Zentraler Grenzwertsatz
|
|
|
- Caroline Grosse
- vor 6 Jahren
- Abrufe
Transkript
1 Statistik 2 für SoziologInnen Zentraler Grenzwertsatz Univ.Prof. Dr. Marcus Hudec Statistik für SoziologInnen 1 Zentraler Grenzwertsatz
2 Inhalte Themen dieses Kapitels sind: Der zentrale Grenzwertsatz und seine Bedeutung für die angewandte Statistik Standardfehler versus Standardabweichung Simulation von Stichprobenziehungen und Anwendungsbeispiele aus der empirischen Sozialforschung Das Gesetz der großen Zahl Die Approximation der Binomialverteilung durch die Normalverteilung (Grenzwertsatz von Moivre Laplace) Statistik für SoziologInnen 2 Zentraler Grenzwertsatz
3 Zentraler Grenzwertsatz Die Normalverteilung verdankt ihre universelle theoretische und praktische Bedeutung dem zentralen Grenzwertsatz. Unabhängig von der konkreten Ausgangsverteilung konvergiert nämlich die Verteilungsfunktion einer Summe gegen die Normalverteilung. (sehr grob formuliert) Ist die Anzahl der Summanden (n) hinreichend groß, so kann in der Praxis die Verteilung einer Summe durch die Normalverteilung approximiert werden. Die Frage, ab wann n hinreichend groß ist, hängt von der gewünschten Genauigkeit und der Form der Ausgangsverteilung ab. Statistik für SoziologInnen 3 Zentraler Grenzwertsatz
4 Verteilung von Summen Beispiel: Würfelwurf Frage: Wie verhält sich die Verteilung der Augensumme von x-würfeln bei wachsendem n? Zur Beantwortung führen wir ein Simulationsexperiment durch. 6 Würfe mit 1 Würfel 6 Würfe mit 2 Würfel 6 Würfe mit 3 Würfel etc. Statistik für SoziologInnen 4 Zentraler Grenzwertsatz
5 Augensumme von 1 Wuerfel - n= x Wahrscheinlichkeitsfunktion der Augensumme Statistik für SoziologInnen 5 Zentraler Grenzwertsatz
6 Augensumme von 2 Wuerfel - n= x Wahrscheinlichkeitsfunktion der Augensumme Statistik für SoziologInnen 6 Zentraler Grenzwertsatz
7 Augensumme von 3 Wuerfel - n= x Wahrscheinlichkeitsfunktion der Augensumme Statistik für SoziologInnen 7 Zentraler Grenzwertsatz
8 Augensumme von 5 Wuerfel - n= x Wahrscheinlichkeitsfunktion der Augensumme Statistik für SoziologInnen 8 Zentraler Grenzwertsatz
9 Augensumme von 1 Wuerfel - n= x Wahrscheinlichkeitsfunktion der Augensumme Statistik für SoziologInnen 9 Zentraler Grenzwertsatz
10 Augensumme von 5 Wuerfel - n= x Wahrscheinlichkeitsfunktion der Augensumme Statistik für SoziologInnen 1 Zentraler Grenzwertsatz
11 Zentraler Grenzwertsatz Seien X 1, X 2,..., X n identisch verteilte, unabhängige Zufallsvariablen mit E(X i ) = und V(X i ) = ²> Dann gilt für die Verteilung Summe S n = X 1 + X X n Erwartungswert E(S n ) = n und Varianz V(S n ) = n ². Statistik für SoziologInnen 11 Zentraler Grenzwertsatz
12 Zentraler Grenzwertsatz Seien X 1, X 2,..., X n identisch verteilte, unabhängige Zufallsvariablen mit E(X i ) = und V(X i ) = ²> Dann konvergiert die Verteilung der standardisierten Summe Xi n Zn n 2 mit wachsendem n gegen eine Normalverteilung mit Erwartungswert E(Z n ) = und Varianz V(Z n ) = 1. Z n ~ N(, 1²) Statistik für SoziologInnen 12 Zentraler Grenzwertsatz
13 Simulation.xls Theoretische Verteilung: Eine Simulation Wiederholte Simulationen Verteilung der Summe X Prob(X=x) Prob(X x) Index Zufallszahl Nachfrage Index Summe Bereich Häufigkeit Theorie,4,4 1, bis 62, 1,3,7 2, bis 67,2 2,2,9 3, bis 72 1,2 3,1 1 4, bis ,6 5, bis ,9 Empirischische Verteilung: 6, bis ,8 X Anzahl Rel. Häuf. 7, bis ,5 34,34 8, bis ,3 1 29,29 9, bis ,7 2 19,19 1, bis ,3 3 18,18 11, bis ,5 1 12, bis ,8 Summe: , bis ,9 14, bis ,6 15, bis ,2 16, bis 137,2 17, bis 142, 18, bis 147, 19, bis 152, 2, bis 157, 21, bis 162 2,12847E 6, , Prob(X=x) 23, Häufigkeit der Summe 24, Rel. Häuf ,4 Theorie 25, , ,3 27, , , ,2 3, , ,1 32, , , , , bis36 bis bis bis bis 96 bis bis bis bis bis bis bis bis bis bis bis bis bis bis bis bis 37, , Statistik für SoziologInnen 13 Zentraler Grenzwertsatz
