80 Schwingende Saiten

Größe: px
Ab Seite anzeigen:

Download "80 Schwingende Saiten"

Transkript

1 80 Schwingende Saiten Schwingende Saiten 80.1 Probem. Es werden die Schwingungen einer (Geigen-) Saite der Länge > 0 und Massendichte ρ(x) > 0, 0 x, untersucht. Ist diese in den Punkten x = 0 und x = fest eingespannt, so erfüt ihre Ausenkung u(x,t) an der Stee x [0,] zur Zeit t R die Weengeichung t 2u(x,t) = 1 ρ(x) 2 xu(x,t) (1) und die Randbedingung u(0,t) = u(,t) = 0. (2) Aus der Kenntnis von Lage und Geschwindigkeit u(x,0) = A(x), t u(x,0) = B(x) (3) zur Zeit t = 0 so nun die Lösung u(x,t) für ae Zeiten t bestimmt werden, d.h. es so das Anfangs-Randwertprobem (1) (3) geöst werden. Wegen (2) und (3) muß natürich A(0) = A() = 0 vorausgesetzt werden Eigenwerte und Eigenfunktionen. a) Für eine Lösung von (1) macht man den den Produktansatz u(x,t) = f(x)g(t) (4) mit nur von der Orts- bzw. Zeitvariaben abhängigen, genügend oft differenzierbaren Funktionen f und g. Aus (1) fogt dann f(x) g(t) = 1 ρ(x) f (x)g(t), x,t R. b) Für eine Lösung u 0 von (1) der Form (4) gibt es t 0 R mit g(t 0 ) 0. Mit λ := g(t 0) g(t 0 ) erfüt dann f die gewöhniche Differentiageichung f (x)+λρ(x)f(x) = 0, x R, (5) und daraus ergibt sich für g die Differentiageichung g(t)+λg(t) = 0, t R. (6) c) Abjetzt (indiesem Abschnitt) sei diemassendichte ρ > 0 konstant.dielösungen von (5) sind f(x) = c 1 +c 2 x für λ = 0 und f(x) = c 1 sin ρλx+c 2 cos ρλx für λ 0. Nun impiziert die Randbedingung (2) sofort f(0) = f() = 0, aso f = 0 im Fa λ = 0 und c 2 = 0 sowie ρλ πz für λ 0. Das Randwertprobem f (x)+ρλf(x) = 0, f(0) = f() = 0, (7) besitzt aso nicht triviae Lösungen nur im Fa λ = λ k = π2 ρ 2 k 2 für ein k N; (8)

2 332 XII. Differentiageichungen diese Zahen λ k heißen die Eigenwerte des Randwertprobems (7), und die entsprechenden Eigenfunktionen sind gegeben durch ϕ k (x) := c k sin π kx, k N, c k C. (9) d) Mit c := 1 ρ sind für λ = λ k die Lösungen von (6) gegeben durch g k (t) = a k cosc π kt+b k sinc π kt, (10) die entsprechenden Lösungen von (1), (2) dann durch u k (x,t) = (a k cosc π kt+b k sinc π kt) sin π kx, k N. (11) Die Eigenfunktionen ϕ k schwingen aso mit den Frequenzen c π k, k N. Ae vorkommenden Frequenzen sind offenbar ganzzahige Viefache der Grundfrequenz c π Reihenentwickungen. a) Der Einfachheit wegen wird ab jetzt = π für die Länge der Saite angenommen. Man möchte weitere Lösungen von (1) (3) durch Überagerungen der u k konstruieren: u(x,t) = u k (x,t) = (a k cosckt+b k sinckt) sinkx. (12) Man hat absoute und geichmäßige Konvergenz dieser Reihe und der Reihen der Abeitungen der Ordnung 2 auf ganz R 2 im Fa k 2 ( a k + b k ) <. (13) Dann ist u C 2 (R 2 ) eine Lösung von (1) und (2), und man hat u(x,0) = a k sinkx, t u(x,0) = ckb k sinkx. (14) b) Funktionen F : [0,π] R mit F(0) = F(π) = 0 besitzen ungerade Fortsetzungen auf [ π,π] und diese dann 2π-periodische Fortsetzungen auf R, die hier mit F bezeichnet werden. In der reeen Fourier-Entwickung von F verschwinden die geraden Terme, und man hat (vg. (71.9)) F(x) F k sinkx mit F k := 2 π π 0 F(x) sinkxdx. (15) c) Wäht man aso in (12) a k = A k und b k = B k mit den Fourier-Koeffizienten von ck A und B gemäß (15), so erhät man eine Lösung des Anfangs-Randwertprobems (1) (3), fas die Bedingung (13) erfüt ist. In der Tat genügen sogar etwas schwächere Annahmen über die Anfangsdaten A und B für die

