Lineare Algebra I. Prof. Dr. Daniel Roggenkamp Vorlesung -

Größe: px
Ab Seite anzeigen:

Download "Lineare Algebra I. Prof. Dr. Daniel Roggenkamp Vorlesung -"

Transkript

1 Lineare Algebra I Prof. Dr. Daniel Roggenkamp - 22.Vorlesung -

2 Aus der letzten Vorlesung: Polynome K[t] (p 0, p,, p i K mit p i = 0 i > i 0 für ein i 0 = i 0 p i t i = p 0 + p t + p 2 t p i0 t i 0 Grad deg(p = max{i N 0 p i 0} Z.B.: = p(t = 9 t7 2 t 3 + t Q[t], deg(p = Polynome

3 Der Grad deg(p eines von Null verschiedenen Polynoms (p i i i=0ist z.b. i=0 2 K[t] ist das gro ßte Vektorraum. Eine Basis 2 N0 mit pi 6= 0. Den Grad des. 2 3 Null-Polynoms definieren wir als {, t, t, t,...}. Ringstruktur: ng 7.3. In Polynome kanno ge man Elemente in K einsetzen: sei p 2 K[t], k 2 K, so emerkung 7.2. Verm K[t] ist K-Vektorraum: 2 K[t] Weise kann man jedem Polynom eine Abbildung K! K zuordnen: K[t] ein K-Vektorraum. ist z.b. deg(q} K[t] +Eine!q Abb(K, K deg(p Basis max{deg(p, p 7! (k 7! p(k deg(p + q = max{deg(p, deg(p deg(q {, t, t2, t3,deg(q}...}. } Übungsaufgabe X i (pp(k + (q = (p + q, (p, (q i i=0= i i=0 i i=0 i i=0 pii ki=02 K. i i=0 k (pi = (k p, (p i i=0 i i=0 2 K[t], k 2 K i=0 Polynome aber nicht einfach als Abbildungen K! K au assen, denn es gibt von hiedenen Polynome, deren zugeh Abbildung deg(k p o rige = deg(p 0K! k K Kverschwindet. Z.B. ist emerkung kann man das Polynom7.3. p(t =Int2 Polynome + t 2 F2 [t] ungleich Null,Elemente aber p(k =in0 K fu reinsetzen: alle k 2 F2. sei p 2 K[t], k 2 K, so (pi i=0, q ng 7.4. Polynome u ber einem Ko rper kann man multiplizieren: fu r p = X Multiplikation K[t] K[t] K[t] niere p(k = pi k i 2 K. i X i=0 p q = (ri, mit r = p qi j. i j deg(p q i=0 = {bem:polyring} = deg(p + deg(q = j=0 uf diese Weise kann man jedem Polynom eine Abbildung K! K zuordnen: q p deg(p q = deg(p deg(q!. (7. {eq:degmult} K[t] Abb(K, K leicht nach, dass K[t] mitkommutativer dieser Operation ein ist, mit p Ring 7!kommutativer (k7! p(kring (mit Körper K[t] ist (7. folgt ausserdem, dass der Ring nullteilerfrei ist, ohne Division ion 3.2. Aus Gleichung q = 0 folgt p = 0 _ q = 0.nullteilerfrei an kann Polynome aber nicht einfach als Abbildungen K! K au assen, denn es gibt von erschied zu Ko rpern kann man in Ringen nicht dividieren. In Polynomringen (wie ull deren...zugeh o rige Abbildung K! K verschwindet. Z.B. ist n Zverschiedenen kann man aber Polynome, mit Rest dividieren. r K = F2 das Polynom p(t = t2 + t 2 F2 [t] ungleich Null, aber p(k = 0 fu r alle k 2 F Polynome {

4 Division mit Rest: Satz 7.5. Seien p, q 2 K[t] undq 6= 0.Danngibteseindeutigbestimmtex, r 2 K[t], sodass p = x q + r, und deg(r < deg(q, falls r 6= Polynome

5 Nullstellen: Definition 7.6. k 2 K nennt man eine Nullstelle des Polynoms p 2 K[t] falls p(k = Korollar 7.7. Falls a 2 K eine Nullstelle von p 2 K[t] ist, so teilt (t Polynom p (ohne Rest, d.h. es gibt ein q 2 K[t] mit a 2 K[t] das 2 0 p(t =(t a q(t. Proposition 7.8. Jedes Polynom p 2 K[t] kann auf eindeutige Weise dargestellt werden als p(t = my (t x i i q(t, i=0 wobei x,...,x m die Nullstellen von p sind, und q(x 6= 0für alle x 2 K. i 2 N nennt man die Multiplizität der Nullstelle x i. Wir schreiben dafür auch i =: µ xi (p. 7.. Polynome

6 Korollar 7.9. Ein Polynom 0 6= p 2 K[t] kann höchstens deg(p viele Nullstellen besitzen. Korollar 7.0. Falls K unendlich ist, so bestimmt für p 2 K[t] die Abbildung K! K k 7! p(k das Polynom p eindeutig. 7.. Polynome

7 Definition 7.. Ein Körper K heißt algebraisch abgeschlossen, falls jedes nicht-konstante Polynom in K[t] eine Nullstelle in K besitzt. Algebraisch abgeschlossenen Körper: Bemerkung 7.3. Ist K algebraisch abgeschlossen, so zerfällt jedes Polynom p 2 K[t] in Linearfaktoren my p(t =q (t x i i, q,x,...,x m 2 K. i= Fundamentalsatz der Algebra Y Satz 7.4. C ist algebraisch abgeschlossen. 7.. Polynome