14 Erkenntnis Wir haben ein Merkmal, das eindeutig nicht normalverteilt ist. Wenn wir viele Stichproben ziehen und uns dabei von jeder Stichprobe die Merkmalsumme merken, beobachten wir, dass die Verteilung der Mittelwerte sich sehr gut an eine Normalverteilung annähert. Statistik für SoziologInnen 14 Zentraler Grenzwertsatz
15 Beispiel Wahrscheinlichkeitsfunktion für die Anzahl der Verkäufe pro Tag eines bestimmten Produkts sei,5 bekannt,4 X 1 2 3,3,2 Prob,4,3,2,1,1 Wie ist die Anzahl der Verkäufe pro 1 Tage (X1) verteilt, wenn die einzelnen Verkaufstage als unabhängig angesehen werden können? Wie groß ist die Wahrscheinlichkeit, dass X1 > 12 ist? X1=X 1 +X X Statistik für SoziologInnen 15 Zentraler Grenzwertsatz
16 Beispiel (Fortsetzung) X Prob,4,3,2,1 X*Prob,3,4,3 ==> E(X)=1 X²*Prob,3,8,9 ==> E(X²)=2 V(X) = 2-1² = 1 E(X1)=1 V(X1)=1 X1~N(1, 1) z.b.: P(X1>12) = 1-F N ((12-1)/1) = 1-F N (2)=,23 Statistik für SoziologInnen 16 Zentraler Grenzwertsatz
17 Beispiel (Fortsetzung) Wie lautet das zentrale Schwankungsintervall, für das gilt, dass der Verkauf an 1 Tagen mit einer Wahrscheinlichkeit von 5% in diesem Intervall zu liegen kommt? P(x u <X1<x o )=,5 P(z,25 <(X1-1)/1<z,75 )=,5 P(-,674<(X1-1)/1<,674)=,5 P(93,26<X<16,74)=,5 93,26,5 16,74 Statistik für SoziologInnen 17 Zentraler Grenzwertsatz
18 Anwendung des zentralen Grenzwertsatzes auf Mittelwert Seien X 1, X 2,..., X n identisch verteilte, unabhängige Zufallsvariablen mit E(X i ) = und V(X i ) = ²> Dann gilt für die Verteilung des arithmetischen Mittels x n = 1/n(X 1 + X X n ) Erwartungswert E(x n ) = und Varianz V(x n ) = ²/n. i) Auch das arithmetisch Mittel ist der Stichprobe ist eine Zufallsvariable ii) Die Standardabweichung des arithm. Mittels wird auch Standardfehler bezeichnet Statistik für SoziologInnen 18 Zentraler Grenzwertsatz
19 Anwendung des zentralen Grenzwertsatzes auf Mittelwert Seien X 1, X 2,..., X n identisch verteilte, unabhängige Zufallsvariablen mit E(X i ) = und V(X i ) = ²> Dann konvergiert die Verteilung des standardisierten Mittelwertes 1 X n i x Zn 2 2 / n / n mit wachsendem n gegen eine Normalverteilung mit Erwartungswert E(Z n ) = und Varianz V(Z n ) = 1. Z n ~ N(, 1²) Statistik für SoziologInnen 19 Zentraler Grenzwertsatz
20 Standardfehler Die Varianz bzw. die Standardabweichung des arithmetischen Mittels ergibt sich also durch: 2 2 x / 2 / n / x n n Der Mittelwert schwankt weniger stark als die Einzelwerte Die Standardabweichung des Mittelwertes wird auch als Standardfehler (standard error) bezeichnet. Wurzel-n Gesetz: Doppelte Genauigkeit benötigt vierfachen Stichprobenumfang! Statistik für SoziologInnen 2 Zentraler Grenzwertsatz
21 Standard Error.xls Scorewerte zwischen und 1 bei n=1 Personen gemessen Arithmetisches Mittel 49,6 Standardabweichung 31,8 Drücken Sie F9 für eine neue Stichprobenziehung Wir ziehen 1 mal eine zufällige Stichprobe von 9 Beobachtungen Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 9 Sample arithm. Mittel 22,9 49,7 57,2 46,7 29,1 47,6 5,4 33,8 5,6 56,1 Standardfehler 1,6 Std.Abw. der 1 Stichprobenmittelwerte 11,1 Statistik für SoziologInnen 21 Zentraler Grenzwertsatz
22 Beispiel: Analyse der Grundgesamtheit (1) Canadian Survey of Labour and Income Dynamics Stundenlohn von n = Angestellten Min st Qu Median 14.9 Mean rd Qu Max Frequency Lohn Statistik für SoziologInnen 22 Zentraler Grenzwertsatz
23 Beispiel: Analyse der Grundgesamtheit (2) Var(Lohn) = 62,14 Std.Abw.(Lohn) = 7,88 VC = 5,7% Gedanken-Experiment: Angenommen anstelle der Gesamtheit hätten wir nur eine Stichprobe des Umfangs von n=1 Was könnten wir daraus über den Durchschnittslohn lernen? Statistik für SoziologInnen 23 Zentraler Grenzwertsatz