3 80 Schwingende Saiten Lösung des Probems (1) (3). a) Es sei B = 0 und A C 2 [0,π] mit A(0) = A(π) = 0 und A (0) = A (π) = 0. (16) Dann fogt Ă C2 2π (R). Wegen cosckt sinkx = 1 2 sink(x+ct)+ 1 2 sink(x ct) iefert die Reihe gemäß (12) die Funktion u A (x,t) = A k cosckt sinkx = 1 A 2 k sink(x+ct)+ 1 A 2 k sink(x ct) = 1 Ă(x+ct)+ 1 Ă(x ct). (17) 2 2 Wegen Ă C2 (R) git u A C 2 (R 2 ), und man rechnet sofort nach, daß u A eine Lösung der Weengeichung (1) ist. Offenbar sind auch (2) und (3) (mit B = 0) erfüt. Man erhät aso u A, indem man jeweis die Häfte der Wee Ă mit der Geschwindigkeit c nach inks und nach rechts aufen äßt und dann überagert. b) Nun wird der Fa A = 0 behandet. Ist B C 1 [0,π] mit B(0) = B(π) = 0, (18) so fogt B C2π 1 (R) und insbesondere B k <. Die Funktion u B (x,t) := B k ck sinckt sinkx (19) iegt dann in C 1 (R 2 ) und erfüt (2) und (3) (mit A = 0). Ähnich wie in (17) ist t u B (x,t) = B k cosckt sinkx = 1 B(x+ct)+ 1 B(x ct) und (20) 2 2 x u B (x,t) = B k c sinckt coskx = 1 B(x+ct) 1 B(x ct), aso (21) 2c 2c u B (x,t) = 1 x+ct 2c x ct B(y) dy; (22) somit git sogar u B C 2 (R 2 ), und man rechnet wieder nach, daß u B eine Lösung der Weengeichung (1) ist. c) Für Anfangsdaten A und B wie in (16) und (18) iefert u A + u B offenbar eine Lösung des agemeinen Probems (1) (3). Auch schwingende Saiten unendicher Länge assen sich eicht behanden: 80.5 Satz. Jede Lösung u C 2 (R 2 ) der Weengeichung 2 tu(x,t) = c 2 2 xu(x,t) (23) hat die Form u(x,t) = f(x+ct)+g(x ct), f,g C 2 (R). (24)

4 334 XII. Differentiageichungen 80.6 Satz. Für A C 2 (R) und B C 1 (R) besitzt das Anfangs- oder Cauchy- Probem (23), (3) die eindeutige Lösung u(x,t) = 1 2 A(x+ct)+ 1 2 A(x ct)+ 1 2c x+ct x ct B(y)dy. (25) 80.7 Beispie. Für A(x) = A cosx und B(x) = B cosx hat man u(x,t) = 1 A cos(x+ct)+ 1 A cos(x ct)+ B 2 2 2c = A cosx cosct+ B cosx sinct c = x+ct x ct cosydy A 2 + B2 c 2 cosx cos(ct+ϕ), ϕ = arctan( B Ac ); dies beschreibt eine stehende Wee Charakteristiken. a) Eine durch f(x ± ct) gegebene Wee ist konstant auf jeder durch x±ct = K, K konstant, gegebenen Geraden. Diese Geraden der Steigung 1 c in der (x,t)-ebene heißen Charakteristiken der Weengeichung (23). b) Für einen Punkt P = (ξ,τ) R 2 mit τ > 0 sei D das Dreieck mit den Eckpunkten P = (ξ,τ), P 1 := (ξ cτ,0) und P 2 := (ξ +cτ,0). Dann ist eine Lösung u der Weengeichung in D eindeutig bestimmt durch ihre Anfangswerte u(x,0) und t u(x,0) im Interva [ξ cτ,ξ+cτ] {0} oder ihre Werte u(ξ ±ct,τ t) auf den Schenken von D Bemerkungen. a) Im Gegensatz zum Fa der Wärmeeitungsgeichung iefern die Formen (17), (22) und (25) Lösungen auch für t < 0; in der Tat ist die Weengeichung gegen die Zeitumkehr t t invariant. b) Während die (periodischen) Lösungen der Wärmeeitungsgeichung für beiebige Anfangsdaten in L 1 für t > 0 automatisch C sind, ist die Weengeichung nur für genügend gatte Anfangsdaten (kassisch) ösbar. Einfache Beispiee zeigen, daß die Formen (24) oder (25) auch für unstetige Anfangsdaten sinnvoe Lösungen der Weengeichung iefern können. Dies ist ein Anaß zu einer Erweiterung des Lösungsbegriffs für Differentiageichungen im Rahmen der Theorie der Distributionen (vg. HM 4) Energiemethoden. a) Für Anfangs-Randwertprobeme für die Weengeichung hat man Eindeutigkeit und Stabiität der Lösungen, auch im Fa mehrerer Ortsvariaber. Gegeben seien ein Gebiet mit fast übera gattem Rand endichen Inhats in Rn, z.b. n = 1,2,3, sowie die Differentiageichung ( 2 t c 2 x )u(x,t) = F(x,t), x G, t R (26) mit den Rand- und Anfangsbedingungen u(x,t) = R(t), x G, (27) u(x,0) = A(x), t u(x,0) = B(x), x G. (28)

