Computational Finance

Größe: px
Ab Seite anzeigen:

Download "Computational Finance"

Transkript

1 Computational Finance : Simulationsbasierte Optionsbewertung Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring 4 / WiWi-Gebäude Bremen [email protected] 1

2 Gliederung 1. Einführung, Motivation und Problemstellung 2. Simulationsbasierte Bewertung von Plain-Vanilla Optionen 3. Antithetic-Variates-Schätzer 4. Double-Barrier Optionen 5. Asiatische Optionen 6. Basket Optionen Anhang: Theoretische Grundlagen 2

3 1. Einführung, Motivation und Problemstellung Optionen gehören zu den Termingeschäften. Beidseitig bindende Termingeschäfte Forwards Futures Einseitig bindende Termingeschäfte OTC-Optionen börsengehandelte Optionen 3

4 Eine Option gewährt dem Inhaber das Recht, nicht aber die Pflicht vom Stillhalter (in der Option) die Lieferung (Call-) oder Abnahme (Put-) eines vorher bestimmten Gutes (underlying) zu vorher festgelegten Konditionen (insbes. Preis: Basispreis) während eines festgelegten Zeitraums (amerikanische Option) oder zu einem festgelegten Zeitpunkt (europäische Option) zu verlangen. 4

5 Beispiel: Europäische Calloption auf die Aktie X, Basispreis 250,--, Ausübungsdatum 15.3.XX, Prämie 15,--: Käufer erhält das Recht, nicht die aber Pflicht die Aktie X am XX zu einem Preis von 250,-- vom Stillhalter (Verkäufer der Option) kaufen zu können Preis der Option (Prämie): 15,-- 5

6 Gewinn- und Verlustpositionen beider Parteien (Call): Gewinn Gewinn-/Verlustposition des Inhabers Gewinn Gewinn-/Verlustposition des Stillhalters Verlust Wert der Aktie X zum 15.3.XX 0-15 Verlust Wert der Aktie X zum 15.3.XX 6

7 Gewinn- und Verlustpositionen beider Parteien (Put): Gewinn Gewinn-/Verlustposition des Inhabers Gewinn Gewinn-/Verlustposition des Stillhalters Verlust Wert der Aktie X zum XX Verlust Wert der Aktie X zum 15.3.XX 7

8 Unterscheidung von Optionen nach ihrer Konstruktion a) Plain-Vanilla Optionen Europäische Calls und Puts Amerikanische Calls und Puts dividenden- und nicht-dividendengeschützte Optionen b) Exotische Optionen, z.b.: Barrier-Optionen Asiatische Optionen Lookback-Optionen Basket-Optionen 8

9 Gängige Standardbewertungmodelle für Plain-Vanilla Optionen Black-Scholes-Modell Binomial-Modell Anmerkungen: Spezifische Anpassungen für besondere Konstruktionsmerkmale erforderlich Einfache rechentechnische Bewertung 9

10 Beispiel: Black-Scholes Modell: C K ( d1) B exp( i t) ( d 2) mit: d 1 K 2 ln ( i 0.5 ) t B t d 2 d 1 t 10

11 Dabei bedeuten die Symbole: C: Optionspreis (auch Prämie genannt) K: Kassakurs des Basisobjektes B: Ausübungspreis der Option (Basispreis) exp(x): Exponentialfunktion e x mit e: Eulersche Zahl ( ) i: risikoloser Zinssatz p.a. (.): Wert der Standardnormalverteilung : zukünftige Volatilität des Basisobjektes (p.a.) t: Restlaufzeit der (Call-) Option in Jahren (z.b. 3 Monate = 0.25 Jahre) 11

12 Beispiel: Europäischer Call Aktueller Kurs 100 Basispreis 100 Laufzeit 1 Jahr risikoloser Zinssatz 4% p.a. Volatilität 40% Welchen Preis besitzt die Option nach der Black-Scholes-Formel? 12

13 Lösung im Beispiel: d ln ( ) d (d1)= (d2)= C exp( 0.041)

14 Probleme der analytischen Bewertungsformeln: Restriktive Annahmen bei der Herleitung der Bewertungsformeln Nur Plain-Vanilla Optionen bewertbar Komplexere Optionskonstruktionen erfordern aufwändige Anpassungen Auch dann oftmals nur Approximationen möglich Schwer verständlich für exotische Optionen 14

15 Vorteile simulationsbasierter Bewertungen: Universell einsetzbar Manche exotische Optionen nur damit bewertbar Hohe Flexibilität, schnelle Anpassbarkeit an neue Optionen Weniger restriktive Annahmen erforderlich, realitätsgerechtere Bewertung Leichter und intuitiv verständlich 15

16 Nachteile simulationsbasierter Bewertungen Programmierung erforderlich, gerade wenn Anpassbarkeit an neue Optionen gewünscht Leistungsfähige Hard- und Software erforderlich Liefern nur Approximationen mit eingeschränkter Genauigkeit Lange Rechenzeiten bei hoher Präzision erforderlich 16

17 2. Simulationsbasierte Bewertung von Plain-Vanilla Optionen Hinweis: Standard-Vorgehensweise kompakt bei Wilkens/Röder (2001) dargestellt. Schematische Vorgehensweise: a) Simulation des Kursverlaufs des Underlyings b) Auswertung der Auszahlungsfunktion anhand der simulierten Kursverläufe c) Diskontierung der simulierten Auszahlungen d) Bestimmung des Optionspreises als Mittelwert der diskontierten Auszahlungen e) Bestimmung der Genauigkeit des Ergebnisses 17

18 a) Simulation des Kursverlaufs des Underlyings Übliche Vorgehensweise ist oftmals: Annahme eines Wiener-Prozesses ( zeitstetige Version eines Random-Walk-Modells ) Diskretisierung des Wiener-Prozesses Durchführung der Simulation Vorgehensweise in den einzelnen Schritten: a1) Festlegung der Standardperiode t (üblich 1 Jahr) 18

19 a2) Festlegung der Laufzeit der Option T in Einheiten der Standardperiode, z.b. T = 1,5 für 18 Monate. a3) Festlegung der Anzahl N an Subperioden für die Simulation Daraus folgt die Zeitlänge einer Subperiode: t T N a4) Formulierung des diskretisierten Wiener-Prozesses: 2 S( j 1) t S j t exp(( i 0.5 ) t j t ) für alle Subperioden j = 1,, N 19

20 Beispiel: wie oben Anfangskurs (aktueller Kurs) 100 Volatilität 40% stetiger Zinssatz i = 0.04 Standardperiode 1 Jahr Unterteilung in 250 Subperioden (Börsentage) Aufgabenstellung: Simulation des o.g. Prozesses Erstellung einer Matlab-Routine Erstellung eines Diagramms für zehn Pfade 20

21 Simulation von 10 Kurspfaden

22 b) Auswertung der Auszahlungsfunktion Konkrete Auszahlungsfunktion hängt ab vom Typ der Option (grundlegender Konstruktion) und den konkreten Optionsparametern der speziell zu bewertenden Option Aufgabe: Fortführung des o.g. Beispiels Implementierung der Auszahlungsfunktion in Matlab Berechnung der Auszahlungen ggf. gleich mit Diskontierung auf den heutige Zeitpunkt 22