24 Eine konkrete Stichprobe sample(lohn, 1) Mean = Wir haben für die Stichprobe zufällig n=1 von Personen ausgewählt. Der Stichprobenmittelwert liegt rund 1$ über dem wahren Mittelwert. Offensichtlich waren in dieser konkreten Stichprobe gut verdienende Personen eher überrepräsentiert. Was würde nun passieren, wenn wir nicht eine Stichprobe sondern viele verschiedene Stichproben ziehen würden? Wir bekommen dann natürlich viele verschiedene Stichprobenmittelwerte! Statistik für SoziologInnen 24 Zentraler Grenzwertsatz
25 Wiederholte Stichproben In der Folge betrachten wir 1. zufällige Stichproben vom Umfang n=1. Jeder dieser Stichproben liefert natürlich im allgemeinen einen individuellen Wert für den Durchschnittslohn. Aus der Analyse dieser 1. verschiedenen Schätzwerte für den Durchschnittslohn können wir allgemeine Eigenschaften erkennen, die die zuvor dargestellten theoretischen Ergebnisse bestätigen und transparent machen. In der Praxis liegt natürlich nur eine Stichprobe vor, weshalb wir uns auf die Theorie verlassen müssen! Statistik für SoziologInnen 25 Zentraler Grenzwertsatz
26 Analyse von 1. Stichproben mit Umfang n=1 Density Histogramm der 1. Mittelwerte smx Min Mean Max Var.6 Stand.Abw..77 Die Standard-Abweichung der Mittelwerte bezeichnen wir als Standardfehler. Er quantifiziert wie genau wir mit einer Stichprobe von n Elementen liegen! Im Beispiel gilt n=1 Statistik für SoziologInnen 26 Zentraler Grenzwertsatz
27 Analyse von 1. Stichproben mit Umfang n=1 Im Durchschnitt treffen wir mit unseren 1. Stichproben den unbekannten Durchschnittslohn der Gesamtheit (15,55) mit 15,53 sehr genau. ( Erwartungstreue) Im Einzelfall einer Stichprobe können wir aber auch deutlich daneben liegen (13,37 bis 18,77), daher sollten wir bei einer Stichprobe nicht einfach nur den Mittelwert kommunizieren, sondern auch die Unsicherheit aufgrund der Tatsache, dass es sich um ein Stichprobenergebnis handelt. Die Verteilung der arithmetischen Mittelwerte entspricht einer Normalverteilung. Die Standard-Abweichung der Mittelwerte (,77) bezeichnen wir als Standardfehler. Er erlaubt uns zu quantifizieren, wie genau wir mit einer Stichprobe von n Elementen liegen. Beachte: die Standard-Abweichung der Einzelwerte beträgt Die Formel für den Standardfehler ist die Standard-Abweichung der Einzelwerte dividiert durch die Wurzel aus dem Stichprobenumfang 7,78/Wurzel(1)=,778 was sehr nahe an unserem Wert liegt Statistik für SoziologInnen 27 Zentraler Grenzwertsatz
28 Beispiel Das mittlere Haushaltseinkommen in einer Stadt betrage 32.6,- mit einer Standardabweichung von 6.2,-. Für eine empirische Untersuchung wird eine Zufallsstichprobe von n=4 Haushalten gezogen. Wie hoch ist die Wahrscheinlichkeit, in der Stichprobe ein mittleres Jahreseinkommen von weniger als 32.,- zu beobachten? x4 ~ N(32.6;6.2² / 4) Ex ( ) 32.6 Vx ( ) 6.2² / x Px ( 4 32.) ( ) ( 1,935), Beachte: Einkommen sind typischerweise rechtsschief verteilt, dennoch können wir unter der Annahme von n identisch verteilten unabhängigen Realisierungen einer ZV für das arithmetische Mittel die Normalverteilung heranziehen Statistik für SoziologInnen 28 Zentraler Grenzwertsatz
29 Beispiel Wie hoch ist die Wahrscheinlichkeit, in der Stichprobe von n=4 Haushalten ein mittleres Jahreseinkommen zu beobachten, dass nur um 5 vom wahren Wert in der Grundgesamtheit abweicht? [- also zwischen 32.1,- und 33.1,- zu liegen kommt] x 4 ~ N(32.6;6.2² / 4) Ex ( ) 32.6 Vx ( ) 6.2² / x P(32.1 x4 33.1) ( ) ( ) (1,613) ( 1,613),893 Statistik für SoziologInnen 29 Zentraler Grenzwertsatz
30 Beispiel Wie hoch ist die Wahrscheinlichkeit, in der Stichprobe von n=4 Haushalten ein mittleres Jahreseinkommen zu beobachten, dass nur um 25 vom wahren Wert in der Grundgesamtheit abweicht? [- also zwischen 32.35,- und 32.85,- zu liegen kommt] x 4 N(32.6;6.2² / 4) Ex ( ) 32.6 Vx ( ) 6.2² / x P(32.35 x ) ( ) ( ) (,86) (,86),58 Statistik für SoziologInnen 3 Zentraler Grenzwertsatz