5 80 Schwingende Saiten 335 Sind u 1,u 2 C 2 (G R) Lösungen von (26) (28), so ist u := u 1 u 2 eine Lösung zu den Anfangsdaten F = R = A = B = 0, und es ist u = 0 zu zeigen. b) Aufgrund der Greenschen Forme Forme (63.10) und t u(x,t) = 0 für x G git c 2 d dt G grad xu 2 dx = 2c 2 G grad xu,grad x t u dx = 2c 2 G tu n udσ 2c 2 G tu x udx = 2 G tu t 2udx = d dt G ( tu) 2 dx. Fogich ist die Energie E(t) := G ( tu(x,t) 2 +c 2 grad x u(x,t) 2 )dx (29) zeitich konstant. Wegen E(0) = 0 ist aso E(t) = 0 für ae t R und somit t u(x,t) = grad x u(x,t) = 0 für ae x G und t R. Somit ist u konstant, und die Rand- und Anfangsbedingungen iefern u = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0. Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion

Mehr

Klassifikation von partiellen Differentialgleichungen

Klassifikation von partiellen Differentialgleichungen Kapitel 2 Klassifikation von partiellen Differentialgleichungen Die meisten partiellen Differentialgleichungen sind von 3 Grundtypen: elliptisch, hyperbolisch, parabolisch. Betrachte die allgemeine Dgl.

Mehr

Gekoppelte Fadenpendel

Gekoppelte Fadenpendel Gekoppete adenpende Water endt 8. August 2007 Von gekoppeten Schwingungen spricht man, wenn sich mehrere schwingungsfähige Objekte gegenseitig beeinfussen. Ein bekanntes Beispie wird im ogenden näher beschrieben.

Mehr

cos(kx) sin(nx)dx =?

cos(kx) sin(nx)dx =? 3.5 Fourierreihen 3.5.1 Vorbemerkungen cos(kx) sin(nx)dx =? cos gerade Funktion x cos(kx) gerade Funktion sin ungerade Funktion x sin(nx) ungerade Funktion x cos(kx) sin(nx) ungerade Funktion Weil [, π]

Mehr

Die schwingende Saite

Die schwingende Saite Stephan h.t. Zahrte Inhat periodische Lösungen der Weengeichung Proseminar Fourier-Anaysis im Sommersemester 008 0 Bezeichnungen, Definitionen... Die Weengeichung.... Was ist eine Wee?.... Hereitung der

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein abgegebener Übungszette aus dem Modu math31. Dieser Übungszette wurde nicht korrigiert. Es handet sich edigich um meine Abgabe und keine Musterösung. Ae Übungszette zu diesem

Mehr

Analysis II WS 11/12 Serie 9 Musterlösung

Analysis II WS 11/12 Serie 9 Musterlösung Analysis II WS / Serie 9 Musterlösung Aufgabe Bestimmen Sie die kritischen Punkte und die lokalen Extrema der folgenden Funktionen f : R R: a fx, y = x + y xy b fx, y = cos x cos y Entscheiden Sie bei

Mehr

17 Die Fourier-Transformation

17 Die Fourier-Transformation 7 Die Fourier-Transformation 7. Motivation. Für eine l -periodische Funktion f L loc (R) ist die Funktion y f(ly) -periodisch und hat eine Fourier-Entwicklung f(ly) c k e iky. Mit x = ly ergibt sich daraus

Mehr

Mathematische Probleme, SS 2013 Donnerstag $Id: convex.tex,v /10/22 15:58:28 hk Exp $

Mathematische Probleme, SS 2013 Donnerstag $Id: convex.tex,v /10/22 15:58:28 hk Exp $ $Id: convex.tex,v.2 203/0/22 5:58:28 hk Exp $ 3 Konvexgeometrie 3.2 Die patonischen Körper Ein patonischer Körper von Typ (n, m) ist ein konvexer Poyeder dessen Seitenfäche ae geichseitige n-ecke und in

Mehr

Thema 10 Gewöhnliche Differentialgleichungen

Thema 10 Gewöhnliche Differentialgleichungen Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;

