Gekoppelte Fadenpendel
|
|
|
- Klara Bergmann
- vor 9 Jahren
- Abrufe
Transkript
1 Gekoppete adenpende Water endt 8. August 2007 Von gekoppeten Schwingungen spricht man, wenn sich mehrere schwingungsfähige Objekte gegenseitig beeinfussen. Ein bekanntes Beispie wird im ogenden näher beschrieben. Versuchsanordnung: Zwei geichartige adenpende sind durch eine Schraubenfeder geringer ederhärte verbunden. Der Abstand der Aufhängungen ist so gewäht, dass die eder bei senkrechtem Verauf der beiden äden keine Kraft ausübt. Außerdem wird vorausgesetzt, dass die beiden Pende gegenüber ihrer Geichgewichtsage nur wenig ausgeenkt werden. Reibungskräfte soen vernachässigt werden. α α s s Die Masse eines Pendekörpers sei mit m bezeichnet, die adenänge mit. Die ederkonstante sei D. Das Gesamtsystem hat zwei reiheitsgrade, da der momentane Zustand durch zwei Koordinaten beschrieben werden kann, beispiesweise durch die Ausenkungswinke α und α oder auch durch die entsprechenden Kreisbögen s = α und s = α. Grundagen: Kreisfrequenz einer harmonischen Schwingung Bei einer harmonischen Schwingung einer punktförmigen Masse ist die rücktreibende Kraft proportiona und entgegengesetzt zur Eongation (Ausenkung) s. Diese Tatsache wird durch = D s 1
2 ausgedrückt, wobei bzw. s nicht as Absoutbeträge, sondern as vorzeichenbehaftete Größen aufgefasst werden. Positives Vorzeichen entspricht der rechten Seite, negatives der inken. Der Proportionaitätsfaktor D = s (1) ist zeitich konstant und wird as Richtgröße bezeichnet. Aus der Richtgröße ässt sich die Kreisfrequenz ω einer harmonischen Schwingung berechnen. ω = D m (2) Eigenschwingungen des Systems Wenn man das Verhaten eines schwingenden Systems durchschauen wi, empfieht es sich, die so genannten Eigenschwingungen zu untersuchen. Diese zeichnen sich dadurch aus, dass die Teie des Systems entweder geichphasig oder gegenphasig schwingen. Das voriegende System hat zwei reiheitsgrade und dementsprechend auch zwei Eigenschwingungen. Diese sind verhätnismäßig eicht zu finden. 1. Eigenschwingung (geichphasig) Bei der ersten Eigenschwingung git für die beiden Ausenkungswinke stets α = α. Die Pendekörper der beiden adenpende sind aso zu jedem Zeitpunkt gegenüber ihrer Ruheage geich weit ausgeenkt, wobei sich entweder beide Pendekörper auf der inken Seite befinden oder beide auf der rechten. α α α = α 1. Eigenschwingung: Ausenkungswinke der beiden Pendekörper α = Acos(ω 1 t + ϕ 1 ) (3) α = Acos(ω 1 t + ϕ 1 ) (4) 2
3 Da der Abstand der beiden Pendekörper konstant beibt, wird die eder weder gedehnt noch gestaucht. Sie hat daher keinen Einfuss auf die Bewegung. Die Richtgröße berechnet sich aso wie bei einem einzigen adenpende. D 1 = s = mg sin α α mgα α = mg Hier wurde für die Komponente der Gewichtskraft ( G = mg) in Bewegungsrichtung, aso die Hangabtriebskraft mg sin α eingesetzt. Die Tatsache, dass diese Kraft nicht genau waagrecht gerichtet ist, kann bei keinen Ausenkungen vernachässigt werden. Unter dieser Voraussetzung ist auch die Näherungsforme sin α α für keine Winke berechtigt. ür die zugehörige Kreisfrequenz erhät man ω 1 = D1 m = mg/ g m =. 1. Eigenschwingung: Kreisfrequenz ω 1 = g (5) 2. Eigenschwingung (gegenphasig) Auch bei der zweiten Eigenschwingung sind die beiden Pendekörper immer betragsmäßig geich weit ausgeenkt. Aerdings befindet sich jeweis ein Pendekörper inks von seiner Ruheage und einer rechts davon. Es git aso zu jedem Zeitpunkt α = α. α α α = α 2. Eigenschwingung: Ausenkungswinke der beiden Pendekörper α = B cos(ω 2 t + ϕ 2 ) (6) α = B cos(ω 2 t + ϕ 2 ) (7) 3