31 Statistik für SoziologInnen 31 Zentraler Grenzwertsatz
32 Grenzwertsatz von De Moivre und Laplace Falls X binomialverteilt ist mit den Parametern n und p [es sei also X~Bi(n, p)] so gilt: X n p np ( 1 p) N(,) 1 Beachte E(X) = n. p und V(X) = n. p. (1-p) Die Güte der Anpassung hängt dabei von n und p ab. (Wenn p nahe 1/2 und n möglichst groß ist, so steigt die Güte) Faustregel: np>1 und n(1-p)>1 Statistik für SoziologInnen 32 Zentraler Grenzwertsatz
33 n= 1 p= x Statistik für SoziologInnen 33 Zentraler Grenzwertsatz
34 Im Vergleich zum vorherigen Bild hat sich die Anpassung verbessert. n= 2 p= Statistik für SoziologInnen 34 Zentraler Grenzwertsatz
35 Im Vergleich zum vorherigen Bild hat sich die Anpassung wieder verschlechtert. n= 2 p= Statistik für SoziologInnen 35 Zentraler Grenzwertsatz
36 n= 1 p= Sehr gute Anpassung Statistik für SoziologInnen 36 Zentraler Grenzwertsatz
37 Beispiel: Prognose des Rücklaufs Bei einer bestimmten schriftlichen Befragung weiß man aus Erfahrung, dass etwa 2% der Befragten tatsächlich antworten. Es werden n=5. Fragebogen versandt. X sei die Anzahl der Antworter E(X) = 5.*,2 = 1. Var(X)=5.*,2*,8 = 8 X~N(1., 8) Std.Abw. =28 Mehr als 1. Antworten: P(X>1.) =,5 Mehr als 1.2 Antworten: P(X>1.2) =, 95% Intervall für die Anzahl der zu erwartenden Antworten: P(1-1,96*28<X<1+1,96*28) =,95 P(945<X<155) =,95 Statistik für SoziologInnen 37 Zentraler Grenzwertsatz
38 n= 5 p=.2 n= 5 p=.2 y y x x Statistik für SoziologInnen 38 Zentraler Grenzwertsatz
39 y n= 5 p=.2 y n= 5 p= x x Statistik für SoziologInnen 39 Zentraler Grenzwertsatz
40 n= 5 p=.2 n= 5 p= y x Statistik für SoziologInnen 4 Zentraler Grenzwertsatz y x
41 n= 5 p=.2 n= 5 p= y x Statistik für SoziologInnen 41 Zentraler Grenzwertsatz y x
42 Stetigkeitskorrektur Bei der Approximation der Binomialverteilung (diskrete ZV) durch die Normalverteilung (stetige ZV) ist eine Stetigkeitskorrektur (Kontinuitätskorrektur) zu berücksichtigen. Die diskrete P(X=x) entspricht im stetigen Fall P(X<x+,5) - P(X<x-,5) P( X bzw. P( X x,5 np x,5 np x) np(1 p) np(1 p) x,5 np x) np(1 p) Statistik für SoziologInnen 42 Zentraler Grenzwertsatz
43 Beispiel: In einer Bevölkerung sind 6% der Bürger für die Einführung eines neuen Gesetzes. Wie wahrscheinlich ist es, genau 5 Befürworter in einer Stichprobe vom Umfang n=1 zu haben? Binomialverteilung PX ( ) *, *,, Normalverteilung PX ( 5) ( 1939, ) ( 2, 143), 262, 16, 12 Statistik für SoziologInnen 43 Zentraler Grenzwertsatz
44 Beispiel: In einer Bevölkerung sind 6% der Bürger für die Einführung eines neuen Gesetzes. Wie groß ist die Wahrscheinlichkeit, dass sich in einer Stichprobe von 1 (1) Personen, weniger als 5 (5) Befürworter des Gesetzes finden? a) Binomialverteilung mit n=1 und p=.6 P(X<5)=P(X=) + P(X=1) P(X=4)= =.166 (Exaktes Ergebnis durch Einsetzen in die Formel der Binomialverteilung) Statistik für SoziologInnen 44 Zentraler Grenzwertsatz
45 Beispiel: b) Bei einer Stichprobe von n=1 gibt es 2 Lösungswege: b1) Einsetzen in die Formel der Binomialverteilung mit n=1 und p=.6 P(X<5)=P(X=) + P(X=1) P(X=49)=.168 b2) Approximation durch Normalverteilung X~N(6; 24) n.p=1*,6=6 n.p.(1-p)=6*,4=24 Wurzel(n.p.(1-p))=4,899 P(X 49) = F N ((49+,5-6)/4,899)= F N (-2,14)=,16 Statistik für SoziologInnen 45 Zentraler Grenzwertsatz
46 ,3,3,25,25,2,2,15,15,1,1,5, , Normalverteilung Binomialverteilung Anzahl Prob. kum. Prob. Anzahl kum. Prob. 49,,68,168 49,,124 49,5,16 5,,13,271 5,,26 Statistik für SoziologInnen 46 Zentraler Grenzwertsatz