Mehr

Ein Beispiel zur Fourier-Entwicklung

Ein Beispiel zur Fourier-Entwicklung Ein Beispiel zur Universität Leipzig, Mathematisches Institut Januar 2011 Aufgabenstellung Entwickle die Funktion u(x) = { 0 in π in ( ) ( π, π 3 2π ( 3, π) π 3, 2π ) 3 über dem Intervall [ π, π] in eine

Mehr

3.5 Glattheit von Funktionen und asymptotisches Verhalten der Fourierkoeffizienten

3.5 Glattheit von Funktionen und asymptotisches Verhalten der Fourierkoeffizienten Folgerung 3.33 Es sei f : T C in einem Punkt x T Hölder stetig, d.h. es gibt ein C > und ein < α 1 so, dass f(x) f(x ) C x x α für alle x T. Dann gilt lim N S N f(x ) = f(x ). Folgerung 3.34 Es f : T C

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

Aufgaben zur Analysis I aus dem Wiederholungskurs

Aufgaben zur Analysis I aus dem Wiederholungskurs Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 Hilfskräfte: A. Weiß, W. Thumann 6.3.29 NWF I - Mathematik Universität Regensburg Aufgaben zur Analysis I aus dem Wiederholungskurs Die folgenden

Mehr

Aufgaben zur Klausur. Aerodynamik

Aufgaben zur Klausur. Aerodynamik AEODYNAMISCHES INSTITUT der heinisch - Westfäischen Technischen Hochschue Aachen Univ.-Prof. Dr.-Ing. W. Schröder Aufgaben zur Kausur Aerodynamik 16. 0. 010 Matr.-Nr. :... Name :... Unterschrift :... Hinweis:

Mehr

Lösungsvorschläge zum 14. Übungsblatt.

Lösungsvorschläge zum 14. Übungsblatt. Übung zur Analysis III WS / Lösungsvorschläge zum 4. Übungsblatt. Aufgabe 54 Sei a R\{}. Ziel ist die Berechnung des Reihenwertes k a + k. Definiere dazu f : [ π, π] R, x coshax. Wir entwickeln f in eine

Mehr

Funktion; trigonometrische Reihen; trigonometrische Polynome; gliedweise Integration; Integration und Grenzübergang; Fourier-

Funktion; trigonometrische Reihen; trigonometrische Polynome; gliedweise Integration; Integration und Grenzübergang; Fourier- Kapitel 26 Fourier-Reihen 26.1 Einführung (Spektrum; harmonische Analyse; Periode einer Funktion; trigonometrische Reihen; trigonometrische Polynome; gliedweise Integration; Integration und Grenzübergang;

Mehr

11 Partielle Differentialgleichungen: Beispiele, theoretischer Hintergrund und Werkzeuge

11 Partielle Differentialgleichungen: Beispiele, theoretischer Hintergrund und Werkzeuge Numerik II 162 11 Partielle Differentialgleichungen: Beispiele, theoretischer Hintergrund und Werkzeuge Inhalt 11.1 Gleichungen der Mathematischen Physik 11.2 Anfangs- und Randwerte 11.3 Klassifikation

Mehr

ist reelles lineares Funktional. x(t) ϕ(t) dt ist reelles lineares Funktional für alle ϕ L 2 (0, 1).

ist reelles lineares Funktional. x(t) ϕ(t) dt ist reelles lineares Funktional für alle ϕ L 2 (0, 1). Kapitel 4 Stetige lineare Funktionale 4.1 Der Satz von Hahn - Banach Definition 4.1. Sei X ein linearer normierter Raum über dem Körper K (R oder C). Ein linearer Operator f : X K heißt (reelles oder komplexes)

Mehr

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Kapitel 8 Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Wir hatten im Beispiel 5. gesehen, dass die Wärmeleitungsgleichung t u u = f auf Ω (0, ) (8.1) eine parabolische Differentialgleichung

Mehr

Integration über allgemeine Integrationsbereiche.

Integration über allgemeine Integrationsbereiche. Integration über allgemeine Integrationsbereiche. efinition: Sei R n eine kompakte und messbare Menge. Man nennt Z = { 1,..., m } eine allgemeine Zerlegung von, falls die Mengen k kompakt, messbar und

Mehr

Drehimpulse in der Quantenmechanik. Drehimpulse kommen in der Natur nur in Einheiten von ½ ħ vor!