4 Die Position des inken Pendekörpers sei gegeben durch den Winke α, so dass die momentane Ausenkung geich α ist. Auf den Körper wirkt einerseits die Hangabtriebskraft mg sin α mgs, andererseits nach dem hookeschen Gesetz die ederkraft D 2s. Der aktor 2 kommt dadurch zustande, dass die eder auf beiden Seiten jeweis um s gedehnt oder zusammengedrückt ist. Es ist zu beachten, dass die Hangabtriebskraft und die ederkraft nicht genau diesebe Richtung haben. Da jedoch keine Ausenkungen vorausgesetzt wurden, kann die Gesamtkraft as Summe angesetzt werden. ür die Richtgröße ergibt sich somit D 2 = = mgs 2Ds s = mg 2D = mg + 2D. As Kreisfrequenz der Eigenschwingung erhät man aso ω 2 = D2 m = g + 2D m. 2. Eigenschwingung: Kreisfrequenz ω 2 = g + 2D m (8) Aufsteung des Differentiageichungssystems Obwoh es nach der Bestimmung der Eigenschwingungen eigentich nicht mehr nötig wäre, so hier das zugehörige ineare Differentiageichungssystem für die Winke α und α aufgestet werden. Auf den inken Pendekörper wirken zwei Kräfte, nämich die Hangabtriebskraft mg sin α mgα und die ederkraft, für die sich nach dem hookeschen Gesetz D(α α) = D(α α) ergibt. Da die Bescheunigung dieses Pendekörpers geich α ist, erhät man aus dem newtonschen Kraftgesetz näherungsweise: m α = mgα + D(α α) = (mg + D)α + Dα Entsprechendes git für den rechten Pendekörper: m α = mgα + D(α α ) = Dα (mg + D)α 4
5 Differentiageichungssystem für α und α m α = (mg + D)α + Dα (9) m α = Dα (mg + D)α (10) Man rechnet eicht nach, dass die in den vorausgegangenen Abschnitten aufgeführten Eigenschwingungen Lösungen dieses Systems sind. Agemeine Lösung In der Theorie der inearen Differentiageichungssysteme wird bewiesen, dass die Lösungen eines sochen Systems einen Vektorraum biden. Beim hier betrachteten Probem hat dieser Vektorraum die Dimension 4. Jede der zuvor angegebenen Lösungen für die Eigenschwingungen entspricht einem Vektorraum der Dimension 2, was an den jeweis zwei vorkommenden Konstanten erkennbar ist. Aus dieser Überegung ergibt sich, dass man jede mögiche Bewegung der gekoppeten Pende as Summe dieser beiden spezieen Lösungen, aso durch Überagerung der genannten Eigenschwingungen beschreiben kann. α = Acos(ω 1 t + ϕ 1 ) + B cos(ω 2 t + ϕ 2 ) (11) α = Acos(ω 1 t + ϕ 1 ) B cos(ω 2 t + ϕ 2 ) (12) Dabei sind A, B, ϕ 1 und ϕ 2 beiebige reee Konstanten. ür die Abeitungen nach der Zeit ergibt sich: α = Aω 1 sin(ω 1 t + ϕ 1 ) Bω 2 sin(ω 2 t + ϕ 2 ) (13) α = Aω 1 sin(ω 1 t + ϕ 1 ) + Bω 2 sin(ω 2 t + ϕ 2 ) (14) Lösung des Anfangswertprobems Bei einem konkreten Anfangswertprobem sind die Konstanten A, B, ϕ 1 und ϕ 2 so zu wähen, dass die gegebenen Anfangsbedingungen erfüt sind. Anfangsbedingungen: Es wird vorausgesetzt, dass die beiden Pendekörper um die Winke α 0 bzw. α 0 ausgeenkt sind und zur Zeit t = 0 (geichzeitig) osgeassen werden. Einsetzen von t = 0 in die Geichungen (11) und (12) für α und α muss aso die Werte α 0 und α 0 ergeben. Außerdem muss beim Einsetzen von t = 0 in die Geichungen (13) und (14) für α und α jeweis 0 herauskommen. Unter Berücksichtigung von cos 0 = 1 und sin 0 = 0 erkennt man, dass die geforderten Bedingungen für A = 1 2 (α 0 + α 0 ), B = 1 2 (α 0 α 0 ), ϕ 1 = 0 und ϕ 2 = 0 erfüt sind. 5
6 Ausenkungswinke der beiden Pendekörper α = 1 2 (α 0 + α 0 )cos(ω 1t) (α 0 α 0 )cos(ω 2t) (15) α = 1 2 (α 0 + α 0 )cos(ω 1t) 1 2 (α 0 α 0 )cos(ω 2t) (16) Beispie Das fogende Diagramm zeigt, wie sich bei gekoppeten Penden die Ausenkungswinke der beiden Pendekörper zeitich ändern. Beim Losassen, aso zur Zeit t = 0, befand sich einer der beiden Pendekörper in der Mitteage (baue Kurve), der andere war um 2 ausgeenkt (rote Kurve). Typisch ist, dass die Ampitude (und damit auch die Energie) stets für ein Pende zu- und für das andere abnimmt. Es findet ein periodischer Energieaustausch statt. 6