23 c) Diskontierung der Auszahlungen V k h k exp( i T) h k : V k : Wert der Option bei Fälligkeit im k-ten Simulationslauf Gegenwartswert des Optionswerts bei Fälligkeit im k-ten Simulationslauf d) Bestimmung des Optionspreises als Mittelwert Vˆ 1 K K k1 V k 23

24 Aufgabe: Bestimmung des Optionspreises im Beispiel! Kurssimulation Bestimmung der Auszahlungen Diskontierung Mittelwertbildung e) Bestimmung der Genauigkeit Mittelwert der diskontierten Auszahlungen ist Schätzer des Optionspreises Bestimmung der Standardabweichung des Schätzers 24

25 Berechnung der Standardabweichung nach: sˆ 1 K( K 1) K k1 ( V k Vˆ) 2 Berechnung eines Konfidenzintervalls mit Signifikanzniveau α: Vˆ ˆ sˆ (1 ); V sˆ (1 )

26 Z.B. für α = 5% ist Φ(0,975) 1,96. Im Beispiel ergibt die Simulation: Vˆ B/S-Wert: ˆ s Daraus folgt als 95%-Konfidenzintervall: [ ; ] 26

27 3. Antithetic-Variates-Schätzer Probleme der MC-Simulationen: Sehr rechenintensiv Langsame Konvergenz Halbierung des Standardabweichung erfordert Vervierfachung des Simulationsumfangs Frage: Wie kann der Simulationsumfang möglichst billig erhöht werden? 27

28 Antithetic-Variates-Technik Basierend auf einer gezogenen Folge von standardnormalverteilten Zufallszahlen ε j mit j = 1,, N werden die Kurse S j erzeugt: 2 S( j 1) t S j t exp(( i 0.5 ) t j t ) Mit derselben Folge von Zufallszahlen lässt sich ein alternativer Pfad generieren: 2 S ( 1) S j t jt exp(( i 0.5 ) t ( j ) t ) 28

29 Aufgabe: Simulationsbasierte Bewertung der Option mit Beispiel ohne Antithetic-Variates Technik mit Antithetic-Variates Technik Vergleich der Genauigkeit der Ergebnisse Vergleich der Rechnenzeiten in beiden Fällen Würdigung des Verfahrens 29

30 4. Double-Barrier Option Europäischer Call wie oben, jedoch zusätzlich: Option verfällt wertlos, wenn während der Laufzeit der Option der Kurs des Underlying unter eine Untergrenze fällt oder über eine Obergrenze steigt. Beispiel: wie oben, jedoch zusätzlich: Untergrenze sei 50 Obergrenze sei

31 Aufgabe: Simulationsbasierte Bewertung dieser Double-Barrier- Option Kurssimulation mit Antithetic-Variates Technik Implementation der Auszahlungsfunktion Achtung: gesamter Pfad muss ausgewertet werden Bestimmung des Optionspreises Bestimmung des 95%-Konfidenzintervalls Frage: Wie reagiert die Bestimmung des Optionspreises auf die Wahl der Subperioden N? Warum? 31

32 5. Asiatische Optionen Europäischer Call wie oben, jedoch nicht Kurs am Verfallstag ist maßgeblich, sondern das arithmetische oder geometrische Mittel während der Laufzeit Beispiel: wie bisher am Verfallstag wird das arithmetische Mittel verwendet welchen Optionspreis bestimmen Sie? 32

33 6. Basket Optionen Europäischer Call wie oben, jedoch Underlying ist ein Korb aus mehreren einzelnen Underlyings Beispiel für eine Basket Option Drei Aktien A, B und C Aktuelle Kurse sind 35, 95 und 50 Laufzeit ist ein Jahr Basispreis ist 300 Kurswert des Baskets am Verfalls ist Summe der 3 Aktien 33

34 Folgende weitere Angaben liegen vor: Volatilität der 3 Aktien: 0.3, 0.4 und 0.45 Zinssatz i sei 4% Die Korrelationsmatrix der drei Aktien sei: Aufgabe: Bestimmung des Optionspreises! 34

35 Anhang: Theoretische Grundlagen A1. Duplikation A2. Diskontierung und risikoneutrale Bewertung A3. Konzept der risikoneutralen Bewertung A4. Preismodell von Black/Scholes 35

36 A1. Duplikation Bewertung durch Duplikation Konstruiere zwei gleiche Güter Folgere, dass im arbitragefreien Gleichgewicht beide Güter denselben Preis besitzen Löse die Wertgleichung nach dem unbekannten Instrument auf Voraussetzungen Duplikation Arbitragefreiheit 36

37 Bewertung einer Call-Option im Ein-Periodenmodell Beispiel: Call auf Aktie A mit E = 105; Aktie A notiert mit S 0 = 100; Stärke der Aufwärtsbewegung u = 1.1; Stärke der Abwärtsbewegung d = 0.9; risikoloser Bond B mit Kurswert in t und 1% p.p Welchen Wert besitzt der Call? 37

38 u = 1.1 Wert Aktie 110 Wert Call 5 Aktie S 0 = 100 d = Welches Portfolio P aus Aktie A und Bond B besitzt in t 1 denselben Zahlungsstrom wie der Call? 38

39 Das Portfolio P muss offensichtlich folgenden Bedingungen genügen: Im Up-Fall: 110 * w A * w B = 5 Im Down-Fall: 90 * w A * w B = 0 w A : w B : (unnormierte) Anteilsgewicht (Menge) der Aktie A (unnormierte) Anteilsgewicht (Menge) des Bonds B 39

40 Lösung des Gleichungssystems liefert (im Beispiel): w A : 0.25 w B : Interpretation: Kauf von 0.25 Einheiten der Aktie A mit Kurswert 100; Leerverkauf (Kreditaufnahme) von Einheiten des Bonds B mit Kurswert 100 Ergebnis: In beiden Marktzuständen besitzt das Portfolio P denselben Zahlungsstrom wie der Call C. 40

41 Folgerung: Im arbitragefreien Gleichgewicht müssen P und C denselben Wert besitzen! Damit gilt für t 0 : Anmerkung: C = 0.25 * * 100 = 2.72 Wert C ist abhängig von u und d z.b. folgt für u = 1.25 und b = 0.85 für C =

42 A2. Diskontierung und risikoneutrale Bewertung Durch die Existenz eines risikolosen Bonds B oder risikofreien Zinssatzes i lassen sich die vom Markt gegebenen Diskontierungssätze berechnen. Im Beispiel gilt etwa: df B t B (1 0 t i)

43 Bei einer geeignet gewählten Eintrittswahrscheinlichkeit p für u (bzw. 1-p für d) ergibt sich der heutige Wert der Aktie S 0 als diskontierter Erwartungswert seiner zukünftigen Werte. Im Beispiel gilt für das geeignet gewählte p: (110 * p + 90 * (1-p)) * = 100 Daraus folgt im Beispiel: p = 0.55 (1-p) =