47 Gesetz der großen Zahlen Eng verwandt mit dem zentralen Grenzwertsatz ist, das Gesetz der großen Zahl Das schwache Gesetz der großen Zahlen lautet: Px ( ) für n n Vereinfacht formuliert bedeutet das Gesetz der großen Zahlen, dass mit wachsendem n (Stichprobenumfang), die Wahrscheinlichkeit für eine Abweichung des Stichprobenmittelwertes vom Erwartungswert der Grundgesamtheit ( ), welche absolut größer als ist, gegen null geht. Statistik für SoziologInnen 47 Zentraler Grenzwertsatz
48 Beispiel: Die durchschnittliche Lottozahl Beim Lotto 6 aus 45 werden die Zahlen 1-45 gleichverteilt gezogen. Der Mittelwert einer Ziehung liegt theoretisch bei 23 [(45+1)/2] Bei einzelnen Ziehungen schwankt dieser Mittelwert deutlich. Der Mittelwert über alle 9 Ziehungen des Jahres 23 beträgt 23,7. Der Mittelwert über alle 1218 Ziehungen beträgt 23,9. LOTTO Zahlen 23 Datum Rd Zahlen Mittelwert 1.1. Mi , So , Mi , So , Mi , So , Mi , So , Mi , So , Mi , 9.2. So , Mi , So , Mi ,17 Statistik für SoziologInnen 48 Zentraler Grenzwertsatz
49 Bernoullis Gesetz der großen Zahlen Überträgt man das schwache Gesetz der großen Zahlen auf die n-malige Durchführung eines Bernouilli-Experimentes mit konstanter Wahrscheinlichkeit p, dann gilt für die relative Häufigkeit f n : P( f p ) für n n Vereinfacht formuliert bedeutet dies, dass mit wachsendem n (Stichprobenumfang), die Wahrscheinlichkeit für eine Abweichung der relativen Häufigkeit von der konstanten Erfolgswahrscheinlichkeit, welche absolut größer als ist, gegen null geht. Statistik für SoziologInnen 49 Zentraler Grenzwertsatz
50 Gesetz der großen Zahlen Das Gesetz der großen Zahlen besagt, dass sich die relative Häufigkeit der Erfolge bei Wiederholung eines Bernoulli-Zufallsexperiments immer weiter an die theoretisch erwartete Erfolgswahrscheinlichkeit p annähert, je häufiger das Zufallsexperiment durchgeführt wird. Beachte: Dies gilt nicht für die absolute Anzahl der Erfolge! Sei X n die Anzahl der Erfolge bei n unabhängigen Wiederholungen, so gilt V(X n )=n.p.(1-p). Sei f n die relative Häufigkeit der Erfolge bei n unabhängigen Wiederholungen, so gilt f n =X n /n V(f n )=p.(1-p)/n Statistik für SoziologInnen 5 Zentraler Grenzwertsatz
51 Kein absoluter Ausgleich Entwicklung des Anteils der Erfolge 7,% 65,% 6,% 55,% 5,% 45,% Die Schwankungsbreite für die absolute Abweichung nimmt beständig zu. 4,% 35,% beobachteter Anteil UG ANTEIL OG ANTEIL 6 Entwicklung der Anzahl der Erfolge 3,% Die relative Häufigkeit wird immer genauer. Anzahl der Erfolge beobachtete Anzahl UG ANZAHL OG ANZAHL ERWARTUNG Anzahl der Münzwürfe Statistik für SoziologInnen 51 Zentraler Grenzwertsatz
52 ,5 5, 4,,25 3, 2, 1,,, -1, -,25-2, -3, relative Abweichung absolute Abweichung -4, -,5-5, Statistik für SoziologInnen 52 Zentraler Grenzwertsatz
53 Was wir uns merken sollten Summen und Mittelwerte sind aufgrund des zentralen Grenzwertsatzes normalverteilt Der Standardfehler (Standardabweichung des Mittelwertes) ist die Standardabweichung der Einzelwerte dividiert durch die Wurzel des Stichprobenumfangs Das Gesetz der großen Zahl gilt für relative Häufigkeiten nicht für absolute Häufigkeiten Falls np>1 und n(1-p)>1 kann die Binomialverteilung durch die Normalverteilung approximiert werden (beachte die Stetigkeitskorrektur) Statistik für SoziologInnen 53 Zentraler Grenzwertsatz
von x-würfeln bei wachsendem n? Zur Beantwortung führen wir ein Simulationsexperiment durch.
Zentraler Grenzwertsatz Die Normalverteilung verdankt ihre universelle theoretische und praktische Bedeutung dem zentralen Grenzwertsatz. Unabhängig von der konkreten k Ausgangsverteilung konvergiert die
Zentraler Grenzwertsatz
Statistik 2 für SoziologInnen Zentraler Grenzwertsatz Univ.Prof. Dr. Marcus Hudec Statistik für SoziologInnen 1 Zentraler Grenzwertsatz Inhalte Themen dieses Kapitels sind: Der zentrale Grenzwertsatz und
von x-würfeln bei wachsendem n? Zur Beantwortung führen wir ein Simulationsexperiment durch.
