970 6 a) Ermitteln Sie
BESONDERE LEISTUNGSFESTSTELLUNG 2006 MATHEMATIK
BESONDERE LEISTUNGSFESTSTELLUNG 2006 MATHEMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: 150 Minuten Tafelwerk Taschenrechner (nicht programmierbar, nicht grafikfähig) (Schüler, die einen CAS-Taschencomputer
Hauptprüfung Fachhochschulreife Baden-Württemberg
Hauptprüfung Fachhochschulreife 05 Baden-Württemberg Aufgabe 4 Analytische Geometrie Hilfsmittel: grafikfähiger Taschenrechner Berufskolleg Alexander Schwarz www.mathe-aufgaben.com Juni 05 Ein Papierflieger
Mathematik 1 (ohne Taschenrechner)
Kanton St.Gallen Bildungsdepartement Gymnasium Aufnahmeprüfung 2018 Mathematik 1 (ohne Taschenrechner) Dauer: 90 Minuten Kandidatennummer: Geburtsdatum: Korrigiert von: Punktzahl/Note: Aufgabe 1 2 3 4
Themen: Geometrie (Kongruenzabbildungen, Winkelsätze, Flächenberechnungen)
Klasse 7 Mathematik Vorbereitung zur Klassenarbeit Nr. 4 im Mai 2019 Themen: Geometrie (Kongruenzabbildungen, Winkelsätze, Flächenberechnungen) Checkliste Was ich alles können soll Ich kenne den Begriff
Semesterprüfung Mathematik 2. Klasse KSR 2010
Erreichte Punktezahl: / 58 Note: (Maximale Punktezahl: 58) Semesterprüfung Mathematik 2. Klasse KSR 2010 Montag, 31. Mai 2010 13.10-14.40 Das GROSSGEDRUCKTE: Unbedingt zuerst durchlesen! Prüfung auf jeder
Vorkurs Mathematik für Naturwissenschaftler und Ingenieure
Institut für Mathematik Vorkurs Mathematik für Naturwissenschaftler und Ingenieure Ausführliches Inhaltsverzeichnis mit thematischen Links Prof. Dr. Konrad Engel Prof. Dr. Roger Labahn {konrad.engel,roger.labahn}@uni-rostock.de
3. Mathematikschulaufgabe
Arbeitszeit 40min 1.0 Gegeben sind die Punkte A(-I1) und B(6I-1), sowie die Gerade g mit der Gleichung y = 0,5x + 3. Führe die folgenden Berechnungen jeweils auf zwei Stellen gerundet aus. 1.1 Berechne
SCHRIFTLICHE PRÜFUNG ZUM EINTRITT IN DIE QUALIFIKATIONSPHASE DER GYMNASIALEN OBERSTUFE UND ZENTRALE KLASSENARBEIT AN DEUTSCHEN SCHULEN IM AUSLAND 2013
SCHRIFTLICHE PRÜFUNG ZUM EINTRITT IN DIE QUALIFIKATIONSPHASE DER GYMNASIALEN OBERSTUFE UND ZENTRALE KLASSENARBEIT AN DEUTSCHEN SCHULEN IM AUSLAND 2013 MATHEMATIK 5. März 2013 Prüfungsregion WEST Arbeitszeit:
Interstaatliche Maturitätsschule für Erwachsene St.Gallen/Sargans
Interstaatliche Maturitätsschule für Erwachsene St.Gallen/Sargans Einstufungstest Mathematik für den Vorkurs PH an der ISME Erlaubte Hilfsmittel: Formelsammlung für den Vorkurs PH, Taschenrechner ohne
Trigonometrie - Zusammenfassende Übungen Raumgeometrie Vorbereitung auf die Abschlussprüfung
1.0 Das Quadrat ABCD mit der Seitenlänge a cm ist Grundfläche eines Würfels mit der Deckfläche EFGH, wobei E über A, F über B usw. liegen. Zur Grundfläche ABCD parallele Ebenen schneiden die Würfelkanten
1 Einige Aufgaben zum Rechnen mit Mengen:
Einige Aufgaben zum Rechnen mit Mengen: A.. Gib die folgenden Mengen im aufzählenden Verfahren an: a A { N 8} b B {y Z < y } c C {z N z ist Teiler von } d D { P 0} e E {y N y ist Vielfaches von 5} f F
BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK
BESONDERE LEISTUNGSFESTSTELLUNG 003 MATHEMATIK Arbeitszeit: Hilfsmittel: 150 Minuten 1. Formeln und Tabellen für die Sekundarstufen I und II. Berlin: Paetec, Ges. für Bildung und Technik. Formeln und Tabellen