44 Dann kann auch der Callpreis durch Diskontierung des Erwartungswertes ermittelt werden: C = (0.45 * * 0) * = 2.72 Begründung: Wegen Duplikation gilt C = P = S 0 * w A + B 0 * w B Die heutigen Werte der Aktie und des Bonds lassen sich durch deren diskontierte Erwartungswerte ersetzen: 44

45 w E S ) df w E( B ) df A ( 1 B 1 w E( S ) w E( B )] df [ A 1 B 1 E( w S ) E( w B )] df [ A 1 B 1 E w S w B ] df [ A 1 B 1 S 1 w B C Wegen Duplikation ist A B 1 1 w zukünftigen Umweltzustand, also folgt: in jedem 45

46 C E C ] df [ 1 Schlussfolgerung: Die Bewertung eines Calls mit Hilfe der Duplikation ist äquivalent zu einer Bewertung mit Hilfe des diskontierten Erwartungswertes und geeignet gewählter Eintrittswahrscheinlichkeit p. 46

47 Anmerkung: Ein Entscheider, der eine Handlungsalternative allein anhand des Ergebniserwartungswertes bewertet, heißt risikoneutral. Bei Duplikation führt die risikoneutrale Bewertung mit geeignet gewählter Wahrscheinlichkeit p zu demselben Ergebnis. Die risikoneutrale Bewertung ist einfacher, aber trotzdem ökonomisch begründbar: keine Verhaltensannahme (üblich: Risikoaversion) sondern folgt aus Duplikation und Arbitragefreiheit 47

48 A3. Konzept der risikoneutralen Bewertung Bei gegebenem risikofreien Zinssatz ergibt sich der Diskontierungsfaktor als df B0 1 B T (1 i) T zeitdiskrete Variante, mit T ganzzahlig df exp( i T) zeitstetige Variante, T beliebig 48

49 Bei risikoneutraler Bewertung gilt für jeden Zeitpunkt t: E( S t ) S0 exp( i t) Der erwartete Kurswert einer Aktie entspricht dem mit i aufgezinsten heutigen Kurswert S 0. Anmerkung: Die risikoneutrale Bewertung muss mit der Duplikation begründet werden; dies erfordert die geeignete Konstruktion von Hedge-Portfolios und Arbitragefreiheitsannahme! 49

50 Achtung: Die Wahrscheinlichkeiten zur Berechnung des Erwartungswertes p im Einperioden-Fall bzw. Binomialmodell Parameter einer Wahrscheinlichkeitsdichtefunktion sind nicht beliebig, sondern müssen konsistent aus der Duplikation bestimmt werden (siehe Beispiel). Dann gilt: C E ( CT ) df 50

51 In der Monte-Carlo Simulation wird der Erwartungswert geschätzt mit Eˆ( C ) 1 K K T h k k1 mit h k : Wert der Option bei Fälligkeit im k-ten Simulationslauf Anmerkung: Ob erst diskontiert und dann gemittelt; oder umgekehrt vorgegangen wird spielt keine Rolle; führt zum selben Ergebnis! 51

52 A4. Preismodell von Black/Scholes Lognormalverteilung Eine Zufallsvariable X heißt lognormalverteilt, wenn ln X normalverteilt ist: ln X ~ N(, 2 ) Ist X normalverteilt, dann ist e X lognormalverteilt. 52

53 Für eine lognormalverteilte Zufallsvariable X gilt: E( X ) exp( 2 2 ) Var( X ) 2 exp(2 ) (exp( ) 2 1) Lognormalverteiltes Preismodell: Das underlying folgt einem zeitkontinuierlichen Verzinsungsprozess mit stochastischer Rendite R bis Fälligkeit 53

54 Annahmegemäß gilt: S T S 0 exp( R) R ~ N(, 2 ) Offensichtlich ist S T damit lognormalverteilt mit Erwartungswert: E( S T ) S 0 2 exp( 2 ) 54

55 Der Parameter τ 2 wird im Black/Scholes-Modell gesetzt als: 2 2 T mit σ: Volatilität (annualisierte Standardabweichung der Jahresrendite) T: Laufzeit der Option in Einheiten der Standardperiode Der Parameter ν wird mit dem Ansatz der risikoneutralen Bewertung bestimmt. 55

56 Bei risikoneutraler Bewertung muss gelten: E( S T ) S0 exp( ) S0 exp( i T) 2 Daraus folgt: i T und wegen: 2 2 T 56

57 folgt schließlich: 2 i T 2 Die mit N(ν,τ 2 ) verteilte Rendite R kann auch unter Verwendung einer standardnormalverteilten Zufallsvariable Z geschrieben werden: R Z mit Z ~ N(0,1 ) 57

58 Damit folgt schließlich: S T S 0 S 0 exp( R) S exp i T exp( T Z Z) Wert eines geometrischen Prozesses mit normalverteilten Störvariablen im Endzeitpunkt T 58

59 Dieses im Black/Scholes-Modell angenommene Preismodell ST S 0 exp i 2 T T Z war dann im Rahmen der Monte-Carlo-Simulation der Ausgangspunkt für Zeitdiskretisierung: 2 S( j 1) t S j t exp(( i 0.5 ) t j t ) 2 für alle Subperioden j = 1,, N 59

Computational Finance

Computational Finance Computational Finance Kapitel 2.2: Monte Carlo Simulation Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring 4 / WiWi-Gebäude

Mehr

Aufgaben zur Vorlesung Finanzmanagement

Aufgaben zur Vorlesung Finanzmanagement Aufgaben zur Vorlesung Finanzmanagement B. rke FH Gelsenkirchen, Abteilung Bocholt February 4, 006 Aufgabenblatt: "Bewertung von Optionen" 1 Lösungshinweise 1 uropean Put Option Zeichnen Sie den einer

Mehr

Notationen. Burkhard Weiss Futures & Optionen Folie 2

Notationen. Burkhard Weiss Futures & Optionen Folie 2 Optionspreismodelle Notationen S t : X: T: t: S T : r: C: P: c: p: s: aktueller Aktienkurs Ausübungspreis (Rest-)laufzeit der Option Bewertungszeitpunkt Aktienkurs bei Verfall risikofreier Zinssatz Preis

Mehr

Vertical-Spreads Iron Condor Erfolgsaussichten

Vertical-Spreads Iron Condor Erfolgsaussichten www.mumorex.ch 08.03.2015 1 Eigenschaften Erwartung Preis Long Calls Long Puts Kombination mit Aktien Vertical-Spreads Iron Condor Erfolgsaussichten www.mumorex.ch 08.03.2015 2 www.mumorex.ch 08.03.2015

Mehr

Internationale Finanzierung 7. Optionen

Internationale Finanzierung 7. Optionen Übersicht Kapitel 7: 7.1. Einführung 7.2. Der Wert einer Option 7.3. Regeln für Optionspreise auf einem arbitragefreien Markt 7.3.1. Regeln für Calls 7.3.2. Regeln für Puts 7.3.3. Die Put Call Parität