Zentraler Grenzwertsatz Die Normalverteilung verdankt ihre universelle theoretische und praktische Bedeutung dem zentralen Grenzwertsatz. Unabhängig von der konkreten k Ausgangsverteilung konvergiert nämlich
Verteilung von Summen
Verteilung von Summen Beispiel: Würfelwurf Frage: Wie verhält sich die Verteilung der Augensumme von -Würfeln bei wachsendem? Zur Beantwortung führen wir ein Simulationseperiment durch. 6 Würfe mit 1 Würfel
Modelle diskreter Zufallsvariablen
Statistik 2 für SoziologInnen Modelle diskreter Zufallsvariablen Univ.Prof. Dr. Marcus Hudec Zufallsvariable Eine Variable (Merkmal) X, deren numerische Werte als Ergebnisse eines Zufallsvorgangs aufgefasst
Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind:
Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Inhalte Themen dieses Kapitels sind: Das Konzept stetiger Zufallsvariablen Die
Marcus Hudec. Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Statistik 2 für SoziologInnen 1 Normalverteilung
Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Inhalte Themen dieses Kapitels sind: Das Konzept stetiger Zufallsvariablen Die
Marcus Hudec. Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Statistik 2 für SoziologInnen 1 Normalverteilung
Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Stetige Zufalls-Variable Erweitert man den Begriff der diskreten Zufallsvariable
Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec
Binomialverteilung Jakob Bernoulli (1654-1705) Ars Conjectandi Klassisches Verteilungsmodell für die Berechnung der Wahrscheinlichkeit für die Häufigkeit des Eintretens von Ereignissen in bestimmten noch
Wahrscheinlichkeitsverteilungen
Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet
Statistik 2 für SoziologInnen. Stetige Zufallsvariable Normalverteilung & Exponentialverteilung
Statistik 2 für SoziologInnen Stetige Zufallsvariable Normalverteilung & Exponentialverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Stetige Zufalls-Variable Erweitert
Standardnormalverteilung
Standardnormalverteilung 1720 erstmals von Abraham de Moivre beschrieben 1809 und 1816 grundlegende Arbeiten von Carl Friedrich Gauß 1870 von Adolphe Quetelet als "ideales" Histogramm verwendet alternative
Hypergeometrische Verteilung
Hypergeometrische Verteilung Typischer Anwendungsfall: Ziehen ohne Zurücklegen Durch den Ziehungsprozess wird die Wahrscheinlichkeit des auch hier zu Grunde liegenden Bernoulli-Experimentes verändert.
Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation
Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle Patric Müller ETHZ Teil VIII Zentraler Grenzwertsatz und Vertrauensintervalle WBL 17/19, 29.05.2017 Wahrscheinlichkeit
Konzept diskreter Zufallsvariablen
Statistik 1 für SoziologInnen Konzept diskreter Zufallsvariablen Univ.Prof. Dr. Marcus Hudec Beispiel: Zufallsvariable 3 Münzen werden unabhängig voneinander geworfen. Jede Münze kann entweder Kopf oder
Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung
Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus
7. Grenzwertsätze. Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012
7. Grenzwertsätze Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Mittelwerte von Zufallsvariablen Wir betrachten die arithmetischen Mittelwerte X n = 1 n (X 1 + X 2 + + X n ) von unabhängigen
Willkommen zur Vorlesung Statistik (Master)
Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilung diskreter Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften
Modellanpassung und Parameterschätzung. A: Übungsaufgaben
7 Modellanpassung und Parameterschätzung 1 Kapitel 7: Modellanpassung und Parameterschätzung A: Übungsaufgaben [ 1 ] Bei n unabhängigen Wiederholungen eines Bernoulli-Experiments sei π die Wahrscheinlichkeit
Beispiel: Zufallsvariable
Beispiel: Zufallsvariable 3 Münzen werden unabhängig voneinander geworfen. Jede Münze kann entweder Kopf oder Zahl zeigen. Man ist nur an der Zahl der Köpfe interessiert. Anzahl Kopf Elementarereignis
1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6
Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere
Zufallsvariablen [random variable]
Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden
Einführung in Quantitative Methoden
Einführung in Quantitative Methoden Karin Waldherr & Pantelis Christodoulides 11. Mai 2011 Waldherr / Christodoulides Einführung in Quantitative Methoden- 8.VO 1/40 Poisson-Verteilung Diese Verteilung
Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential
Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:
Tabelle 11.2 zeigt die gemeinsame Wahrscheinlichkeitsfunktion und die Randverteilungen
Kapitel 11 Stichprobenfunktionen Um eine Aussage über den Wert eines unbekannten Parameters θ zu machen, zieht man eine Zufallsstichprobe vom Umfang n aus der Grundgesamtheit. Das Merkmal wird in diesem
Exponentialverteilung
Exponentialverteilung Dauer von kontinuierlichen Vorgängen (Wartezeiten; Funktionszeiten technischer Geräte) Grenzübergang von der geometrischen Verteilung Pro Zeiteinheit sei die Eintrittswahrscheinlichkeit
1 Stochastische Konvergenz 2
Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere
Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc.