7 Anhang: Verwendete Bezeichnungen m Masse eines (punktförmigen) Pendekörpers adenänge D ederkonstante (-härte) t Zeit α Ausenkungswinke des inken adenpendes α Ausenkungswinke des rechten adenpendes s Ausenkung (Eongation) des inken adenpendes (mit Vorzeichen) s Ausenkung (Eongation) des rechten adenpendes (mit Vorzeichen) rücktreibende Kraft (agemein bzw. auf einen der beiden Pendekörper, mit Vorzeichen) D Richtgröße (agemein) ω Kreisfrequenz (agemein) D1 Richtgröße der ersten Eigenschwingung ω 1 Kreisfrequenz der ersten Eigenschwingung A, ϕ 1 Konstanten für erste Eigenschwingung D2 Richtgröße der zweiten Eigenschwingung ω 2 Kreisfrequenz der zweiten Eigenschwingung B, ϕ 2 Konstanten für zweite Eigenschwingung G Gewichtskraft g abescheunigung (Ortsfaktor) α 0 Ausenkungswinke des inken ederpendes zur Zeit t = 0 α 0 Ausenkungswinke des rechten ederpendes zur Zeit t = 0 c Water endt, 7
Mechanische Schwingungen
Dorn-Bader 12/13 S. 97 ff Mechanische Schwingungen 1. Beschreibung von Schwingungsvorgängen Versuch: Federpende Ein einfaches Federpende zeigt die typischen Merkmae einer Schwingung: An das untere Ende
5.1.5 Pendel = Sinusbewegung ******
V55 5..5 ****** Motivation Dieser sehr schöne Versuch zeigt, dass die Projektion einer Kreisbewegung eine Sinusbewegung ergibt. Damit deckt sie sich mit einer simutanen Pendebewegung derseben Frequenz.
Musterlösung zur Übung am Donnerstag
Musterösung zur Übung am Donnerstag Aufgabe 1: Strategie: 1. Man nimmt einen beiebigen Massepunkt m (z.b. Stein), hängt ihn an die Feder und enkt die Feder aus. Man misst die Schwingungsfrequenz (bzw.
Illustrierende Aufgaben zum LehrplanPLUS. Schaukeln
Jahrgangsstufen FOS 12, BOS 12 Schauken Stand: 08.12.2017 Fach/Fächer Übergreifende Bidungs- und Erziehungsziee Physik Medienbidung/digitae Bidung, sprachiche Bidung Benötigtes Materia - Kompetenzerwartungen
PP - Physikalisches Pendel Blockpraktikum Frühjahr 2005
PP - Physikaisches Pende Bockpraktikum Frühjahr 2005 Regina Schweizer, Aexander Seizinger, Tobias Müer Assistent Heiko Eite Tübingen, den 14. Apri 2005 1 Theoretische Grundagen 1.1 Mathematisches Pende
a) Zeigen Sie, dass sich für eine lange Spule die magn. Flussdichte in der Mitte mit der Näherungsformel berechnen lässt.
Aufgaben Magnetfed einer Spue 83. In einer Spue(N = 3, =,5m), die in Ost-West-Richtung iegt, wird eine Magnetnade gegen die Nord-Süd-Richtung um 11 ausgeenkt. Berechnen Sie die Stärke des Stromes in 5
F = m g sin. = sin dt l l = Pendellänge ( vom Aufhängepunkt bis zum Mittelpunkt der Kugel)
S1 Mathematisches und physikaisches Pende Stoffgebiet: Versuchszie: Literatur: Schwingungen agemein, mathematisches Pende, physikaisches Pende, Steinerscher Satz Mathematische Behandung von Schwingungsvorgängen
KIT SS Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 2 Lösung. 11. Oktober 2012, Uhr
KIT SS 1 Kassische Theoretische Physik II : Prof. Dr. M. Müheitner, Ü: Dr. M. Rauch Kausur Lösung 11. Oktober 1, 8-1 Uhr Aufgabe 1: Kurzfragen 4+4+=1 Punkte a Die Transformationen und zugehörigen Erhatungsgrößen
10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung)
10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) Versuche: Pendel mit zwei Längen Sandpendel ohne/mit Dämpfung erzwungene Schwingung mit ω
Fourierreihenentwicklung Prof. K. Weinberg Universität Siegen Lehrstuhl für Festkörpermechanik
Fourierreihenentwickung Prof. K. Weinberg Universität Siegen Lehrstuh für Festkörpermechanik Mathematische Grundagen für Einfachreihenentwickungen Für viee mathematische, physikaische und technische Probeme
80 Schwingende Saiten
80 Schwingende Saiten 331 80 Schwingende Saiten 80.1 Probem. Es werden die Schwingungen einer (Geigen-) Saite der Länge > 0 und Massendichte ρ(x) > 0, 0 x, untersucht. Ist diese in den Punkten x = 0 und