Mehr

Investition und Finanzierung

Investition und Finanzierung Tutorium Investition und Finanzierung Sommersemester 2014 Investition und Finanzierung Tutorium Folie 1 Inhaltliche Gliederung des 3. Tutorium Investition und Finanzierung Tutorium Folie 2 Aufgabe 1: Zwischenform

Mehr

Finanzmanagement 5. Optionen

Finanzmanagement 5. Optionen Übersicht Kapitel 5: 5.1. Einführung 5.2. Der Wert einer Option 5.3. Regeln für Optionspreise auf einem arbitragefreien Markt 5.3.1. Regeln für Calls 5.3.2. Regeln für Puts 5.3.3. Die Put Call Parität

Mehr

Aufgaben Brealey/Myers [2003], Kapitel 21

Aufgaben Brealey/Myers [2003], Kapitel 21 Quiz: 1, 2, 4, 6, 7, 10 Practice Questions: 1, 3, 5, 6, 7, 10, 12, 13 Folie 0 Lösung Quiz 7: a. Das Optionsdelta ergibt sich wie folgt: Spanne der möglichen Optionspreise Spanne der möglichen Aktienkurs

Mehr

VALUATION Übung 5 Terminverträge und Optionen. Adrian Michel Universität Bern

VALUATION Übung 5 Terminverträge und Optionen. Adrian Michel Universität Bern VALUATION Übung 5 Terminverträge und Optionen Adrian Michel Universität Bern Aufgabe Tom & Jerry Aufgabe > Terminpreis Tom F Tom ( + R) = 955'000 ( + 0.06) = 99'87. 84 T = S CHF > Monatliche Miete Jerry

Mehr

Musterlösung Übung 3

Musterlösung Übung 3 Musterlösung Übung 3 http://www.hoadley.net/options/ http://www.eeh.ee.ethz.ch/en/power/power-systems-laboratory/services 1. Optionsbewertung nach Black / Scholes a) Bewerten Sie eine Call-Option mit den

Mehr

Übung zu Forwards, Futures & Optionen

Übung zu Forwards, Futures & Optionen Übung zu Forwards, Futures & Optionen Vertiefungsstudium Finanzwirtschaft Dr. Eric Nowak SS 2001 Finanzwirtschaft Wahrenburg 15.05.01 1 Aufgabe 1: Forward auf Zerobond Wesentliche Eckpunkte des Forwardgeschäfts:

Mehr

Computational Finance

Computational Finance Computational Finance Kapitel 2.1: Einführung in die Simulation Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring 4

Mehr

Musterlösung Übung 2

Musterlösung Übung 2 Musterlösung Übung 2 http://www.hoadley.net/options/ http://www.eeh.ee.ethz.ch/en/power/power-systems-laboratory/services 1. Optionsbewertung nach Black / Scholes a) Bewerten Sie eine Call-Option mit den

Mehr

Seminar Finanzmathematik

Seminar Finanzmathematik Seminar Finanzmathematik Simulationen zur Black-Scholes Formel von Christian Schmitz Übersicht Zufallszahlen am Computer Optionspreis als Erwartungswert Aktienkurse simulieren Black-Scholes Formel Theorie

Mehr

Bewertung von europäischen und amerikanischen Optionen

Bewertung von europäischen und amerikanischen Optionen Bewertung von europäischen und amerikanischen en 1. Vortrag - Einführung Technische Universität Berlin Institut für Mathematik 8. November 2007 Inhaltsverzeichnis 1 Definitionen amerikanische / europäische

Mehr

Termingeschäfte. Bedingte Termingeschäfte. Unbedingte Termingeschäfte, bedingte Ansprüche (contingent claims) unbedingte Ansprüche

Termingeschäfte. Bedingte Termingeschäfte. Unbedingte Termingeschäfte, bedingte Ansprüche (contingent claims) unbedingte Ansprüche Optionen Termingeschäfte Bedingte Termingeschäfte bedingte Ansprüche (contingent claims) Optionen Kreditderivate Unbedingte Termingeschäfte, unbedingte Ansprüche Forwards und Futures Swaps 2 Optionen Der

Mehr

Derivate und Bewertung

Derivate und Bewertung . Dr. Daniel Sommer Marie-Curie-Str. 0 6049 Frankfurt am Main Klausur Derivate und Bewertung.......... Wintersemester 006/07 Klausur Derivate und Bewertung Wintersemester 006/07 Aufgabe 1: Statische Optionsstrategien

Mehr

Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären.

Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. Einleitung Das Ein-Perioden-Modell ist das einfachste Modell, um die Idee der Preisgebung von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. naive Idee der Optionspreisbestimmung: Erwartungswertprinzip

Mehr

Seminar Finanzmathematik

Seminar Finanzmathematik Seminar Finanzmathematik Simulationen zur Black-Scholes Formel Seite 1 von 24 Zufallszahlen am Computer 3 Gleichverteilte Zufallszahlen 3 Weitere Verteilungen 3 Quadratische Verteilung 4 Normalverteilung

Mehr

Das Black-Scholes Marktmodell

Das Black-Scholes Marktmodell Das Black-Scholes Marktmodell Andreas Eichler Institut für Finanzmathematik Johannes Kepler Universität Linz 8. April 2011 1 / 14 Gliederung 1 Einleitung Fortgeschrittene Finanzmathematik einfach erklärt

Mehr

Aktienanleihe. Konstruktion, Kursverhalten und Produktvarianten. 18.02.2015 Christopher Pawlik

Aktienanleihe. Konstruktion, Kursverhalten und Produktvarianten. 18.02.2015 Christopher Pawlik Aktienanleihe Konstruktion, Kursverhalten und Produktvarianten 18.02.2015 Christopher Pawlik 2 Agenda 1. Strukturierung der Aktienanleihe 04 2. Ausstattungsmerkmale der Aktienanleihen 08 3. Verhalten im

Mehr

Derivate und Bewertung

Derivate und Bewertung . Dr. Daniel Sommer Marie-Curie-Str. 30 60439 Franfurt am Main Klausur Derivate und Bewertung.......... Wintersemester 2008/09 Klausur Derivate und Bewertung Wintersemester 2008/09 Aufgabe 1: Zinsurven,

Mehr

Wichtige Begriffe in der Finanzmathematik

Wichtige Begriffe in der Finanzmathematik Wichtige Begriffe in der Finanzmathematik Forward: Kontrakt, ein Finanzgut zu einem fest vereinbarten Zeitpunkt bzw. innerhalb eines Zeitraums zu einem vereinbarten Erfüllungspreis zu kaufen bzw. verkaufen.