Abiturvorbereitung Stochastik neue friedländer gesamtschule Klasse 12 GB 24.02.2014 Holger Wuschke B.Sc. Siedler von Catan, Rühlow 2014 Organisatorisches 0. Begriffe in der Stochastik (1) Ein Zufallsexperiment
Statistik Einführung // Stichprobenverteilung 6 p.2/26
Statistik Einführung Kapitel 6 Statistik WU Wien Gerhard Derflinger Michael Hauser Jörg Lenneis Josef Leydold Günter Tirler Rosmarie Wakolbinger Statistik Einführung // 6 p.0/26 Lernziele 1. Beschreiben
Statistik I für Betriebswirte Vorlesung 4
Statistik I für Betriebswirte Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 25. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung
5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)
5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte
Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=
Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)
Korollar 116 (Grenzwertsatz von de Moivre)
Ein wichtiger Spezialfall das Zentralen Grenzwertsatzes besteht darin, dass die auftretenden Zufallsgrößen Bernoulli-verteilt sind. Korollar 116 (Grenzwertsatz von de Moivre) X 1,..., X n seien unabhängige
Fit for Abi & Study Stochastik
Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen
Standardnormalverteilung
Standardnormalverteilung 1720 erstmals von Abraham de Moivre beschrieben 1809 und 1816 grundlegende Arbeiten von Carl Friedrich Gauß 1870 von Adolphe Quetelet als "ideales" Histogramm verwendet alternative
Stichproben Parameterschätzung Konfidenzintervalle:
Stichproben Parameterschätzung Konfidenzintervalle: Beispiel Wahlprognose: Die Grundgesamtheit hat einen Prozentsatz p der Partei A wählt. Wenn dieser Prozentsatz bekannt ist, dann kann man z.b. ausrechnen,
Grundlegende Eigenschaften von Punktschätzern
Grundlegende Eigenschaften von Punktschätzern Worum geht es in diesem Modul? Schätzer als Zufallsvariablen Vorbereitung einer Simulation Verteilung von P-Dach Empirische Lage- und Streuungsparameter zur
A3.Die Lebensdauer eines elektronischen Gerätes werde als normalverteilt angenommen. Der Erwartungswert betrage
Aufgaben ~ Beispiele A1. Wir spielen Roulette mit einem Einsatz von 5 mit der Glückszahl 15. Die Wahrscheinlichkeiten und Auszahlungen beim Roulette sind in folgender Tabelle zusammengefasst: Ereignis
Die Familie der χ 2 (n)-verteilungen
Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +
Die Familie der χ 2 (n)-verteilungen
Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +
Kapitel 2 Wahrscheinlichkeitsrechnung
Definition 2.77: Normalverteilung & Standardnormalverteilung Es sei µ R und 0 < σ 2 R. Besitzt eine stetige Zufallsvariable X die Dichte f(x) = 1 2 πσ 2 e 1 2 ( x µ σ ) 2, x R, so heißt X normalverteilt
Weierstraß-Institut für Angewandte Analysis und Stochastik Universalität der Fluktuationen: Warum ist alles Gauß-verteilt?
Weierstraß-Institut für Angewandte Analysis und Stochastik Universalität der Fluktuationen: Warum ist alles Gauß-verteilt? Wolfgang König Technische Universität Berlin und Weierstraß-Institut Berlin Mohrenstraße
Wirtschaftsmathematik
Einführung in einige Teilbereiche der Wintersemester 206 Prof. Dr. Stefan Etschberger HSA Unabhängigkeit von Ereignissen A, B unabhängig: Eintreten von A liefert keine Information über P(B). Formal: P(A
Prüfung aus Statistik 1 für SoziologInnen
Prüfung aus Statistik 1 für SoziologInnen 1) Wissenstest (maximal 20 Punkte) Kreuzen ( ) Sie die jeweils richtige Antwort an. Jede richtige Antwort gibt 2 Punkte. Pro falsche Antwort werden 2 Punkte abgezogen,
1.5 Erwartungswert und Varianz
Ziel: Charakterisiere Verteilungen von Zufallsvariablen durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere: a) durchschnittlicher Wert Erwartungswert, z.b.
4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)
4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte
Mathematik 3 für Informatik
Gunter Ochs Wintersemester 20/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt 4 Lösungshinweise (ohne Ganantie auf Fehlerfreiheit. Wenn man beim Roulette auf Rot oder Schwarz setzt, erhält
Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential
Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Zufallsvariable Erinnerung: Merkmal, Merkmalsausprägung Deskriptive Statistik:
Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen
Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Noémie Becker & Dirk Metzler http://evol.bio.lmu.de/_statgen 7. Juni 2013 1 Binomialverteilung 2 Normalverteilung 3 T-Verteilung
Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr
Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am 5..201 von 10:00 bis 11:00 Uhr Bearbeiten Sie zwei der drei folgenden Aufgaben! Sätze aus der Vorlesung und den Übungen dürfen Sie ohne
Einführung in die (induktive) Statistik
Einführung in die (induktive) Statistik Typische Fragestellung der Statistik: Auf Grund einer Problemmodellierung sind wir interessiert an: Zufallsexperiment beschrieben durch ZV X. Problem: Verteilung
Statistik für NichtStatistiker
Statistik für NichtStatistiker Zufall und Wahrscheinlichkeit von Prof. Dr. Karl Bosch 5., verbesserte Auflage R. Oldenbourg Verlag München Wien Inhaltsverzeichnis 1. ZufalLsexperimente und zufällige Ereignisse
1 Dichte- und Verteilungsfunktion
Tutorium Yannick Schrör Klausurvorbereitungsaufgaben Statistik Lösungen [email protected] 9.2.26 ID /455 Dichte- und Verteilungsfunktion Ein tüchtiger Professor lässt jährlich 2 Bücher drucken. Die
Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen
Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind
M13 Übungsaufgaben / pl
Die Histogramme von Binomialverteilungen werden bei wachsendem Stichprobenumfang n immer flacher und breiter. Dem Maximum einer solchen Verteilung kommt daher keine allzu große Wahrscheinlichkeit zu. Vielmehr
Vorlesung: Statistik II für Wirtschaftswissenschaft
Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2
Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5
Inhaltsverzeichnis Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite 1.0 Erste Begriffsbildungen 1 1.1 Merkmale und Skalen 5 1.2 Von der Urliste zu Häufigkeitsverteilungen 9 1.2.0 Erste Ordnung
Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de
rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent
Prüfung aus Statistik 1 für SoziologInnen. Musterlösung
Prüfung aus Statistik 1 für SoziologInnen Gesamtpunktezahl =80 1) Wissenstest (maximal 20 Punkte) Prüfungsdauer: 2 Stunden Musterlösung Kreuzen ( ) Sie die jeweils richtige Antwort an. Jede richtige Antwort
Handelt es sich bei den folgenden um diskrete oder stetige Zufallsvariablen?