Drehimpulse in der Quantenmechanik. Drehimpulse kommen in der Natur nur in Einheiten von ½ ħ vor! Drehipuse in der Quantenechanik In der Atophysik spiet der Drehipus eine entrae, entscheidende Roe. Für Potentiae it Vr) Vr), Zentrapotentiae ist der Drehipus eine Erhatungsgröße. Der Drehipus hat die

Mehr

Blatt 5. - Lösungsvorschlag

Blatt 5. - Lösungsvorschlag Fautät für Physi der LMU München Lehrstuh für Kosoogie, Prof Dr V Muhanov Übungen zu Kassischer Mechani (T) i SoSe Batt 5 - Lösungsvorschag Aufgabe 5 Binäres Sternsyste a) Wieviee Freiheitsgrade hat das

Mehr

Regularitätsresultate für parabolische Gleichungen mit nichtlokalem Operator

Regularitätsresultate für parabolische Gleichungen mit nichtlokalem Operator Universität Bielefeld Regularitätsresultate für parabolische Gleichungen mit nichtlokalem Operator Matthieu Felsinger Universität Bielefeld Mathematisches Kolloquium, TU Clausthal 05. Februar 2014 1 Einleitung

Mehr

Fakultät Grundlagen. Februar 2016

Fakultät Grundlagen. Februar 2016 Schwingungsdifferenzialgleichung Fakultät Grundlagen Hochschule Esslingen Februar 016 Fakultät Grundlagen Schwingungsdifferenzialgleichung Übersicht 1 Schwingungsdifferenzialgleichung Fakultät Grundlagen

Mehr

27 Taylor-Formel und Taylor-Entwicklungen

27 Taylor-Formel und Taylor-Entwicklungen 136 IV. Unendliche Reihen und Taylor-Formel 27 Taylor-Formel und Taylor-Entwicklungen Lernziele: Konzepte: klein o - und groß O -Bedingungen Resultate: Taylor-Formel Kompetenzen: Bestimmung von Taylor-Reihen

Mehr

f(t) = a 2 + darstellen lasst Periodische Funktionen.

f(t) = a 2 + darstellen lasst Periodische Funktionen. 7. Fourier-Reihen Viele Prozesse der Ingenieur- und Naturwissenschaften verlaufen periodisch oder annahernd periodisch, wie die Schwingungen einer Saite, Spannungs- und Stromverlaufe in Wechselstromkreisen

Mehr

Bildverarbeitung: Fourier-Transformation. D. Schlesinger () BV: Fourier-Transformation 1 / 16

Bildverarbeitung: Fourier-Transformation. D. Schlesinger () BV: Fourier-Transformation 1 / 16 Bildverarbeitung: Fourier-Transformation D. Schlesinger () BV: Fourier-Transformation 1 / 16 Allgemeines Bilder sind keine Vektoren. Bilder sind Funktionen x : D C (Menge der Pixel in die Menge der Farbwerte).

Mehr

Stabilitätsprobleme. Arten der Gleichgewichtslagen. Stabilitätskriterium. Verzweigungsproblem & Durchschlagsproblem

Stabilitätsprobleme. Arten der Gleichgewichtslagen. Stabilitätskriterium. Verzweigungsproblem & Durchschlagsproblem Stabiitätsprobeme Arten der Geichgewichtsagen Stabiitätskriterium Verzweigungsprobem & Durchschagsprobem Theorie II. II. Ordnung und Knickgeichung Arten der Geichgewichtsagen Ein Tragwerk muss in stabier

Mehr

Klausur zur Höheren Mathematik IV

Klausur zur Höheren Mathematik IV Düll Höhere Mathematik IV 8. 1. 1 Klausur zur Höheren Mathematik IV für Fachrichtung: kyb Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 1 Minuten Erlaubte Hilfsmittel: 1 eigenhändig beschriebene

Mehr

Kleine Formelsammlung zu Mathematik für Ingenieure IIA

Kleine Formelsammlung zu Mathematik für Ingenieure IIA Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................

Mehr

15. Vorlesung Sommersemester

15. Vorlesung Sommersemester 15. Vorlesung Soerseester 1 Kontinuusgrenzfall der Bewegungsgleichungen Was wird aus den Bewegungsgleichungen i Kontinuusgrenzwert? I diskreten Fall sind diese η j = kη j+1 η j + η j 1 1 und an führt wieder

Mehr

Formelanhang Mathematik II

Formelanhang Mathematik II Formelanhang Mathematik II Mechatronik 2. Sem. Prof. Dr. K. Blankenbach Wichtige Formeln: - Euler: e j = cos() + j sin() ; e -j = cos() - j sin() - Sinus mit Phase: Übersicht Differentialgleichungen (DGL)

Mehr

13. Funktionen in einer Variablen

13. Funktionen in einer Variablen 13. Funktionen in einer Variablen Definition. Seien X, Y Mengen. Eine Funktion f : X Y ist eine Vorschrift, wo jedem Element der Menge X eindeutig ein Element von Y zugeordnet wird. Wir betrachten hier