Mehr

Optionen am Beispiel erklärt

Optionen am Beispiel erklärt Optionen am Beispiel erklärt Long Call Short Call Long Put Short Put von Jens Kürschner Grundlagen 2 Definition einer Option Eine Option bezeichnet in der Wirtschaft ein Recht, eine bestimmte Sache zu

Mehr

Private Banking. Region Ost. Risikomanagement und Ertragsverbesserung durch Termingeschäfte

Private Banking. Region Ost. Risikomanagement und Ertragsverbesserung durch Termingeschäfte Private Banking Region Ost Risikomanagement und Ertragsverbesserung durch Termingeschäfte Ihre Ansprechpartner Deutsche Bank AG Betreuungscenter Derivate Region Ost Vermögensverwaltung Unter den Linden

Mehr

Derivatebewertung im Binomialmodell

Derivatebewertung im Binomialmodell Derivatebewertung im Binomialmodell Roland Stamm 27. Juni 2013 Roland Stamm 1 / 24 Agenda 1 Einleitung 2 Binomialmodell mit einer Periode 3 Binomialmodell mit mehreren Perioden 4 Kritische Würdigung und

Mehr

Ausarbeitung des Seminarvortrags zum Thema

Ausarbeitung des Seminarvortrags zum Thema Ausarbeitung des Seminarvortrags zum Thema Anlagepreisbewegung zum Seminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn von Imke Meyer im W9/10 Anlagepreisbewegung

Mehr

Finanzwirtschaft. Teil II: Bewertung. Zinssätze und Renten

Finanzwirtschaft. Teil II: Bewertung. Zinssätze und Renten Zinssätze und Renten 1 Finanzwirtschaft Teil II: Bewertung Zinssätze und Renten Agenda Zinssätze und Renten 2 Effektivzinsen Spot-Zinsen Forward-Zinsen Bewertung Kennziffern Zusammenfassung Zinssätze und

Mehr

Erfolgreich handeln mit Optionen

Erfolgreich handeln mit Optionen Erfolgreich handeln mit Optionen INHALT 01 GRUNDLAGEN VON 05 OPTIONEN 02 GRIECHEN 13 Delta 14 Gamma 18 Vega 21 Theta 24 03 VOLATILITÄT 27 Historische Volatilität 29 Implizite Volatilität 31 Volatility

Mehr

Target Volatility & Risk Control Indizes. Ulrich Stoof (Bloomberg LP) & Christian Menn (RIVACON & FH Mainz)

Target Volatility & Risk Control Indizes. Ulrich Stoof (Bloomberg LP) & Christian Menn (RIVACON & FH Mainz) Target Volatility & Risk Control Indizes Ulrich Stoof (Bloomberg LP) & Christian Menn (RIVACON & FH Mainz) Agenda Einleitung/Motivation Der Risk Control Mechanismus Exkurs: Varianz- und Volatilitätsschätzer

Mehr

Bewertung von Barriere Optionen im CRR-Modell

Bewertung von Barriere Optionen im CRR-Modell Bewertung von Barriere Optionen im CRR-Modell Seminararbeit von Susanna Wankmueller. April 00 Barriere Optionen sind eine Sonderform von Optionen und gehören zu den exotischen Optionen. Sie dienen dazu,

Mehr

Aktien, D Derivate, A Arbitrage Kursverläufe des DAX: Tagesgang 5.1.2011-1a -

Aktien, D Derivate, A Arbitrage Kursverläufe des DAX: Tagesgang 5.1.2011-1a - : Eine Einführung in die moderne Finanzmathematik Prof. Dr. Dietmar Pfeifer Institut für Mathematik chwerpunkt Versicherungs- und Finanzmathematik Kursverläufe des DA: agesgang 5.1.2011-1a - Kursverläufe

Mehr

Flonia Lengu. Termingeschäfte: Futures und Optionen/Forwards/Futures: Terminkauf und -verkauf

Flonia Lengu. Termingeschäfte: Futures und Optionen/Forwards/Futures: Terminkauf und -verkauf Flonia Lengu Termingeschäfte: Futures und Optionen/Forwards/Futures: Terminkauf und -verkauf Gliederung 1. Einführung in derivative Finanzinstrumente 2. Futures und Optionen 3. Terminkauf und verkauf von

Mehr

Quantilsschätzung als Werkzeug zur VaR-Berechnung

Quantilsschätzung als Werkzeug zur VaR-Berechnung Quantilsschätzung als Werkzeug zur VaR-Berechnung Ralf Lister, Aktuar, [email protected] Zusammenfassung: Zwei Fälle werden betrachtet und die jeweiligen VaR-Werte errechnet. Im ersten Fall wird

Mehr

Analytische Methoden und die Black-Scholes Modelle

Analytische Methoden und die Black-Scholes Modelle Analytische Methoden und die Black-Scholes Modelle Diplomverteidigung Universität Rostock Institut für Mathematik 20.01.2011 Agenda 1 Das Ornstein-Uhlenbeck Volatilitätsmodell 2 in L 2 (R 2 ) 3 4 Problem

Mehr

Orderarten im Wertpapierhandel

Orderarten im Wertpapierhandel Orderarten im Wertpapierhandel Varianten bei einer Wertpapierkauforder 1. Billigst Sie möchten Ihre Order so schnell wie möglich durchführen. Damit kaufen Sie das Wertpapier zum nächstmöglichen Kurs. Kurs

Mehr

Lösungshinweise zur Einsendearbeit 2 SS 2011

Lösungshinweise zur Einsendearbeit 2 SS 2011 Lösungshinweise zur Einsendearbeit 2 zum Kurs 41500, Finanzwirtschaft: Grundlagen, SS2011 1 Lösungshinweise zur Einsendearbeit 2 SS 2011 Finanzwirtschaft: Grundlagen, Kurs 41500 Aufgabe Finanzierungsbeziehungen

Mehr

Kurzbeschreibung. Eingaben zur Berechnung. Das Optionspreismodell. Mit dem Eurex-OptionMaster können Sie

Kurzbeschreibung. Eingaben zur Berechnung. Das Optionspreismodell. Mit dem Eurex-OptionMaster können Sie Kurzbeschreibung Mit dem Eurex-OptionMaster können Sie - theoretische Optionspreise - Optionskennzahlen ( Griechen ) und - implizite Volatilitäten von Optionen berechnen und die errechneten Preise bei

Mehr

DIPLOM. Abschlussklausur der Vorlesung Bank I, II:

DIPLOM. Abschlussklausur der Vorlesung Bank I, II: Seite 1 von 9 Name: Matrikelnummer: DIPLOM Abschlussklausur der Vorlesung Bank I, II: Bankmanagement und Theory of Banking Seite 2 von 9 DIPLOM Abschlussklausur der Vorlesung Bank I, II: Bankmanagement

Mehr

Inhaltsverzeichnis: Aufgaben zur Vorlesung Finanz- und Risikomanagement Seite 1 von 35 Prof. Dr. Gabriele Gühring, Fakultät Grundlagen

Inhaltsverzeichnis: Aufgaben zur Vorlesung Finanz- und Risikomanagement Seite 1 von 35 Prof. Dr. Gabriele Gühring, Fakultät Grundlagen Inhaltsverzeichnis: Übungsaufgaben zu Finanz- und Risikomanagement... 3 Aufgabe... 3 Aufgabe... 3 Aufgabe 3... 3 Aufgabe 4... 3 Aufgabe 5... 4 Aufgabe 6... 4 Aufgabe 7... 4 Aufgabe 8... 4 Aufgabe 9...