Mathematische Probleme, SS 2013 Donnerstag $Id: convex.tex,v /10/22 15:58:28 hk Exp $
$Id: convex.tex,v.2 203/0/22 5:58:28 hk Exp $ 3 Konvexgeometrie 3.2 Die patonischen Körper Ein patonischer Körper von Typ (n, m) ist ein konvexer Poyeder dessen Seitenfäche ae geichseitige n-ecke und in
Vom Fallkreis zur Bahnellipse und zum Hodographen
Vom Fakreis zur Bahneipse und zum Hodographen Q R v P r X S F Y Gegeben: S P v Ort der Sonne Ort des Paneten zu irgendeinem Zeitpunkt t 0 Geschwindigkeit des Paneten zum Zeitpunkt t 0 Version 1.1 Frauenfed,
Technische Mechanik III (Dynamik)
Institut für Mechanische Verfahrenstechnik und Mechanik Bereich Angewandte Mechanik Vorprüfung Technische Mechanik III (Dynamik) Montag, 31.08.009, 9:00 11:00 Uhr Bearbeitungszeit: h Aufgabe 1 (6 Punkte)
Institut für Allgemeine Mechanik der RWTH Aachen
Institut für Agemeine Mechanik der RWTH Aachen Prof. Dr.-Ing. D. Weichert 9.Übung Mechanik II SS 27 18.6.6 Abgabetermin 9.Übung: 25.7.6 14: Uhr 1. Aufgabe Der skizzierte, statisch unbestimmte aken wird
Übungen zu Theoretischer Mechanik (T1)
Arnod Sommerfed Center Ludwig Maximiians Universität München Prof. Dr. Viatchesav Muhanov Sommersemester 0 Übungen zu Theoretischer Mechani T) Übungsbatt 7, Besprechung ab.05.0 Aufgabe 7. Gedämpfter harmonischer
Ergänzungsheft Erfolg im Mathe-Abi
Ergänzungsheft Erfog im Mathe-Abi Hessen Prüfungsaufgaben Leistungskurs 2012 Grafikfähiger Taschenrechner (GTR), Computeragebrasystem (CAS) Dieses Heft enthät Übungsaufgaben für GTR und CAS sowie die GTR-
Prüfung aus Physik III (PHB3) Donnerstag 5. Juli 2012
Hochschue München FK06 Sommersemester 2012 Prüfer: Prof. Dr. Maier Prüfung aus Physik III (PHB3) Donnerstag 5. Jui 2012 Zugeassene Hifsmitte: Formesammung (Bestandtei der Prüfung), Taschenrechner (nicht
Herleitung der Wellengleichung und Diskussion der schwingenden Saite
Anaysis III Seminar Hereitung der Weengeichung und Diskussion der schwingenden Saite Christina Bräutigam [email protected] TU Dortmund 29.4.213 Inhatsverzeichnis 1 Abstract 1 2 Probem
Zwei Uhren, die in einem Bezugssystem synchronisiert sind, gehen in keinem relativ zum ersten Bezugssystem synchron.
Die Geichzeitigkeit von Ereignissen Man war bis 1905 überzeugt, dass es eine absoute, für ae Systeme geichmäßig abaufende Zeit gibt. EINSTEIN unterzog den Zeitbegriff einer kritischen Betrachtung. Dazu
2 Mechanische Schwingungen und Wellen. 2.1 Mechanische Schwingungen
2 Mechanische Schwingungen und Wellen 2.1 Mechanische Schwingungen 2.1.1 Harmonische Schwingungen Federpendel, Fadenpendel 2.1.2 Gedämpfte Schwingungen 2.1.3 Erzwungene Schwingungen 2.2 Wellen 2.2.1 Transversale
Zusammenfassung: Mechanische Schwingungen
LGÖ K Ph -tündig Schujahr 6/7 Zuaenfaung: Mechaniche Schwingungen Inhatverzeichni Sinu- und Koinufunktion Hooke che Geetz Haroniche Schwingungen 3 ür Eperten 6 Sinu- und Koinufunktion a Bogenaß eine Winke
Blatt 5. - Lösungsvorschlag
Fautät für Physi der LMU München Lehrstuh für Kosoogie, Prof Dr V Muhanov Übungen zu Kassischer Mechani (T) i SoSe Batt 5 - Lösungsvorschag Aufgabe 5 Binäres Sternsyste a) Wieviee Freiheitsgrade hat das
C Mathematische Grundlagen
C Mathematische Grundagen C.1 Summen Mit dem Summenzeichen werden Rechenanweisungen zum Addieren kompakt geschrieben. Sie assen sich oft mit Hife der Summenregen vereinfachen. C.1 Gibt es insgesamt n Werte
Beispiele zur Identifikation von Fehlvorstellungen in der Technischen Mechanik
Beispiee zur Identifikation von Fehvorsteungen in der Technischen Mechanik Urike Zwiers, Andrea Dederichs-Koch 9. Ingenieurpädagogische Regionatagung 6. 8. November 2014, Universität Siegen Giederung 1.