8 7.2. Eigenvektoren und Eigenwerte Mat AB (f = Ik Eigenvektoren und Eigenwerte

9 Invariante Unterräume: Invarianter Unterraum: nicht-trivialer Untervektorraum Block-obere-Dreiecksform: Mat AA (f = A B 0 C 2 Basis von W -dimensionale invariante Unterräume 7.2. Eigenvektoren und Eigenwerte

10 Eigenräume und Eigenwerte: Definition 7.5. Sei V ein Vektorraum über einem Körper K und f 2 Hom(V,V ein Endomorphismus von V. ( Für 2 K nennen wir den Untervektorraum V (f :={v 2 V f(v = v} =ker(f id V V den zu gehörigen Eigenraum von f. (2 2 K nennen wir einen Eigenwert von f, falls V (f 6= {0}. (3 Sei 2 K ein Eigenwert von f. Dann nennen wir dim(v (f diemultiplizität des Eigenwerts. (4 Sei 2 K ein Eigenwert von f. Dann nennen wir die von 0 verschiedenen Elemente in V (f dieeigenvektoren von f zum Eigenwert. Den zu 2 K gehörigen Eigenraum einer quadratischen Matrix A 2 Mat(n, n; K definiert man als den zu gehörigen Eigenraum des Endomorphismus A : Mat(n, ; K! Mat(n, ; K: V (A :={v 2 Mat(n, ; K A v = v} Mat(n, ; K. Vektoren 0 erzeugen -dim. invariante Unterräume Analog definiert man Eigenwerte, deren Multiplizitäten und Eigenvektoren von A. {ew 7.2. Eigenvektoren und Eigenwerte

11 Bestimmung von Eigenräumen: Nach Basiswahl kann man jeden Endomorphismus eines endlich-dimensionalen Vektorraums als Matrix darstellen. Betrachte Eigenräume von Matrizen A Mat(n,n;K Eigenwert λ bekannt dazugehöriger Eigenraum kann leicht bestimmt werden dim(v λ (A = n Rang(A λi n Problem: Finde die Eigenwerte! Proposition 7.7. Sei V ein n-dimensionaler Vektorraum, f 2 Hom(V,V. Sei ferner A = Mat AA (f Matrixdarstellungvonf bzgl. einer beliebigen geordneten Basis A von V.Dann sind die folgenden Aussagen äquivalent: ( ist Eigenwert von f. (2 det( id V f=0 (3 det( I n A=0 Mit hilfe der Determinante können Eigenwerte bestimmt werden Eigenvektoren und Eigenwerte

12 7.3. Das charakteristische Polynom Definition 7.8. ( Sei A 2 Mat(n, n; K. Das charakteristische Polynom von A ist das Polynom A(t :=det(t I n A 2 K[t]. (2 Sei f : V 2 Hom(V,V Endomorphismuseinesendlich-dimensionalenK-Vektorraums. Das charakteristische Polynom von f definieren wir als das charakteristische Polynom f(t := MatAA (f(t einer Matrixdarstellung Mat AA (f vonf. (Es hängt nicht von der gewählten Basis ab. Verwende: Determinaten auch von Matrizen definiert, die Einträgen in kommutativem Ring (K[t] haben! (Leibniz-Formel 7.3. Das charakteristische Polynom

13 Bemerkung 7.9. (2 Das charakteristische Polynom ist in der Tat ein Polynom: A(t 2 K[t]. Anhand der Leibniz-Formel (6.3 siehtmanleicht,dass A(t =p n t n + p n t n p t + p 0, wobei die p i 2 K Ausdrücke in den Matrixeinträgen a ij sind. (3 Die Koe zienten p 0,...,p n kann man berechnen. Z.B. sieht man leicht, dass sowohl zu p n als auch zu p n nur Terme aus dem = id-summanden (t a (t a 22 (t a nn in der Leibniz-Formel beitragen. Insbesondere folgt, p n =und p n = (a + a a nn. wichtige Größe: Spur Spur eines Endomorphismus Spur seiner Matrixdarstellung unabhängig von der Basiswahl, denn 7.3. Das charakteristische Polynom

14 Bemerkung 7.9. (4 Das charakteristische Polynom eines Endomorphismus f 2 Hom(V,V hängt nicht von der Wahl der Basis ab, denn seien A und B zwei Basen von V,danngilt det t I n Mat BB (f = det Mat AB (id V (t I n Mat AA (f Mat BA (id V = det Mat AB (id V det (t I n Mat AA (f det = det t I n Mat AA (f, Mat BA (id V denn die Basiswechsel-Matrizen sind invertierbar mit Mat AB (id V =(Mat BA (id V, vgl. Proposition Insbesondere gilt nach Proposition 6.6 det Mat AB (id V det Mat BA (id V =. Eigenwerte sind Nullstellen des charakteristischen Polynoms! 7.3. Das charakteristische Polynom

Lineare Algebra I. Prof. Dr. Daniel Roggenkamp Vorlesung -

Lineare Algebra I. Prof. Dr. Daniel Roggenkamp Vorlesung - Lineare Algebra I Prof. Dr. Daniel Roggenkamp - 21.Vorlesung - Entwicklung nach Zeilen bzw. Spalten Definition 6.22. Für eine Matrix A 2 Mat(n, n; K) bezeichneta[i, j] die(n 1) (n 1)- Matrix, die aus A