Mehr

Banken und Börsen, Kurs 41520 (Inhaltlicher Bezug: KE 1)

Banken und Börsen, Kurs 41520 (Inhaltlicher Bezug: KE 1) 1 Lösungshinweise zur Einsendearbeit 1: SS 2012 Banken und Börsen, Kurs 41520 (Inhaltlicher Bezug: KE 1) Fristentransformation 50 Punkte Die Bank B gibt im Zeitpunkt t = 0 einen Kredit mit einer Laufzeit

Mehr

Nicht-rekombinierbare Binomialbäume und ihre Anwendung in der Finanzmathematik Betreuer: Lars Grüne

Nicht-rekombinierbare Binomialbäume und ihre Anwendung in der Finanzmathematik Betreuer: Lars Grüne Nicht-rekombinierbare Binomialbäume und ihre Anwendung in der Finanzmathematik Betreuer: Lars Grüne Michaela Baumann Universität Bayreuth Dornbirn, 12. März 2015 Motivation Ein Kunde möchte bei einer Bank

Mehr

Übungsaufgaben Tilgungsrechnung

Übungsaufgaben Tilgungsrechnung 1 Zusatzmaterialien zu Finanz- und Wirtschaftsmathematik im Unterricht, Band 1 Übungsaufgaben Tilgungsrechnung Überarbeitungsstand: 1.März 2016 Die grundlegenden Ideen der folgenden Aufgaben beruhen auf

Mehr

Financial Engineering....eine Einführung

Financial Engineering....eine Einführung Financial Engineering...eine Einführung Aufgabe 1: Lösung Überlegen Sie sich, wie man eine Floating Rate Note, die EURIBOR + 37 bp zahlt in einen Bond und einen Standard-Swap (der EURIBOR zahlt) zerlegen

Mehr

Einführung in die Optionspreisbewertung

Einführung in die Optionspreisbewertung Einführung in die Optionspreisbewertung Bonn, Juni 2011 MAF BN SS 2011 Huong Nguyen Gliederung Einführung Definition der Parameter Zwei Komponente zur Ermittlung der Optionsprämie Callwert-Kurve Wirkungen

Mehr

Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach

Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach 1 Universität Siegen Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach Klausur Internationale Finanzierung Sommersemester 2011 (1. Prüfungstermin) Bearbeitungszeit: 60 Minuten Zur Beachtung: 1. Die Klausur

Mehr

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1 1. Aufgabe: Der E-Commerce-Umsatz (in Millionen Euro) der fünf größten Online- Shopping-Clubs liegt wie folgt vor: Club Nr. Umsatz 1 120 2 72 3 54 4 30 5 24 a) Bestimmen Sie den Ginikoeffizienten. b) Zeichnen

Mehr

Häufig wiederkehrende Fragen zur mündlichen Ergänzungsprüfung im Einzelnen:

Häufig wiederkehrende Fragen zur mündlichen Ergänzungsprüfung im Einzelnen: Mündliche Ergänzungsprüfung bei gewerblich-technischen und kaufmännischen Ausbildungsordnungen bis zum 31.12.2006 und für alle Ausbildungsordnungen ab 01.01.2007 Am 13. Dezember 2006 verabschiedete der

Mehr

Aufgaben Brealey/Myers [2003], Kapitel 20

Aufgaben Brealey/Myers [2003], Kapitel 20 Folie 0 Quiz: 1, 2, 3, 4, 5, 8, 9, 11, 12, 13, 14 Practice Questions: 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15, 17, 18, 21 Challenge Questions: 2 Folie 1 Lösungshinweis zu Quiz 4: Put-Call Parität: Fälligkeit

Mehr

Value at Risk Einführung

Value at Risk Einführung Value at Risk Einführung Veranstaltung Risk Management & Computational Finance Dipl.-Ök. Hans-Jörg von Mettenheim [email protected] Institut für Wirtschaftsinformatik Leibniz Universität Hannover

Mehr

Wirtschaftsmathematik für International Management (BA)

Wirtschaftsmathematik für International Management (BA) Wirtschaftsmathematik für International Management (BA) Wintersemester 2012/13 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Lineare Algebra 4 Lineare Programme 5 Folgen und Reihen 6

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013 Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013 Walter Sanddorf-Köhle Foliensatz Nr. 3 1 / 46 Ein Einperiodenmodell Beispiel 5 Betrachtet wird nun ein Wertpapiermarkt mit

Mehr

4. Auflage. Kapitel IX: Bubbles

4. Auflage. Kapitel IX: Bubbles Eine Einführung in die Theorie der Güter-, Arbeits- und Finanzmärkte Mohr Siebeck c Kapitel IX: Bubbles Inhaltsverzeichnis Dieses Kapitel widmet sich Finanzmärkten, auf denen Finanzprodukte (Assets) gehandelt

Mehr

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!. 040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl

Mehr

Klausur zur Vorlesung Finanz- und Bankmanagement

Klausur zur Vorlesung Finanz- und Bankmanagement Universität Augsburg Wirtschaftswissenschaftliche Fakultät Lehrstuhl für Finanz- und Bankwirtschaft [Aufkleber] Klausur zur Vorlesung Finanz- und Bankmanagement Prof. Dr. Marco Wilkens 06. Februar 2012

Mehr

Kapitalerhöhung - Verbuchung

Kapitalerhöhung - Verbuchung Kapitalerhöhung - Verbuchung Beschreibung Eine Kapitalerhöhung ist eine Erhöhung des Aktienkapitals einer Aktiengesellschaft durch Emission von en Aktien. Es gibt unterschiedliche Formen von Kapitalerhöhung.

Mehr

Optionen - Verbuchung

Optionen - Verbuchung Optionen - Verbuchung Dieses Dokument begleitet Sie durch die "state-of-the-art" Buchung von Call- und Put- Optionen. Zuerst wird Die Definition von einfachen Calls und Puts (plain vanilla options) wiederholt.

Mehr

Wichtiges Thema: Ihre private Rente und der viel zu wenig beachtete - Rentenfaktor

Wichtiges Thema: Ihre private Rente und der viel zu wenig beachtete - Rentenfaktor Wichtiges Thema: Ihre private Rente und der viel zu wenig beachtete - Rentenfaktor Ihre private Gesamtrente setzt sich zusammen aus der garantierten Rente und der Rente, die sich aus den über die Garantieverzinsung

Mehr

Optionsstrategien. Die wichtigsten marktorientierte Strategien 12.05.2014. Jennifer Wießner

Optionsstrategien. Die wichtigsten marktorientierte Strategien 12.05.2014. Jennifer Wießner Optionsstrategien Die wichtigsten marktorientierte Strategien Jennifer Wießner Yetkin Uslu 12.05.2014 Gliederung Grundlagen Definition einer Option Begriffsbestimmungen Optionen Put Option Call Option

Mehr

Finanzwirtschaft. Teil II: Bewertung

Finanzwirtschaft. Teil II: Bewertung Sparpläne und Kreditverträge 1 Finanzwirtschaft Teil II: Bewertung Sparpläne und Kreditverträge Agenda Sparpläne und Kreditverträge 2 Endliche Laufzeit Unendliche Laufzeit Zusammenfassung Sparpläne und