Mehr

5 Potenzreihenansatz und spezielle Funktionen

5 Potenzreihenansatz und spezielle Funktionen 5 Potenzreihenansatz und spezielle Funktionen In diesem Kapitel betrachten wir eine Methode zur Lösung linearer Differentialgleichungen höherer Ordnung, die sich anwenden läßt, wenn sich alle Koeffizienten

Mehr

Gewöhnliche Dierentialgleichungen

Gewöhnliche Dierentialgleichungen Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen Stetigkeit von Funktionen Definition. Es sei D ein Intervall oder D = R, x D, und f : D R eine Funktion. Wir sagen f ist stetig wenn für alle Folgen (x n ) n in D mit Grenzwert x auch die Folge der Funktionswerte

Mehr

Differentialgleichungen für Ingenieure WS 05/06

Differentialgleichungen für Ingenieure WS 05/06 Differentialgleichungen für Ingenieure WS 05/06 11. Vorlesung Michael Karow Thema heute: Wellengleichung, Wármeleitungsgleichung Separationsansatz d Alembert-Lösung der 1-dimensionalen Wellengleichung

Mehr

1 Fouriersynthese und Fourieranalyse

1 Fouriersynthese und Fourieranalyse Schwingungslehre in Kursstufe 5/ 57 Ernst Schreier Fouriersynthese und Fourieranalyse. Stehende Wellen / Eigenschwingungen / Resonanz Bei einfacher Reflexion bildet sich immer eine stehende Welle vor der

Mehr

5 Erwartungswerte, Varianzen und Kovarianzen

5 Erwartungswerte, Varianzen und Kovarianzen 47 5 Erwartungswerte, Varianzen und Kovarianzen Zur Charakterisierung von Verteilungen unterscheidet man Lageparameter, wie z. B. Erwartungswert ( mittlerer Wert ) Modus (Maximum der Wahrscheinlichkeitsfunktion,

Mehr

Fourier- und Laplace- Transformation

Fourier- und Laplace- Transformation Übungsaufgaben zur Vorlesung Mathematik für Ingenieure Fourier- und Lalace- Transformation Teil : Lalace-Transformation Prof. Dr.-Ing. Norbert Hötner (nach einer Vorlage von Prof. Dr.-Ing. Torsten Benkner)

Mehr

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate Mathematik-Lexikon HM00 Abszisse Die x-koordinate eines Punktes -> Ordinate Aufstellen von Funktionstermen Gesucht: Ganzrationale Funktion n-ten Grades: ƒ(x) = a n x n + a n-1 x n-1 + a n- x n- +... +

Mehr

PP - Physikalisches Pendel Blockpraktikum Frühjahr 2005

PP - Physikalisches Pendel Blockpraktikum Frühjahr 2005 PP - Physikaisches Pende Bockpraktikum Frühjahr 2005 Regina Schweizer, Aexander Seizinger, Tobias Müer Assistent Heiko Eite Tübingen, den 14. Apri 2005 1 Theoretische Grundagen 1.1 Mathematisches Pende

Mehr

31 Die Potentialgleichung

31 Die Potentialgleichung 3 Die Potentialgleichung Die Potentialgleichung oder auch Poisson-Gleichung ist die lineare Gleichung zweiter Ordnung u = f in einem Gebiet R n. Im homogenen Fall f = 0 spricht man auch von der Laplace-

Mehr

Lösung der Prüfung Sommer 2009

Lösung der Prüfung Sommer 2009 Prof. D. Salamon Analysis I/II D-MATH, D-PHYS, D-CHAB ETH Zürich. Juni 9 Lösung der Prüfung Sommer 9. Berechnen Sie folgende Grenzwerte: (a) (b) Hinweis: Regel von de l Hospital. ( ( )) lim n n cos n lim

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p. 1/1 Grundlagen der Physik 2 Schwingungen und Wärmelehre 07. 05. 2007 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. 2/1 Wellen in

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

Übungen zu Partielle Differentialgleichungen, WS 2016

Übungen zu Partielle Differentialgleichungen, WS 2016 Übungen zu Partielle Differentialgleichungen, WS 2016 Ulisse Stefanelli 16. Januar 2017 1 Beispiele 1. Betrachten Sie die Beispiele von nichtlinearen PDG und Systemen, die wir im Kurs diskutiert haben,

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Elektrodynamik. Übungsblatt 5 Musterlösungen. 1 c t( i A i ) = 4πρ, A i = i g + ( v) i. t ρ(τ, x)dτ + w( x) w 0 (t, x) + w( x),

Elektrodynamik. Übungsblatt 5 Musterlösungen. 1 c t( i A i ) = 4πρ, A i = i g + ( v) i. t ρ(τ, x)dτ + w( x) w 0 (t, x) + w( x), UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK Elektrodynamik Übungsblatt 5 Musterlösungen 13 Aufgabe (a) Der Ausgangspunkt für diese Aufgabe sind die Maxwell-Gleichungen a ( a A b b A a ) = 4π c