Mehr

Heinrich Heine-Universität Düsseldorf Sommersemester Lineare Algebra 1. Vierzehnte & Fünfzehnte Woche,

Heinrich Heine-Universität Düsseldorf Sommersemester Lineare Algebra 1. Vierzehnte & Fünfzehnte Woche, Fakultät für Mathematik PD Dr Markus Perling Heinrich Heine-Universität Düsseldorf Sommersemester 2014 Lineare Algebra 1 Vierzehnte & Fünfzehnte Woche, 1672014 10 Determinanten (Schluß) Das folgende Resultat

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Hinweis:

Mehr

Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß

Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß Lineare Algebra I - 15. Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß Probeklausur: Samstag, 5.11. 10 Uhr, B6 A001 Anmeldung in den Übungsgruppen Wir hatten gesehen: =! 7 Mat(m, n; K) Hom (Mat(n,

Mehr

2.11 Eigenwerte und Diagonalisierbarkeit

2.11 Eigenwerte und Diagonalisierbarkeit 2.11. EIGENWERTE UND DIAGONALISIERBARKEIT 127 Die Determinante eines Endomorphismus Wir geben uns jetzt einen endlichen erzeugten K-Vektorraum V und einen Endomorphismus ϕ : V V vor. Wir wollen die Determinante

Mehr

8 Eigenwerttheorie I 8. EIGENWERTTHEORIE I 139. Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet:

8 Eigenwerttheorie I 8. EIGENWERTTHEORIE I 139. Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet: 8. EIGENWERTTHEORIE I 139 8 Eigenwerttheorie I Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet: K[x] = Abb[N, K] = {P ; P = a n x n + a n 1 x n 1 + + a 0 ; a

Mehr

6.3 Eigenwerte. γ ist Eigenwert von T [T] B B γi ist nicht invertierbar.

6.3 Eigenwerte. γ ist Eigenwert von T [T] B B γi ist nicht invertierbar. Um zu zeigen, dass die irreduziblen Teiler eines reellen Polynoms höchstens den Grad 2 haben, fassen wir nun (x γ) und (x γ) zusammen und stellen fest, dass (x (a + b i))(x ((a b i)) = x 2 2a + (a 2 +

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I UND II 2. Oktober 2008 MUSTERLÖSUNG

KLAUSUR ZUR LINEAREN ALGEBRA I UND II 2. Oktober 2008 MUSTERLÖSUNG KLAUSUR ZUR LINEAREN ALGEBRA I UND II 2. Oktober 2008 MUSTERLÖSUNG Aufgabe 1 Es sei K ein Körper, V ein K-Vektorraum, und seien v 1,..., v n V (n N). (a) Definieren Sie, wann die endliche Familie v 1,...,

Mehr

KAPITEL 8. Normalformen. 1. Blockmatrizen. ,C K m 2 n 1. X = K (m 1+m 2 ) (n 1 +n 2 ) K L. und Y = M N Blockmatrizen mit.

KAPITEL 8. Normalformen. 1. Blockmatrizen. ,C K m 2 n 1. X = K (m 1+m 2 ) (n 1 +n 2 ) K L. und Y = M N Blockmatrizen mit. KAPITEL 8 Normalformen Definition 8.1 (Blockmatrizen). Sind 1. Blockmatrizen A K m 1 n 1,B K m 1 n 2,C K m 2 n 1 und D K m 2 n 2 so nennet man die Matrix X = ( A B C D ) K (m 1+m 2 ) (n 1 +n 2 ) eine Blockmatrix

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

5 Minimalpolynom und charakteristisches Polynom

5 Minimalpolynom und charakteristisches Polynom 5 Minimalpolynom und charakteristisches Polynom 5.1 Lemma Sei A K n n. Dann ist λ K genau dann ein Eigenwert von A, wenn det(λe n A) = 0. 5.2 Beispiel ( ) 1 4 i) A = R 1 1 2 2 det(λe 2 A) = λ 1 4 1 λ 1

Mehr

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eine Fragestellung, die uns im weiteren beschäftigen wird, ist das Finden eines möglichst einfachen Repräsentanten aus jeder Äquivalenzklasse

Mehr

Ausgewählte Lösungen zu den Übungsblättern 9-10

Ausgewählte Lösungen zu den Übungsblättern 9-10 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel V SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

Eigenwerttheorie. Martin Gubisch Lineare Algebra I WS 2007/2008

Eigenwerttheorie. Martin Gubisch Lineare Algebra I WS 2007/2008 Eigenwerttheorie Martin Gubisch Lineare Algebra I WS 27/28 Motivation Gegeben seien ein K-Vektorraum V der Dimension n < und eine K-lineare Abbildung f : V V Wir suchen eine Basis V = v 1,, v n von V,

Mehr

3.7 Eigenwerte und Eigenvektoren

3.7 Eigenwerte und Eigenvektoren 3.7. EIGENWERTE UND EIGENVEKTOREN 123 3.7 Eigenwerte und Eigenvektoren Wir wollen jetzt lineare Endomorphismen durch Matrizen besonders übersichtlicher Gestalt (u.a. mit möglichst vielen Nullen) beschreiben,