E > 0. V eff (r) r. V eff,min < E < 0. r min. V (r)
II.2 Zwei-Körper-Systeme 43 2 2µr 2 r min E > 0 r V eff (r) r max r min V eff,min < E < 0 V (r) E < V eff,min Abbidung II.4 Effektives Potentia V eff (r) für das Keper-Probem. Mit dem newtonschen Gravitationspotentia
III. Schwingungen und Wellen
III. Schwingungen und Wellen III.1 Schwingungen Physik für Mediziner 1 Schwingungen Eine Schwingung ist ein zeitlich periodischer Vorgang Schwingungen finden im allgemeinen um eine stabile Gleichgewichtslage
Abschlußprüfung an Fachoberschulen: Physik 1996 Aufgabe III
Abschlußprüfung an Fachoberschulen: Physik 1996 Aufgabe III 1.0 Die Abhängigkeit des Betrags der Coulombkraft F C von den Punktladungen gen Q 1, Q und ihrem Abstand r im Vakuum wird durch das Coulombgesetz
Technische Universität Berlin. Abt. I Studierenden Service Studienkolleg / Preparatory Course
Technische Universität Berin Abt. I Studierenden Service Studienkoeg / Preparatory Course Schriftiche Prüfung zur Feststeung der Eignung ausändischer Studienbewerber zum Hochschustudium im Lande Berin
Abschlussprüfung Telekolleg Multimedial Lehrgang 13
Abschussprüfung Teekoeg Mutimedia Lehrgang 13 Fach: Physik Termin: 13.01.07 Arbeitszeit: 150 Minuten Name und Anschrift des Prüfings Maximae Punktzah: 0 Erreichte Punktzah: Note: -2- Aufgabe 1 1.0 Herr
Lösung zu Übungsblatt 1
Technische Universität München Fakutät für Physik Ferienkurs Theoretische Physik 1 Lösung zu Übungsbatt 1 Grundagen der Newton schen Mechanik, Zweiteichensysteme 1. Vektoranaysis (*) (a) Der Gradient eines
Ringbildung beim Michelson-Interferometer
1 Ringbidung beim Micheson-Interferometer Ausgangspunkt ist das Hygensche Prinzip, dass von jedem Punkt einer Weenfront Kugeween, d.h. Ween in ae Raumrichtungen, ausgehen. Das erstauniche ist nun, dass
3.7 Sonderprobleme Ausnutzung der Symmetrie und Antimetrie. Größe. Belastung
VORLESUGSAUSKRIPT BAUSTATIK I II (UVERTIEFT).7 Sonderrobeme.7. Ausnutzung der Symmetrie und Antimetrie Durch die Ausnutzung der Symmetrie und Antimetrie kann der Grad der statischen Unbestimmtheit (u.
q = 3 kn/m Abb. 1: Eingespannter, abgeknickter Träger unter Gleichstrecken-und Punktlast.
ateriatheorie - LK, Sekr. S Einsteinufer 5, 1587 Berin 6. Übungsbatt Schnittgrößen am biegesteifen Träger WS 11/1 1. ür den in bb. 1 dargesteten, mit einer Einzekraft und einer Geichstreckenast beasteten
Kraft - Grundbegriffe
Grundwissen Kraft - Grundbegriffe Theorie: a) Erkennungsmerkmal von Kräften: Kräfte erkennt man daran, dass sie Körper verformen und/oder ihren Bewegungszustand ändern. Unter Änderung des Bewegungszustandes
1.3. Aufgaben zur Statik
1.3. Aufgaben ur Statik Aufgabe 1: Kräfteerlegung Ein Schlitten kann auf einer Schiene horiontal bewegt werden. Im Winkel von = 40 ur Schiene ieht ein Seil mit der Kraft = 100 N an dem Schlitten. Bestimme
Musterlösung zu Aufgabe 10)
Musterösung zu Aufgabe ) Seien n, K Körper, A K n n, b K n, und f: K n K n mit f x Ax für x K n. a) Zeigen Sie: f bidet Affinkombinationen von Vektoren in Affinkombinationen von deren Bidern unter f ab.