Mehr

Korrigenda Handbuch der Bewertung

Korrigenda Handbuch der Bewertung Korrigenda Handbuch der Bewertung Kapitel 3 Abschnitt 3.5 Seite(n) 104-109 Titel Der Terminvertrag: Ein Beispiel für den Einsatz von Future Values Änderungen In den Beispielen 21 und 22 ist der Halbjahressatz

Mehr

Volatilitätsstrategie mit Optionen

Volatilitätsstrategie mit Optionen MT AG MANAGING TECHNOLOGY IMPROVING BUSINESS PERFORMANCE Volatilitätsstrategie mit Optionen Referent: Guido Neander, Senior-Berater, MT AG, Ratingen Agenda Begriffsdefinitionen Optionen Volatilität Preisbestimmungsfaktoren

Mehr

3.6Derivate Finanzinstrumente

3.6Derivate Finanzinstrumente 3.6Derivate Finanzinstrumente S.1 Quelle: http://www.eurexchange.com/resources/web_based_training/futures_optionen/index.html S.2 Der Inhaber eines Optionsscheins(Warrant)hat das Recht, während einer bestimmten

Mehr

Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011

Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011 Kevin Schellkes und Christian Hendricks 29.08.2011 Inhalt Der herkömmliche Ansatz zur Simulation logarithmischer Renditen Ansatz zur Simulation mit Copulas Test und Vergleich der beiden Verfahren Fazit

Mehr

Bonus Zertifikate Geldanlage für Skeptiker

Bonus Zertifikate Geldanlage für Skeptiker Bonus Zertifikate Geldanlage für Skeptiker 4.12.2014 Martin Szymkowiak Eigenschaften von Bonus Zertifikaten Bonus Zertifikate 2 Für seitwärts tendierende, moderat steigende oder fallende Märkte Besitzen

Mehr

Aktienoptionen: Einführung von Futures und Optionen auf Exchange Traded Commodities (ETCs) von ETF Securities

Aktienoptionen: Einführung von Futures und Optionen auf Exchange Traded Commodities (ETCs) von ETF Securities eurex Bekanntmachung Aktienoptionen: Einführung von Futures und Optionen auf Exchange Traded Commodities (ETCs) von ETF Securities Kontraktspezifikationen für Futures-Kontrakte und Optionskontrakte an

Mehr

Fixed Income-Derivate: Einführung von Fixed Income-Optionen mit wöchentlichem Verfall ( Weekly Options ) auf Euro-Bund-Futures

Fixed Income-Derivate: Einführung von Fixed Income-Optionen mit wöchentlichem Verfall ( Weekly Options ) auf Euro-Bund-Futures eurex Bekanntmachung Fixed Income-Derivate: Einführung von Fixed Income-Optionen mit wöchentlichem Verfall ( Weekly Options ) auf Euro-Bund-Futures Kontraktspezifikationen für Futures-Kontrakte und Optionskontrakte

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 15: Reguläre Ausdrücke und rechtslineare Grammatiken Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/25 Was kann man mit endlichen

Mehr

Dynamik von Optionen

Dynamik von Optionen Dynamik von Optionen Plan Der Optionspreis und seine Einflussfaktoren Wert des Calls / Puts bei unterschiedlichen Marktbedingungen Änderung des Optionspreises bei Änderung eines oder mehrerer Einflussfaktoren

Mehr

Inhaltsverzeichnis XVII. Abkürzungsverzeichnis... XXIII. Symbolverzeichnis...XXVII. Abbildungsverzeichnis...XXXI. Tabellenverzeichnis...

Inhaltsverzeichnis XVII. Abkürzungsverzeichnis... XXIII. Symbolverzeichnis...XXVII. Abbildungsverzeichnis...XXXI. Tabellenverzeichnis... XVII Abkürzungsverzeichnis... XXIII Symbolverzeichnis...XXVII Abbildungsverzeichnis...XXXI Tabellenverzeichnis... XXXV 1 Einführung...1 1.1 Entwicklung und Bedeutung der Optionsbewertung...1 1.2 Problemstellung...4

Mehr

Statistik II. Statistik II, SS 2001, Seite 1 von 5

Statistik II. Statistik II, SS 2001, Seite 1 von 5 Statistik II, SS 2001, Seite 1 von 5 Statistik II Hinweise zur Bearbeitung Hilfsmittel: - Taschenrechner (ohne Datenbank oder die Möglichkeit diesen zu programmieren) - Formelsammlung im Umfang von einer

Mehr

Ein möglicher Unterrichtsgang

Ein möglicher Unterrichtsgang Ein möglicher Unterrichtsgang. Wiederholung: Bernoulli Experiment und Binomialverteilung Da der sichere Umgang mit der Binomialverteilung, auch der Umgang mit dem GTR und den Diagrammen, eine notwendige

Mehr

Vorlesung Finanzmathematik (TM/SRM/SM/MM) Block : Ausgewählte Aufgaben Investitionsrechnung und festverzinsliche Wertpapiere

Vorlesung Finanzmathematik (TM/SRM/SM/MM) Block : Ausgewählte Aufgaben Investitionsrechnung und festverzinsliche Wertpapiere Hochschule Ostfalia Fakultät Verkehr Sport Tourismus Medien apl. Professor Dr. H. Löwe Sommersemester 20 Vorlesung Finanzmathematik (TM/SRM/SM/MM) Block : Ausgewählte Aufgaben Investitionsrechnung und

Mehr

Abschlussklausur am 12. Juli 2004

Abschlussklausur am 12. Juli 2004 Institut für Geld- und Kapitalverkehr Vorlesung Nr. 03.511 der Universität Hamburg Grundkonzeptionen der Finanzierungstheorie (ABWL / Finanzierung) Dr. Stefan Prigge Sommersemester 2004 Abschlussklausur

Mehr

W-Rechnung und Statistik für Ingenieure Übung 11

W-Rechnung und Statistik für Ingenieure Übung 11 W-Rechnung und Statistik für Ingenieure Übung 11 Christoph Kustosz ([email protected]) Mathematikgebäude Raum 715 Christoph Kustosz ([email protected]) W-Rechnung und Statistik

Mehr

Ein Cap ist eine vertragliche Vereinbarung, bei der der kaufenden Partei gegen Zahlung einer Prämie eine Zinsobergrenze garantiert wird.