Mehr

Lineare Algebra I Lösungsvorschlag

Lineare Algebra I Lösungsvorschlag Aufgabe Lineare Algebra I Lösungsvorschlag Wir bezeichnen mit a, a 2, a 3 Q 4 die Spalten der Matrix A. Es ist 7 a + 2a 2 = 7 4 = 7a 3, und wir sehen im l A = a, a 2, a 3 = a, a 2. Da die Vektoren a und

Mehr

3.4 Trigonalisierung und Jordansche Normalform

3.4 Trigonalisierung und Jordansche Normalform 3.4 Trigonalisierung und Jordansche Normalform Definition 3.4.1. Sei V ein K-Vektorraum, F End K (V ). Ein Unterraum U V heißt F -invariant falls F (U) U. Bemerkung. (1) Falls U V ein F -invarianter Unterraum

Mehr

Scheinklausur, 2. Teil, Lineare Algebra I, WS 2001, Prof. Dr. G. Hiß. Ja oder

Scheinklausur, 2. Teil, Lineare Algebra I, WS 2001, Prof. Dr. G. Hiß. Ja oder Gruppe A Scheinklausur 2. Teil 15.2.2002 Lineare Algebra I WS 2001 Prof. Dr. G. Hiß Name: Matrikelnummer: Kreuzen Sie bei jeder Frage entweder Ja oder Nein oder nichts an. Auswertung der Multiple-Choice-Aufgaben:

Mehr

Lineare Algebra II, Lösungshinweise Blatt 9

Lineare Algebra II, Lösungshinweise Blatt 9 Prof Dr Katrin Wendland Priv Doz Dr Katrin Leschke Christoph Tinkl SS 27 Lineare Algebra II, Lösungshinweise Blatt 9 Aufgabe (4 Punkte) Sei 2 3 4 A = 5 6 Berechnen Sie A k für alle k N und verifizieren

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

ist (oder besser Abspalten von Linearfaktoren beschäftigen. Zu einem beliebigen Körper K betrachten wir die Menge (j,k) N N j+k=n

ist (oder besser Abspalten von Linearfaktoren beschäftigen. Zu einem beliebigen Körper K betrachten wir die Menge (j,k) N N j+k=n 8. Polynomringe Das Umgehen mit Polynomen, d.h. mit Ausdrücken der Form a 0 + a 1 x + a 2 x 2 +... + a n x n ist aus der Schule vertraut, falls die Koeffizienten a 0,..., a n ganze oder rationale oder

Mehr

Lineare Algebra I für Mathematiker Lösungen

Lineare Algebra I für Mathematiker Lösungen Lineare Algebra I für Mathematiker Lösungen Anonymous 24. April 2016 Aufgabe 1 Beantworten Sie bitte die folgenden Fragen. Jeder Vektorraum hat mindestens ein Element. Q ist ein R-Vektorraum (mit der Multiplikation

Mehr

9 Lineare Algebra 2 (SS 2009)

9 Lineare Algebra 2 (SS 2009) 9 Lineare Algebra 2 (SS 2009) Vorbemerkung: Das Einsetzen von quadratischen Matrizen in Polynome. Im folgenden sei R ein kommutativer Ring und R[T] der Polynomring mit Koeffizienten in R (dies ist wieder

Mehr

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009 I. (4 Punkte) Gegeben sei die Menge Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 9 G := { a c b a, b, c R }. (a) Zeigen Sie, dass G zusammen mit der Matrizenmultiplikation eine Gruppe

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

5 Diagonalisierbarkeit

5 Diagonalisierbarkeit 5 Diagonalisierbarkeit Sei V ein K Vektorraum mit einer Basis B = (v 1,..., v n ) Wiederholung aus 2: Sei f : V V K linear. Stelle f(v j ) für j = 1,..., n dar in der Form a 1j Das n Tupel a j =. a nj

Mehr

(R4) Addition und Multiplikation erfüllen das Distributivgesetz a (b + c) = ab + ac und. Endomorphismenring d) K Körper, n N, R = K n n Matrizenring

(R4) Addition und Multiplikation erfüllen das Distributivgesetz a (b + c) = ab + ac und. Endomorphismenring d) K Körper, n N, R = K n n Matrizenring 5 Polynome 5.1 Ringe Definition 5.1.1. Eine Menge R zusammen mit zwei inversen Verknüpfungen (+ : R R R Addition, : R R R Multiplikation heißt Ring, wenn folgende Bedingungen gelten: Ring (R1 (R, + abelsche

Mehr

1 Darstellungsmatrizen

1 Darstellungsmatrizen Matthias Tischler Karolina Stoiber Ferienkurs Lineare Algebra für Physiker WS 14/15 A 1 Darstellungsmatrizen Vereinbarungen für dieses Kapitel: K Körper V und W endlich-dimensionale K-Vektorräume B = {v

Mehr

Berechnung der Determinante

Berechnung der Determinante Berechnung der Determinante Verhalten der Determinante unter elementaren Zeilenoperationen: Das Vertauschen zweier Zeilen/Spalten der Matrix A ändert nur das Vorzeichen der Determinante, d.h: i, j {1,...,

Mehr

m 1 Die Bewegung der drei Kugeln wird beschrieben durch das folgende Differentialgleichungssystem x 1 (t) x 2 (t) x 3 (t) k 12 k 12 k 12 k k 23

m 1 Die Bewegung der drei Kugeln wird beschrieben durch das folgende Differentialgleichungssystem x 1 (t) x 2 (t) x 3 (t) k 12 k 12 k 12 k k 23 Kapitel 5 Eigenwerte 5. Definition und Beispiele Wir sehen uns ein System dreier schwingender Kugeln der Massen m, m und m 3 an, die durch Federn aneinander gekoppelt sein sollen. m k m k 3 m 3 x ( t x