Abiturprüfung Mathematik 006 Baden-Württemberg (ohne CAS) Haupttermin Pfichttei - Aufgaben Aufgabe : ( VP) Biden Sie die Abeitung der Funktion f mit f(x) = sin(4x ). 8 Aufgabe : ( VP) Geben Sie eine Stammfunktion
Physik 4, Übung 7, Prof. Förster
Physik 4, Übung 7, Prof. Förster Christoph Hansen Emaikontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffenticht. Ich erhebe keinen Anspruch auf Voständigkeit oder Richtigkeit. Fas ihr
Aufgabe 1 (7 Punkte) Prüfungsklausur Technische Mechanik II. v A im Punkt A die Geschwindigkei-
Techn. Mechanik & Fahrzeugdynamik TM II Prof. Dr.-Ing. habi. Hon. Prof. (NUST) D. Beste. März 7 Prüfungskausur Technische Mechanik II Famiienname, Vorname Aufgabe (7 Punkte) Eine Grubenpumpe aus dem Bergbaumuseum
Zusammenfassung: Mechanische Schwingungen
LGÖ K Ph -tündig Schujahr 5/6 Zuaenfaung: Mechaniche Schwingungen Inhatverzeichni Sinu- und Koinufunktion Hooke che Geetz Haroniche Schwingungen 3 ür Eperten 7 Sinu- und Koinufunktion a Bogenaß eine Winke
Das Trägheitsmoment und der Satz von Steiner
Übungen zu Theoretische Physik I - echanik im Sommersemester 3 Batt 9 vom 4.6.3 Abgabe:.7. Aufgabe 38 Punkte Das Trägheitsmoment und der Satz von Steiner Berechnen Sie das Trägheitsmoment eines Zyinders
Aufgaben zum Thema Kraft
Aufgaben zum Thema Kraft 1. Ein Seil ist mit einem Ende an einem Pfeiler befestigt und wird reibungsfrei über einen weiteren Pfeiler derselben Höhe im Abstand von 20 m geführt. Das andere Seilende ist
1.4 Gradient, Divergenz und Rotation
.4 Gradient, Divergenz und Rotation 5.4 Gradient, Divergenz und Rotation Die Begriffe Gradient, Divergenz und Rotation erfordern die partiellen Ableitung aus Abschnitt.. sowie das Konzept des Differentialoperators.
Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an.
1. Geschwindigkeiten (8 Punkte) Ein Schwimmer, der sich mit konstanter Geschwindigkeit v s = 1.25 m/s im Wasser vorwärts bewegen kann, möchte einen mit Geschwindigkeit v f = 0.75 m/s fließenden Fluß der
Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Einführungsversuch (EV) Herbstsemester Physik-Institut der Universität Zürich
Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Einführungsversuch (EV) Herbstsemester 2017 Physik-Institut der Universität Zürich Inhaltsverzeichnis 1 Einführungsversuch (EV) 11 11 Einleitung
Bewegung geladener Teilchen in elektrischen Feldern; homogenes Feld, Zentralfeld
1111 Bewegung geadener Teichen in eektrischen Federn; homogenes Fed, Zentrafed Bewegung in homogenen Federn Geadene Teichen erfahren in eektrischen Federn Kräfte; diese bewirken nach dem 2 Newton-Gesetz
1. Klausur ( )
EI K1PH-4 2012-13 PHYSIK 1. Klausur (15.10.2012) 1. Aufgabe (2 Punkte) Gib ein Beispiel für eine Bewegung an, bei der die Geschwindigkeit negativ, die Beschleunigung aber positiv ist. Skizziere ein entsprechendes
Experimentalphysik 1
Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 16/17 Lösung 1 Ronja Berg ([email protected]) Katharina Scheidt ([email protected]) Aufgabe 1: Superposition
5 Schwingungen und Wellen
5 Schwingungen und Wellen Schwingung: Regelmäßige Bewegung, die zwischen zwei Grenzen hin- & zurückführt Zeitlich periodische Zustandsänderung mit Periode T ψ ψ(t) [ ψ(t-τ)] Wellen: Periodische Zustandsänderung
1. Klausur Mechanik I SS 05, Prof. Dr. V. Popov
. Kausur Mechanik I SS 05, Prof. Dr. V. Popov itte deutich schreiben! Name, Vorname: Matr.-Nr.: Studiengang: itte inks und rechts ankreuen! Studienbegeitende Prüfung Ergebnis ins WWW Übungsscheinkausur
Interferenz an einer CD
Interferenz an einer CD Oaf Merkert (Manue Sitter) 18. Dezember 2005 1 Versuchsaufbau Abbidung 1: Versuchsanordnung mit Laser und CD [1] Ein auf einem Tisch aufgesteter Laser mit der Weenänge λ wird im
Pharmakokinetik-Grundlagen, Teil 1
Pharmakokinetik-Grundagen, Tei 1 Thomas Schnider 29. ärz 2016 1 Grundbegriffe Die kassische Pharmakokinetik beschreibt u.a Begriffe wie Verteiungsvoumen, Cearance und Habwertszeit. Es ist wichtig diese
Theoretische Mechanik
Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 008 Theoretische Mechanik 4. Übung Lösungen 4. Spezielle Kraftgesetze Lösen Sie die
Mechanik der Strukturmaterialien WS2014 Balogh/Schmitz. 2. Vorlesung
. Voresung 16.10.014 Katverfestigung: rhöhung der Festigkeit mit zunehmender Verformung, d.h., das Bautei verfestigt sich dort, wo es beansprucht wird; Katverfestigung ist eine grundegende Voraussetzung
b) Von welchen Parametern hängen die Eigenschwingungsfrequenzen ab?