Mehr

Q y. dx dy dz. qdv. Bilanzgleichung des Wärmestroms

Q y. dx dy dz. qdv. Bilanzgleichung des Wärmestroms T( x, y, z, τ ) dv = dx dy dz Q z + dz Q y + dy Q * qdv x Q x + dx Q x+ dx Q x( x + dx, y, z, τ ) Q Q ( x, y + dy, z, τ ) y+ dy y Q Q ( x, y, z + dz, τ ) z+ dz z Q Q y Q z Bilanzgleichung des Wärmestroms

Mehr

4.2 Der Harmonische Oszillator

4.2 Der Harmonische Oszillator Dieter Suter - 208 - Physik B3, SS03 4.2 Der Harmonische Oszillator 4.2.1 Harmonische Schwingungen Die Zeitabhängigkeit einer allgemeinen Schwingung ist beliebig, abgesehen von der Periodizität. Die mathematische

Mehr

Übungen Ingenieurmathematik

Übungen Ingenieurmathematik Übungen Ingenieurmathematik 1. Übungsblatt: Komplexe Zahlen Aufgabe 1 Bestimmen Sie Real- und Imaginärteil der folgenden komplexen Zahlen: a) z =(3+i)+(5 7i), b) z =(3 i)(5 7i), c) z =( 3+i)( 3+ 3 i),

Mehr

7 Der kleine Satz von Fermat

7 Der kleine Satz von Fermat 7 Der kleine Satz von Fermat Polynomkongruenz modulo p. Sei p eine Primzahl, n 0 und c 0,..., c n Z. Wir betrachten die Kongruenz ( ) c 0 + c 1 X +... + c n 1 X n 1 + c n X n 0 mod p d.h.: Wir suchen alle

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

Stefan Ruzika. 24. April 2016

Stefan Ruzika. 24. April 2016 Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 24. April 2016 Stefan Ruzika 2: Körper 24. April 2016 1 / 21 Gliederung 1 1 Schulstoff 2 Körper Definition eines Körpers

Mehr

Definition: Differenzierbare Funktionen

Definition: Differenzierbare Funktionen Definition: Differenzierbare Funktionen 1/12 Definition. Sei f :]a, b[ R eine Funktion. Sie heißt an der Stelle ξ ]a, b[ differenzierbar, wenn der Grenzwert existiert. f(ξ + h) f(ξ) lim h 0 h = lim x ξ

Mehr

Randwertbedingungen und Ghost Cells

Randwertbedingungen und Ghost Cells Randwertbedingungen und Ghost Cells Olaf Kern Universität Trier 16.Dezember 2010 Olaf Kern (Universität Trier) Seminar Numerik 1/23 16.Dezember 2010 1 / 23 Inhaltsverzeichnis 1 Einführung 2 Periodische

Mehr

IV. Stetige Funktionen. Grenzwerte von Funktionen

IV. Stetige Funktionen. Grenzwerte von Funktionen IV. Stetige Funktionen. Grenzwerte von Funktionen Definition. Seien X und Y metrische Räume und E X sowie f : X Y eine Abbildung und p ein Häufungspunkt von E. Wir schreiben lim f(x) = q, x p falls es

Mehr

1 Angeordnete Körper. 1.1 Anordnungen und Positivbereiche

1 Angeordnete Körper. 1.1 Anordnungen und Positivbereiche 1 1 Angeordnete Körper 1.1 Anordnungen und Positivbereiche Definition 1.1. Eine zweistellige Relation auf einer Menge heißt partielle Ordnung, falls für alle Elemente a, b, c der Menge gilt: (i) a a (ii)

Mehr

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben.

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben. Modellfall Anwendungen: Fragen: Digitalisierung / digitale Darstellung von Funktionen, insbesondere für Ton- und Bilddaten Digitale Frequenzfilter Datenkompression: Abspeichern der unteren Frequenzen Lösung

Mehr

8. Übung zur Vorlesung Mathematisches Modellieren Lösung

8. Übung zur Vorlesung Mathematisches Modellieren Lösung Universität Duisburg-Essen Essen, den.6. Fakultät für Mathematik S. Bauer C. Hubacsek C. Thiel 8. Übung zur Vorlesung Mathematisches Modellieren Lösung In dieser Übung sollen in Aufgabe und die qualitativ

Mehr

Ringbildung beim Michelson-Interferometer

Ringbildung beim Michelson-Interferometer 1 Ringbidung beim Micheson-Interferometer Ausgangspunkt ist das Hygensche Prinzip, dass von jedem Punkt einer Weenfront Kugeween, d.h. Ween in ae Raumrichtungen, ausgehen. Das erstauniche ist nun, dass