Mehr

29 Lineare Algebra 2 (SS 2009) 4.9. Das charakteristische Polynom sei Produkt von linearen Polynomen.

29 Lineare Algebra 2 (SS 2009) 4.9. Das charakteristische Polynom sei Produkt von linearen Polynomen. 9 Lineare Algebra (SS 009) 49 Das charakteristische Polynom sei Produkt von linearen Polynomen 49 Das charakteristische Polynom sei Potenz eines linearen Polynoms Wir betrachten nun eine Matrix A, sodass

Mehr

Serie 17: Satz von Cayley-Hamilton & spezielle Endomorphismen

Serie 17: Satz von Cayley-Hamilton & spezielle Endomorphismen D-MATH Lineare Algebra I/II HS 2017/FS 2018 Dr. Meike Akveld Serie 17: Satz von Cayley-Hamilton & spezielle Endomorphismen 1. Sei V ein K-Vektorraum. a) Sei T End(V ). Zeigen Sie, dass die folgenden alles

Mehr

Trigonalisierung. Definition. 1) Sei F : V V linear, dim V = n. Dann heißt F trigonalisierbar, wenn es eine Basis B von V gibt sodass a 11 a 12..

Trigonalisierung. Definition. 1) Sei F : V V linear, dim V = n. Dann heißt F trigonalisierbar, wenn es eine Basis B von V gibt sodass a 11 a 12.. Trigonalisierung Sei F : V V linear und dim V = n. Wir beschäftigen uns jetzt mit der Frage, ob es eine Basis B von V gibt, sodass M B (F ) eine Dreiecksmatrix ist. Definition. ) Sei F : V V linear, dim

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008

KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008 KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008 MUSTERLÖSUNG Name: Studiengang: Aufgabe 1 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter die Aufgabenstellung

Mehr

Tutorium 2. 1 Der Polynomring

Tutorium 2. 1 Der Polynomring 1 Der Polynomring Tutorium 2 Wiederholung. Eine Einheit eines Rings ist ein multiplikativ invertierbares Element. Zum Beispiel sind {1, 1} die Einheiten in Z, und alle Zahlen außer der 0 in jedem Körper.

Mehr

Determinanten. Motivation: Man betrachte das lineare Gleichungssystem =. (1) y = Sei o.b.d.a a 0 und c 0. Dann ist (1) äquivalent zu. = ac ad y.

Determinanten. Motivation: Man betrachte das lineare Gleichungssystem =. (1) y = Sei o.b.d.a a 0 und c 0. Dann ist (1) äquivalent zu. = ac ad y. Determinanten Motivation: Man betrachte das lineare Gleichungssystem [ [ [ a b x u = (1) c d y v Sei obda a und c Dann ist (1) äquivalent zu [ [ ca cb x = ac ad y und ferner zu [ [ ca cb x ad cb y Falls

Mehr

Sommer 2017 Musterlösung

Sommer 2017 Musterlösung Sommer 7 Musterlösung. (5 Punkte) a) Sei V ein Vektorraum über K und sei T End(V ). Geben Sie die Definition eines Eigenwertes von T und zeigen Sie für endlichdimensionales V, dass λ K genau dann ein Eigenwert

Mehr

4.4 Simultane Diagonalisierbarkeit und Trigonalisierbarkeit

4.4 Simultane Diagonalisierbarkeit und Trigonalisierbarkeit 4.4 Simultane Diagonalisierbarkeit und Trigonalisierbarkeit Definition 4.41. Eine Familie F linearer Operatoren heißt vertauschbar oder kommutierend, wenn für je zwei Operatoren U,T in F gilt: UT = TU.

Mehr

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen Hannover, den 7. Februar 2002 Aufgabe. Übungsblatt: Lineare Algebra II Abgabe: 8./9.4.2002 in den Übungsgruppen (2, 2, 3 Punkte) Der Vektorraum V = C[, ] sei mit dem üblichen Skalarprodukt f, g = f(t)g(t)

Mehr

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Sommer 4 Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT. [ Punkte] Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in

Mehr

Richie Gottschalk Lineare Algebra I Seite 1. a) Welche der folgenden Ringe sind kommutativ? Es gibt genau einen Unterraum W von V mit dim(w ) = n.

Richie Gottschalk Lineare Algebra I Seite 1. a) Welche der folgenden Ringe sind kommutativ? Es gibt genau einen Unterraum W von V mit dim(w ) = n. Richie Gottschalk Lineare Algebra I Seite Aufgabe Im Folgenden sind K immer ein Körper und V ein K-Vektorraum. a) Welche der folgenden Ringe sind kommutativ? K[x] K[x] ist per se ein kommutativer Polynomring.