Techn. Mechanik & Fahrzeugdynamik TM III Prof. Dr.-Ing. habi. Hon. Prof. (NUST) D. Beste 4. März 17 Prüfungskausur Technische Mechanik III Famiienname, Vorname Matrike-Nummer Fachrichtung Aufgabe 1 (9
2010-03-08 Klausur 3 Kurs 12Ph3g Physik
00-03-08 Klausur 3 Kurs Ph3g Physik Lösung Ein Federpendel mit der Federkonstante D=50 N schwingt mit derselben Frequenz wie ein m Fadenpendel der Länge 30 cm. Die Feder sei masselos. Die Auslenkung des
M13. Gekoppeltes Pendel
M3 Gekoppeltes Pendel In diesem Versuch werden die Schwingungen von zwei Pendeln untersucht, die durch eine Feder miteinander gekoppelt sind. Für verschiedene Kopplungsstärken werden die Schwingungsdauern
Mathematisches Pendel und Federpendel
INSIU FÜR ANGEWANE PHYSIK Physikaisches Praktiku für Studierende der Ingenieurswissenschaften Universität Haburg, Jungiusstraße 11 Matheatisches Pende und Federpende 1 Zie In zwei Versuchsteien soen die
Physik Mathematisches Pendel
Physik Mathematisches Pende 1. Zie des Versuches Bestätiun der Schwinunseichun des mathematischen Pendes Bestimmun der Erdbescheuniun. Aufaben Indirekte Bestimmun von fünf Pendeänen i durch jeweiie Messun
herleiten, wenn man für c(ha) c(ha) = (1 α) c 0,
Versuch E Bestimmung der Dissoziationskonstanten einer schwachen Säure durch Messung der Leitfähigkeit der Eektroytösung Aufgabensteung: Durch Leitfähigkeitsmessungen sind die Dissoziationskonstante und
Technische Universität Berlin. Abt. I Studierenden Service Studienkolleg / Preparatory Course
Technische Universität Berin Abt. I Studierenden Service Studienkoeg / Preparatory Course Schriftiche Prüfung zur Feststeung der Eignung ausändischer Studienbewerber zum Hochschustudium im Lande Berin
Kapitel 1 PUNKTMECHANIK LERNZIELE INHALT. Körper. Masse
Kapitel 1 PUNKTMECHANIK LERNZIELE Definition der physikalischen Begriffe Körper, Masse, Ort, Geschwindigkeit, Beschleunigung, Kraft. Newtons Axiome Die Benutzung eines Bezugssystems / Koordinatensystems.
Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik
Fakultät für Physik Wintersemester 2016/17 Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Dr. Andreas K. Hüttel Blatt 4 / 9.11.2016 1. May the force... Drei Leute A, B, C ziehen
2. Stabilitätsprobleme und Theorie II. Ordnung
Baustatik WS 212/213 2. Stabiitätsprobeme und Theorie II. Ordnung 2.6 Berücksichtigung der geometrischen Imperfektionen Imperfektionen Bisher: Annahme der perfekten Tragwerke und des perfekten Bauprozesses!
Versuch P1-20 Pendel Vorbereitung
Versuch P1-0 Pendel Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 9. Januar 01 Inhaltsverzeichnis Aufgabe 1 1.1 Reduzierte Pendellänge............................. 1. Fallbeschleunigung
Abschlussprüfung Berufliche Oberschule 2016 Physik 12 Technik - Aufgabe II - Lösung. hat den
athphy-onine Abchuprüfung Berufiche Oberchue 016 Phyik 1 Technik - Aufgabe II - Löung Teiaufgabe 1.0 Eektronen werden it der Gechwindigkeit v 0 enkrecht zur inken Begrenzunginie und enkrecht zu den Fedinien
Grundwissen. Physik. Jahrgangsstufe 10
Grundwissen Physik Jahrgangsstufe 10 1. Impuls Grundwissen Physik Jahrgangsstufe 10 Seite 1 Definition: p=m v [ p]=1 kg m s Impulserhaltungssatz: p vorher = p nachher p= p ' p 1 p = p' 1 p ' m 1 =1kg stößt
Geschichte und Theorie
Eektrotechnikprotoko 1 rspannung (EMK) und innerer Widerstand Moser Guido eines Gavanischem Eements Fuda, den 9.03.00 Geschichte und Theorie Die ersten Spannungsqueen, die gebaut wurden, waren gavanische
5/7/ Verschiedene Methoden zur Einführung von Bruchzahlen. a) Das Größenkonzept Man geht aus von konkreten Brüchen, die den Schülern aus
/7/09 1. Didak(k der Zahbereichserweiterungen 1.4 Erweiterung von den natürichen Zahen auf die posi(ven ra(onaen Zahen Bruchrechnung des 6. Schujahres 1.41 Verschiedene Methoden zur Einführung von Bruchzahen
Übungsblatt 3. Lagrange-Formalismus, Systeme von Schwingungen. Man betrachte ein ebenes Doppelpendel im dreidimensionalen Raum (siehe Abb.).