1. Handelt es sich bei den folgenden um diskrete oder stetige Zufallsvariablen? a.) Anzahl der Kunden, die an der Kasse in der Schlange stehen. b.) Die Menge an Energie, die pro Tag von einem Energieversorgungsunternehmen
Wird ein Bernoulli- Versuch, bei dem die Trefferwahrscheinlichkeit p = 0,2 ist, n = 40 mal durchgeführt, dann erwarten wir im Mittel 8 Treffer.
R. Brinkmann http://brinkmann-du.de Seite 1 06.1008 Erwartungswert binomialverteilter Zufallsgrößen. Wird ein Bernoulli- Versuch, bei dem die Trefferwahrscheinlichkeit p = 0,2 ist, n = 40 mal durchgeführt,
Basiswissen Daten und Zufall Seite 1 von 8 1 Zufallsexperiment Ein Zufallsexperiment ist ein Versuchsaufbau mit zufälligem Ausgang, d. h. das Ergebnis kann nicht vorhergesagt werden. 2 Ergebnis (auch Ausgang)
Institut für Biometrie und klinische Forschung. WiSe 2012/2013
Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie (3) Überblick. Deskriptive Statistik I 2. Deskriptive
Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen
Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Noémie Becker & Dirk Metzler 31. Mai 2016 Inhaltsverzeichnis 1 Binomialverteilung 1 2 Normalverteilung 2 3 T-Verteilung
Statistische Inferenz
Statistische Inferenz Prinzip der statistischen Inferenz Datensätze = Stichproben aus einer Gesamtpopulation Beispiel : Messung der Körpertemperatur von 106 gesunden Individuen man vermutet, dass sie repräsentativ
WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X.
Fragenkatalog zur Übung Methoden der empirischen Sozialforschung WS 2014/15 Hier finden Sie die denkbaren Fragen zum ersten Teil der Übung. Das bedeutet, dass Sie zu diesem Teil keine anderen Fragen im
Mathematik für Biologen
Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 23. Dezember 2011 1 Stetige Zufallsvariable, Normalverteilungen Der zentrale Grenzwertsatz und die 3-Sigma Regel
1 Grundlagen der Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsräume. Ein erster mathematischer Blick auf Zufallsexperimente...
Inhaltsverzeichnis 1 Grundlagen der Wahrscheinlichkeitsrechnung 1 1.1 Wahrscheinlichkeitsräume Ein erster mathematischer Blick auf Zufallsexperimente.......... 1 1.1.1 Wahrscheinlichkeit, Ergebnisraum,
Wahrscheinlichkeitsrechnung und schließende Statistik
Karl Mosler Friedrich Schmid Wahrscheinlichkeitsrechnung und schließende Statistik Vierte, verbesserte Auflage Springer Inhaltsverzeichnis 0 Einführung 1 1 Zufalls Vorgänge und Wahrscheinlichkeiten 5 1.1
Biostatistik, Sommer 2017
1/51 Biostatistik, Sommer 2017 Wahrscheinlichkeitstheorie: Verteilungen, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 8. Vorlesung: 09.06.2017 2/51 Inhalt 1 Verteilungen Normalverteilung Normalapproximation
1.6 Der Vorzeichentest
.6 Der Vorzeichentest In diesem Kapitel soll der Vorzeichentest bzw. Zeichentest vorgestellt werden, mit dem man Hypothesen bezüglich des Medians der unabhängig und identisch stetig verteilten Zufallsvariablen
7.5 Erwartungswert, Varianz
7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k
Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist.
.3. Stochastik Grundlagen Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. Die RELATIVE HÄUFIGKEIT einer Merkmalsausprägung gibt an mit welchem Anteil
Ausgewählte spezielle Verteilungen
Ausgewählte spezielle Verteilungen In Anwendungen werden oft Zufallsvariablen betrachtet, deren Verteilung einem Standardmodell entspricht. Zu den wichtigsten dieser Modelle gehören: diskrete Verteilungen:
Wahrscheinlichkeit und Statistik: Zusammenfassung
HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1