Mehr

Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger

Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Stefan Lell 2. Juli 2 Aufgabe. Sei t Q und A t = t 4t + 2 2t + 2 t t 2t 2t Mat 3Q a Bestimmen Sie die Eigenwerte von A t in Abhängigkeit

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Lösungsskizze zur Wiederholungsserie

Lösungsskizze zur Wiederholungsserie Lineare Algebra D-MATH, HS Prof. Richard Pink Lösungsskizze zur Wiederholungsserie. [Aufgabe] Schreibe die lineare Abbildung f : Q Q 5, x +x +x x x +x +6x f x := x +x +8x x x +x +x. x +x +5x als Linksmultiplikation

Mehr

Musterlösungen zur Linearen Algebra II Blatt 2

Musterlösungen zur Linearen Algebra II Blatt 2 Musterlösungen zur Linearen Algebra II Blatt 2 Aufgabe. Sei R ein nullteilerfreier kommutativer Ring mit. Setze K := R R\{0}/ mit der Äquivalenzrelation definiert durch (a, b) (a, b ) genau dann, wenn

Mehr

4 Eigenwerte und Eigenvektoren

4 Eigenwerte und Eigenvektoren 4 Eigenwerte und Eigenvektoren Sei V {0} ein K Vektorraum und f : V V K linear. Definition: Ein Eigenwert von f ist ein Element λ K, für die es einen Vektor v 0 in V gibt, so dass f(v) = λ v. Sei nun λ

Mehr

Lineare Algebra II 6. Übungsblatt

Lineare Algebra II 6. Übungsblatt Lineare Algebra II 6 Übungsblatt Fachbereich Mathematik SS 2011 Prof Dr Kollross 18/19 Mai 2011 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minimalpolynom) Bestimmen Sie das Minimalpolynom der

Mehr

Kapitel 11 Eigenwerte und Eigenvektoren

Kapitel 11 Eigenwerte und Eigenvektoren Kapitel Eigenwerte und Eigenvektoren. Problem der Diagonalisierbarkeit Es sei wieder K gleich R oder. Eine n n)-matrix A mit Koeffizienten aus K wird als diagonalisierbar bezeichnet, wenn es eine invertierbare

Mehr

Lineare Algebra 2. Lösung zu Aufgabe 7.2:

Lineare Algebra 2. Lösung zu Aufgabe 7.2: Technische Universität Dortmund Sommersemester 2017 Fakultät für Mathematik Übungsblatt 7 Prof. Dr. Detlev Hoffmann 15. Juni 2017 Marco Sobiech/ Nico Lorenz Lineare Algebra 2 Lösung zu Aufgabe 7.1: (a)

Mehr

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben

Mehr

Lineare Algebra II Lösungen zu ausgewählten Aufgaben

Lineare Algebra II Lösungen zu ausgewählten Aufgaben Lineare Algebra II Lösungen zu ausgewählten Aufgaben Blatt 2, Aufgabe 3 a) Wir zeigen, daß das Ideal (2, X) kein Hauptideal in Z[X] ist. (Dieses Ideal besteht aus allen Elementen in Z[X], die von der Form

Mehr

Lineare Algebra Weihnachtszettel

Lineare Algebra Weihnachtszettel Lineare Algebra Weihnachtszettel 0..08 Die Aufgaben auf diesem Zettel sind zum Üben während der Weihnachtspause gedacht, sie dienen der freiwilligen Selbstkontrolle. Die Aufgaben müssen nicht bearbeitet

Mehr

D-Math/Phys Lineare Algebra II FS 2017 Dr. Meike Akveld. Clicker Fragen

D-Math/Phys Lineare Algebra II FS 2017 Dr. Meike Akveld. Clicker Fragen D-Math/Phys Lineare Algebra II FS 2017 Dr. Meike Akveld Clicker Fragen Frage 1 Wenn eine reelle Matrix einen Eigenvektor hat, so hat es unendlich viele Eigenvektoren Sei u K n einen Eigenvektor von A M

Mehr

Proseminar Lineare Algebra II, SS 11. Blatt

Proseminar Lineare Algebra II, SS 11. Blatt Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2

Mehr

Verständnisfragen: Lineare Algebra und Analytische Geometrie I und II

Verständnisfragen: Lineare Algebra und Analytische Geometrie I und II Verständnisfragen: Lineare Algebra und Analytische Geometrie I und II Matrizen, lineare Gleichungssysteme Wie kommt man von einem linearen Gleichungssystem zu einer Matrix? Was ist die Zeilenstufenform?

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 205/6): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 22 Algebraische Körpererweiterung Satz 1. Sei K L eine Körpererweiterung und sei f L ein Element. Dann sind folgende Aussagen

Mehr

7.3 Unitäre Operatoren

7.3 Unitäre Operatoren Wir können jeden Operator T wie folgt schreiben: Dabei gilt T = 1 2 (T + T ) + i( 1 2 i (T T )) (T + T ) = T + T sowie ( 1 2 i (T T )) = 1 2 i (T T) = 1 2 i (T T ). Wir können T also in zwei lineare Operatoren

Mehr

Basisprüfung. 18. August 2015

Basisprüfung. 18. August 2015 Lineare Algebra I/II D-MATH, HS 4/FS 5 Prof Richard Pink Basisprüfung 8 August 25 [6 Punkte] Betrachte den reellen Vektorraum R 3 zusammen mit dem Standardskalarprodukt, und die Vektoren 9 3 v := 6, v

Mehr

5.2 Diagonalisierbarkeit und Trigonalisierung

5.2 Diagonalisierbarkeit und Trigonalisierung HINWEIS: Sie finden hier eine vorläufige Kurzfassung des Inhalts; es sind weder Beweise ausgeführt noch ausführliche Beispiele angegeben. Bitte informieren Sie sich in der Vorlesung. c M. Roczen und H.