Technische Universität München Fautät für Phsi Ferienurs Theoretische Phsi 1 Übungsbatt 3 Lagrange-Foraisus, Sstee von Schwingungen 1. Ebenes Pende (*) Man betrachte ein ebenes Doppepende i dreidiensionaen
Übungen zu Experimentalphysik 1 für MSE
Physik-Department LS für Funktionee Materiaien WS 07/8 Übunen zu Experimentaphysik für MSE Prof. Dr. Peter Müer-Buschbaum, Dr. Voker Körstens, Dr. Neeima Pau, Sebastian Grott, Lucas Kreuzer, Simon Schaper,
Cusanus-Gymnasium Wittlich. Physik Schwingungen. Fachlehrer : W.Zimmer. Definition
Physik Schwingungen Definition Fachlehrer : W.Zimmer Eine Schwingung ist eine Zustandsänderung eines Masseteilchens bzw. eines Systems von Masseteilchen bei der das System durch eine rücktreibende Kraft
Übung zur Einführung in die VWL / Makroökonomie. Teil 4: Unternehmen
Bergische Universität Wupperta FB B Schumpeter Schoo of Economics and Management Makroökonomische Theorie und Poitik Übung zur Einführung in die VWL / Makroökonomie Tei 4: Unternehmen Thomas Domeratzki
4. Drehschwinger. B 2 Schwerpunkt S. c 2 P 2. S P 1 c 1 m, J B 1. Prof. Dr. Wandinger 6. Schwingungen Dynamik
c 2 B 2 Schwerpunkt S P 2 S P 1 c 1 m, J O O B 1 Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.4-1 Aufgabenstellung: 4. Drehschwinger Der Drehschwinger besteht aus einem starren Körper, der im Punkt
Physik für Biologen und Zahnmediziner
Physik für Biologen und Zahnmediziner Kapitel 3: Dynamik und Kräfte Dr. Daniel Bick 09. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 09. November 2016 1 / 25 Übersicht 1 Wiederholung
3.2 Gleitreibung und Haftreibung 95
3.2 Geitreibung und Haftreibung 5 Lehrbeispie: Reibung in Ruhe und Bewegung Aufgabensteung: Zwei Körper A und B mit den Gewichtskräften F G1 und F G2 iegen übereinander auf einer ebenen Unterage. n den
M14. Torsionsmodul (1)
M Torsionsmodu Der Torsionsmodu eines Stabes so in diesem Versuch nach der statischen und der dynamischen Methode bestimmt werden. Die maximae Messunsicherheit beider Methoden ist dabei zu vergeichen..
Theoretische Physik: Mechanik
Ferienkurs Merin Mitschek, Phiipp Landgraf 30.09.06 Ferienkurs Theoretische Physik: Mechanik Probekausur - Lösung Technische Universität München Fakutät für Physik Ferienkurs Merin Mitschek, Phiipp Landgraf
TECHNISCHE MECHANIK III (DYNAMIK)
Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:
Protokoll Grundpraktikum I: M6 - Innere Reibung in Flüssigkeiten
Protoko Grundpraktikum I: M6 - Innere Reibung in Füssigkeiten Sebastian Pfitzner 0. Apri 013 Durchführung: Sebastian Pfitzner (553983), Anna Andre (55) Arbeitspatz: Patz Betreuer: Stefanie Winker Versuchsdatum:
Physik für Biologen und Zahnmediziner
Physik für Biologen und Zahnmediziner Kapitel 3: Dynamik und Kräfte Dr. Daniel Bick 09. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 09. November 2016 1 / 25 Übersicht 1 Wiederholung
(no title) Ingo Blechschmidt. 13. Juni 2005
(no title) Ingo Blechschmidt 13. Juni 2005 Inhaltsverzeichnis 0.1 Tests............................. 1 0.1.1 1. Extemporale aus der Mathematik...... 1 0.1.2 Formelsammlung zur 1. Schulaufgabe..... 2 0.1.3
Aufgabe 1 - Gasturbinenanlage
Prof. Dr. L. Guzzea 151-0573-00 Systemmodeierung WS 2005/2006) Musterösung Prüfung Dienstag, den 28. Februar 2005, 14.00-16.00 Aufgabe 1 - Gasturbinenanage a) Ursache-Wirungsdiadgramm: Abbidung 1: Ursache-Wirungsdiadgramm
Die harmonische Schwingung
Joachim Stiller Die harmonische Schwingung Alle Rechte vorbehalten Die harmonische Schwingung Beschreibung von Schwingungen 1. Das Federpendel zeigt, worauf es ankommt Eine Kugel hängt an einer Schraubenfeder
Dynamik Lehre von den Kräften
Dynamik Lehre von den Kräften Physik Grundkurs Stephie Schmidt Kräfte im Gleichgewicht Kräfte erkennt man daran, dass sie Körper verformen und/oder ihren Bewegungszustand ändern. Es gibt Muskelkraft, magnetische
Probestudium der Physik 2011/12
Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.
Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 2 Lösung. 22. September 2015, 12-14 Uhr
KIT SS 15 Klassische Theoretische Physik II V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch Klausur Lösung. September 15, 1-14 Uhr Aufgabe 1: Kurzfragen (3+4+1+1 Punkte (a Die erhaltenen Größen und evtl.