Ein Cap ist eine vertragliche Vereinbarung, bei der der kaufenden Partei gegen Zahlung einer Prämie eine Zinsobergrenze garantiert wird. Zinsoptionen Eine Option ist eine Vereinbarung zwischen zwei Vertragsparteien, bei der die kaufende Partei das Recht hat, ein bestimmtes Produkt während eines definierten Zeitraums zu einem vorher bestimmten

Mehr

Additional Cycle Index (ACIX) Thomas Theuerzeit

Additional Cycle Index (ACIX) Thomas Theuerzeit Additional Cycle Index (ACIX) Thomas Theuerzeit Der nachfolgende Artikel über den ACIX stammt vom Entwickler des Indikators Thomas Theuerzeit. Weitere Informationen über Projekte von Thomas Theuerzeit

Mehr

Hochschule Rhein-Main. Sommersemester 2015

Hochschule Rhein-Main. Sommersemester 2015 Vorlesung Hochschule Rhein-Main Sommersemester 2015 Dr. Roland Stamm 29. Juni 2015 Erinnerung Bewertung eines Bonds mit Kupon k, Nominal N, Laufzeit t n: n Π(t) = N k δ(t i 1, t i ) P (t, t i ) + N P (t,

Mehr

MA Projekt: Langfristige Kapitalmarktsimulation

MA Projekt: Langfristige Kapitalmarktsimulation MA Projekt: Langfristige Kapitalmarktsimulation Einführung in die Simulation Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring

Mehr

Optionsbewertung. Christof Heuer und Fabian Lenz. 2. Februar 2009

Optionsbewertung. Christof Heuer und Fabian Lenz. 2. Februar 2009 nach Black-Scholes mit sprüngen 2. Februar 2009 nach Black-Scholes mit sprüngen Inhaltsverzeichnis 1 Einleitung Optionsarten Modellannahmen 2 Aktienmodell Beispiele für e ohne Sprung 3 nach Black-Scholes

Mehr

Änderung des IFRS 2 Anteilsbasierte Vergütung

Änderung des IFRS 2 Anteilsbasierte Vergütung Änderung IFRS 2 Änderung des IFRS 2 Anteilsbasierte Vergütung Anwendungsbereich Paragraph 2 wird geändert, Paragraph 3 gestrichen und Paragraph 3A angefügt. 2 Dieser IFRS ist bei der Bilanzierung aller

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

XONTRO Newsletter. Makler. Nr. 16

XONTRO Newsletter. Makler. Nr. 16 XONTRO Newsletter Makler Nr. 16 Seite 1 In XONTRO werden zum 24. Januar 2005 folgende Änderungen eingeführt: Inflationsindexierte Anleihen Stückzinsberechnung für französische und italienische Staatsanleihen

Mehr

Thema 21: Risk Management mit Optionen, Futures, Forwards und Swaps

Thema 21: Risk Management mit Optionen, Futures, Forwards und Swaps Thema 21: Risk Management mit Optionen, Futures, Forwards und Swaps Derivate Der Begriff Derivate kommt aus dem Lateinischen und heißt soviel wie abgeleitet. Derivate ist der Sammelbegriff für Optionen,

Mehr

Zwei einfache Kennzahlen für große Engagements

Zwei einfache Kennzahlen für große Engagements Klecksen nicht klotzen Zwei einfache Risikokennzahlen für große Engagements Dominik Zeillinger, Hypo Tirol Bank Die meisten Banken besitzen Engagements, die wesentlich größer sind als der Durchschnitt

Mehr

Die Black-Scholes-Gleichung

Die Black-Scholes-Gleichung Die Black-Scholes-Gleichung Franziska Merk 22.06.2012 Outline Optionen 1 Optionen 2 3 Optionen Eine Kaufoption ist ein Recht, eine Aktie zu einem heute (t=0) festgelegten Preis E an einem zukünftigen Zeitpunkt

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

n... Laufzeit der Kapitalanlage = Zeit, während der Zinsen zu zahlen sind (oder gezahlt werden) in Zinsperioden (z.b. Jahre)

n... Laufzeit der Kapitalanlage = Zeit, während der Zinsen zu zahlen sind (oder gezahlt werden) in Zinsperioden (z.b. Jahre) 3. Finanzmathematik 3.1. Zinsrechnung 3.1.1. Grundbegriffe K... Kapital (caput - das Haupt) = Betrag, der der Verzinsung unterworfen ist; Geldbetrag (Währung) z... Zinsen = Vergütung (Preis) für das Überlassen

Mehr

Admiral Academy WEBINAR TRADING VON ANFANG AN! TAG 2: Aktienhandel, Fonds, Optionsscheine, Devisen und CFDs. Wann trade ich was, Vorund Nachteile.

Admiral Academy WEBINAR TRADING VON ANFANG AN! TAG 2: Aktienhandel, Fonds, Optionsscheine, Devisen und CFDs. Wann trade ich was, Vorund Nachteile. Admiral Academy TRADING VON ANFANG AN! TAG 2: Aktienhandel, Fonds, Optionsscheine, Devisen und CFDs. Wann trade ich was, Vorund Nachteile. Aktienhandel: Aktien sind die Basis für (fast) alle Wertpapiere:

Mehr

Die Magie des Gewinnwachstums

Die Magie des Gewinnwachstums Die Magie des Gewinnwachstums Vortrag Anlegermesse INVEST, Stuttgart, am 4. April 2014 Andreas Sommer, Chefredakteur Momentum Trader & Chartanalyse-Trends informieren. investieren. profitieren. Hätten

Mehr

zu Aufgabe 3b) Binomialmodell: C 0 = S 0 B(a n;p ) E r -n B(a n;p*) Hier: C 0 = S 0 0,909 165,28 = 16,53

zu Aufgabe 3b) Binomialmodell: C 0 = S 0 B(a n;p ) E r -n B(a n;p*) Hier: C 0 = S 0 0,909 165,28 = 16,53 zu Aufgabe 3b) Binomialmodell: C 0 S 0 B(a n;p ) E r -n B(a n;p*) Hier: C 0 S 0 0,909 65,8 6,53 Frage: Wie setzt sich das Duplikationsportfolio des Calls (anteiliger Aktienkauf teilweise kreditfinanziert)

Mehr

Risikoeinstellungen empirisch

Risikoeinstellungen empirisch Risikoeinstellungen empirisch Risk attitude and Investment Decisions across European Countries Are women more conservative investors than men? Oleg Badunenko, Nataliya Barasinska, Dorothea Schäfer http://www.diw.de/deutsch/soep/uebersicht_ueber_das_soep/27180.html#79569

Mehr

R ist freie Software und kann von der Website. www.r-project.org

R ist freie Software und kann von der Website. www.r-project.org R R ist freie Software und kann von der Website heruntergeladen werden. www.r-project.org Nach dem Herunterladen und der Installation von R kann man R durch Doppelklicken auf das R-Symbol starten. R wird

Mehr

HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN

HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN Zinsen haben im täglichen Geschäftsleben große Bedeutung und somit auch die eigentliche Zinsrechnung, z.b: - Wenn Sie Ihre Rechnungen zu spät

Mehr

Installation von MailON2!

Installation von MailON2! Installation von MailON2! Die Installation von MailON2! und aller anderen notwendigen Programme erfolgt in drei Schritten: 1. Download der Installations-Dateien 2. Installation der Programme MailON2! und

Mehr

Kapitalerhöhung - Verbuchung

Kapitalerhöhung - Verbuchung Kapitalerhöhung - Verbuchung Beschreibung Eine Kapitalerhöhung ist eine Erhöhung des Aktienkapitals einer Aktiengesellschaft durch Emission von en Aktien. Es gibt unterschiedliche Formen von Kapitalerhöhung.

Mehr