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 12 Aufgabe 121 Matrixpotenzen und Eigenwerte Diese Aufgabe ist

Mehr

a) Die Abbildung µ h ist injektiv, da für alle g 1, g 2 G gilt: Daher ist µ h bijektiv. Zudem folgt aus µ h (g) = g auch

a) Die Abbildung µ h ist injektiv, da für alle g 1, g 2 G gilt: Daher ist µ h bijektiv. Zudem folgt aus µ h (g) = g auch Aufgabe. (8 Punkte) Es sei (G, ) eine Gruppe und e G ihr neutrales Element. Für h G sei µ h : G G die Abbildung, die durch g G : µ h (g) := h g gegeben ist. a) Zeigen Sie, dass für jedes h G die Abbildung

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 25 J ai décidé d être heureux parce que c est bon pour la santé Voltaire Trigonalisierbare Abbildungen

Mehr

Alle Vektoren sind hier Spaltenvektoren. Eine Matrix besteht aus nebeneinandergeschrie-

Alle Vektoren sind hier Spaltenvektoren. Eine Matrix besteht aus nebeneinandergeschrie- 1 Vorbemerkungen Alle Vektoren sind hier Spaltenvektoren. Eine Matrix besteht aus nebeneinandergeschrie- benen Vektoren. Wird die Matrix A = ( a 1,..., a n ) mit dem Vektor c = c 1. c n multipliziert,

Mehr

4 Funktionenfolgen und normierte Räume

4 Funktionenfolgen und normierte Räume $Id: norm.tex,v 1.48 2017/06/14 15:16:10 hk Exp $ $Id: jordan.tex,v 1.26 2017/06/16 10:59:58 hk Exp $ 4 Funktionenfolgen und normierte Räume 4.7 Kompakte Mengen Zum Abschluss dieses Kapitels behandeln

Mehr

4 Vektorräume. 4.1 Definition. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48. Sei K ein Körper.

4 Vektorräume. 4.1 Definition. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48. Sei K ein Körper. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48 4 Vektorräume 4.1 Definition Sei K ein Körper. Definition: Ein Vektorraum über K, oder kurz ein K-Vektorraum, ist ein Tupel (V,+,, 0 V ) bestehend aus

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

1. Übungsblatt: Lineare Algebra II Abgabe: 24./ in den Übungsgruppen

1. Übungsblatt: Lineare Algebra II Abgabe: 24./ in den Übungsgruppen Hannover, den 0. April 2006. Übungsblatt: Lineare Algebra II Abgabe: 24./25.4.2006 in den Übungsgruppen ( ) 2 5 a) Zeigen Sie, dass A = und B = 2 ( 7 6 invertierbare Matrix T an mit T AT = B. b) Zeigen

Mehr

Übungen zur Vorlesung Lineare Algebra II, SoSe 2016, Blatt 1

Übungen zur Vorlesung Lineare Algebra II, SoSe 2016, Blatt 1 Übungen zur Vorlesung Lineare Algebra II, SoSe 216, Blatt 1 Mündliche Aufgaben Die Aufgaben aus diesem Blatt bestehen zu einem großen Teil aus den Aufgaben von Blatt 13 der LA1. Sie dienen vor allem der

Mehr

3.3 Das charakteristische Polynom

3.3 Das charakteristische Polynom LinAlg II Version 1 2. Mai 2006 c Rudolf Scharlau 209 3.3 Das charakteristische Polynom Wir setzen die im vorigen Abschnitt begonnene Untersuchung von Eigenvektoren und Eigenwerten fort und stellen den

Mehr

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016,

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016, Klausur zur Vorlesung Lineare Algebra II, SoSe 6, 6.7.6 Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen und Sätze aus der Vorlesung korrekt zu formulieren

Mehr

Wiederholungsserie II

Wiederholungsserie II Lineare Algebra II D-MATH, FS 205 Prof. Richard Pink Wiederholungsserie II. Zeige durch Kopfrechnen, dass die folgende reelle Matrix invertierbar ist: 205 2344 234 990 A := 224 423 990 3026 230 204 9095

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2 2

Mehr

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).

Mehr

Lineare Schieberegisterfolgen

Lineare Schieberegisterfolgen Lineare Schieberegisterfolgen Sei K ein endlicher Körper. Man nehme zwei Vektoren x 0 a0 x n 1, a n 1 K n n 1 x n := a i x i und betrachte die lineare Abbildung : K n K n, die durch i=0, berechne x 0 x

Mehr

2 Ähnlichkeit von Matrizen, Eigenwerte und Eigenvektoren

2 Ähnlichkeit von Matrizen, Eigenwerte und Eigenvektoren 2 ÄHNLICHKEIT VON MATRIZEN, EIGENWERTE UND EIGENVEKTOREN 1 19. Mai 2000 2 Ähnlichkeit von Matrizen, Eigenwerte und Eigenvektoren Motivation. Es seien: V ein K-Vektorraum mit dim V = n < und F End V, Φ,

Mehr

Henning Krause Lineare Algebra Julia Sauter SS 2017 Klausur mit Lösungsvorschlag Jan Geuenich

Henning Krause Lineare Algebra Julia Sauter SS 2017 Klausur mit Lösungsvorschlag Jan Geuenich Henning Krause Lineare Algebra Julia Sauter SS 27 Klausur 2.9.27 mit Lösungsvorschlag Jan Geuenich Aufgabe (4 Punkte: Sei n N und seien A und B zwei (n n-matrizen über einem Körper K. Wahr Falsch (a Es

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 2014/201 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 10 Abgabetermin: Freitag, 16.01.201, 11 Uhr Lösungen der

Mehr

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 6): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

23. Die Jordan sche Normalform

23. Die Jordan sche Normalform Chr.Nelius, Lineare Algebra II (SS 2005) 1 23. Die Jordan sche Normalform Wir suchen für einen trigonalisierbaren Endomorphismus unter seinen dreiecksförmigen Darstellungsmatrizen eine Darstellungsmatrix,

Mehr

Abschnitt: Diagonalisierung von Endomorphismen

Abschnitt: Diagonalisierung von Endomorphismen Abschnitt: Diagonalisierung von Endomorphismen Wiederholung: Endomorphismus von V ist eine lineare Abbildung von V nach V. Frage: f sei ein Endomorphismus. In welcher Basis ist die darstellende Matrix

Mehr

Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen.

Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen. Definition: Lineare Abbildung Lineare Abbildungen Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen. 8.1 Definition: Lineare Abbildung Eine Funktion f : V Ñ W zwischen

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS. Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF

TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS. Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF 07.03.2016-11.03.2016 Inhaltsverzeichnis Inhaltsverzeichnis 1 Darstellungsmatrizen 2 2 Diagonalisierbarkeit

Mehr

3.5 Trigonalisierbarkeit, verallgemeinerte Eigenräume und Jordansche Normalform

3.5 Trigonalisierbarkeit, verallgemeinerte Eigenräume und Jordansche Normalform LinAlg II Version 1 29. Mai 2006 c Rudolf Scharlau 219 3.5 Trigonalisierbarkeit, verallgemeinerte Eigenräume und Jordansche Normalform Das Problem der Normalformen für Endomorphismen handelt kurz gesprochen

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

Lineare Algebra Klausur 2

Lineare Algebra Klausur 2 Lineare Algebra Klausur 2 (24.9.2015 Dozent: Ingo Runkel) Name Vorname Matrikelnr. Anweisungen: Hilfsmittel: Für die Bearbeitung sind nur Stift und Papier erlaubt. Benutzen Sie einen permanenten Stift

Mehr

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt.

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. () In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. a) Es seien A und B beliebige n n-matrizen mit Einträgen in einem Körper K.

Mehr

Lösung zu Serie [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich:

Lösung zu Serie [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich: Lineare Algebra D-MATH, HS 04 Prof. Richard Pink Lösung zu Serie. [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich: a) F (X) := X 5 X in R[X] und C[X]. b) F (X) := X 4 +X 3 +X in

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 2014/2015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 10 Abgabetermin: Freitag, 16.01.2015, 11 Uhr Auf diesem

Mehr

Lineare Algebra. 12. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching

Lineare Algebra. 12. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching Lineare Algebra 12. Übungsstunde Steven Battilana stevenb student.ethz.ch battilana.uk/teaching December 14, 2017 1 Erinnerung: Determinanten, Orthogonale/unitäre Matrizen Sei A R 2 2, dann kann die Inverse

Mehr

Lineare Algebra I. - 9.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Korrektur: 2. Klausurtermin:

Lineare Algebra I. - 9.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Korrektur: 2. Klausurtermin: Lineare Algebra I - 9.Vorlesung - rof. Dr. Daniel Roggenkamp & Falko Gauß Korrektur: 2. Klausurtermin: 09.02.2017 Linearkombination von Vektoren lineare Hülle Erzeugendensystem S lineare Unabhängigkeit

Mehr

MC-Serie 11: Eigenwerte

MC-Serie 11: Eigenwerte D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung

Mehr

Eigenwerte (Teschl/Teschl 14.2)

Eigenwerte (Teschl/Teschl 14.2) Eigenwerte Teschl/Teschl 4. Ein Eigenvektor einer quadratischen n nmatrix A ist ein Vektor x R n mit x 0, für den Ax ein skalares Vielfaches von x ist, es also einen Skalar λ gibt mit Ax = λ x Ax λ x =

Mehr

5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit

5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit ME Lineare Algebra HT 2008 99 5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit 5.1 Ein Beispiel zur Motivation Als einfachstes Beispiel eines dynamischen Systems untersuchen wir folgendes Differentialgleichungssystem

Mehr

4 Funktionenfolgen und normierte Räume

4 Funktionenfolgen und normierte Räume $Id: norm.tex,v 1.57 2018/06/08 16:27:08 hk Exp $ $Id: jordan.tex,v 1.34 2018/07/12 20:08:29 hk Exp $ 4 Funktionenfolgen und normierte Räume 4.7 Kompakte Mengen Am Ende der letzten Sitzung hatten wir zwei

Mehr

Universität Bielefeld Sommersemester Lineare Algebra 2 Übungsblatt 1

Universität Bielefeld Sommersemester Lineare Algebra 2 Übungsblatt 1 Übungsblatt 1 Abgabe bis 10:00 Uhr am Donnerstag, den 19. April 2018, im Postfach Ihrer Tutorin bzw. Ihres Tutors. Es sei K ein beliebiger Körper. Seien V und W endlich-dimensionale K-Vektorräume, mit

Mehr

Orthogonale und unitäre Matrizen

Orthogonale und unitäre Matrizen Proseminar zur linearen Algebra Veranstalter: Prof. Bogopolski TU-Dortmund Proseminarbeitrag von Daniela Kreft Studiengang: Mathematik(Diplom) Thema: Orthogonale und unitäre Matrizen Orthogonale und unitäre

Mehr