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 4-E1 4-E2 4-E3 Gewöhnliche Differentialgleichung: Aufgaben Bestimmen Sie allgemeine und spezielle Lösungen der folgenden Differentialgleichungen Aufgabe

Mehr

Musterlösungen Serie 9

Musterlösungen Serie 9 D-MAVT D-MATL Analysis II FS 2013 Prof. Dr. P. Biran Musterlösungen Serie 9 1. Frage 1 Gegeben ist eine lineare und homogene Differenzialgleichung, welche y : x sin x als Lösung besitzt. Welche der folgenden

Mehr

Differenzialgleichungen

Differenzialgleichungen Differenzialgleichungen Fakultät Grundlagen Februar 2016 Fakultät Grundlagen Differenzialgleichungen Übersicht Definitionen, Beispiele 1 Definitionen, Beispiele 2 Geometrische Deutung Numerik Einfache

Mehr

Aufgaben zu Kapitel 30

Aufgaben zu Kapitel 30 Aufgaben zu Kapitel 3 1 Aufgaben zu Kapitel 3 Verständnisfragen Aufgabe 3.1 Gegeben ist die Funktion { x,

Mehr

mit 0 < a < b um die z-achse entsteht.

mit 0 < a < b um die z-achse entsteht. Übungen (Aufg. u. Lösungen) zu Mathem. u. Lin. Alg. II SS 6 Blatt 8 13.6.6 Aufgabe 38: Berechnen Sie das Volumen des Volltorus, der durch Rotation der reisscheibe { (x, y, z) R 3 y, (x b) + z a } mit

Mehr

Iterative Lösungsverfahren. große lineare Gleichungssysteme

Iterative Lösungsverfahren. große lineare Gleichungssysteme Iterative Lösungsverfahren für große ineare Geichungssysteme Steffen Börm Stand 21. März 2013 Ae Rechte beim Autor. Inhatsverzeichnis 1 Eineitung 5 1.1 Direkte Löser für Bandmatrizen........................

Mehr

Vorlesung Physik für Pharmazeuten und Biologen

Vorlesung Physik für Pharmazeuten und Biologen Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung

Mehr

Folgen und Reihen von Funktionen

Folgen und Reihen von Funktionen Folgen und Reihen von Funktionen Sehr häufig treten in der Mathematik Folgen bzw. Reihen von Funktionen auf. Ist etwa (f n ) eine Folge von Funktionen, dann können wir uns für ein festes x fragen, ob die

Mehr

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 4 Fourier-Transformation 3

Mehr

KAPITEL 6. Nichtlineare Ausgleichsrechnung

KAPITEL 6. Nichtlineare Ausgleichsrechnung KAPITEL 6 Nichtlineare Ausgleichsrechnung Beispiel 61 Gedämpfte Schwingung: u + b m u + D m u = 0, Lösungen haben die Form: u(t) = u 0 e δt sin(ω d t + ϕ 0 ) Modell einer gedämpften Schwingung y(t; x 1,

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik für Physiker 3 (Analysis 2) I... II...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik für Physiker 3 (Analysis 2) I... II... ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

6 Eigenlösungen der eindimensionalen Wellengleichung

6 Eigenlösungen der eindimensionalen Wellengleichung 39 Kontinuierliche Systeme lassen sich als Schwinger mit unendlich vielen Freiheitsgraden interpretieren. Daher ist ein ähnliches ösungsverhalten wie bei linearen diskreten Systemen zu erwarten, d.h. die

Mehr

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis) Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben

Mehr

Übungen zur Vorlesung MATHEMATIK II

Übungen zur Vorlesung MATHEMATIK II Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom

Mehr

σ = (12.1, 12.2) N : F

σ = (12.1, 12.2) N : F 12. Das mechanische Verhaten von Werkstoffen Materiaphysik II Prof. Dr. Guido Schmitz Die mechanische Festigkeit von Materiaien wird in normierten Modeexperimenten untersucht. Am bekanntesten ist die kontroierte

Mehr

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert.

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. SS 6 Höhere Mathematik für s Studium der Physik. Juli 6 Probeklausur Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. Fragen Sei (X, d) ein metrischer Raum. Beantworten Sie die nachfolgenden

Mehr

Gewöhnliche inhomogene Differentialgleichungen der 1. und 2. Ordnung. Christopher Schael

Gewöhnliche inhomogene Differentialgleichungen der 1. und 2. Ordnung. Christopher Schael Gewöhnliche inhomogene Differentialgleichungen der 1. und. Ordnung 1.1.) Anleitung DGL der 1. Ordnung 1.) DGL der 1. Ordnung In diesem Abschnitt werde ich eine Anleitung zur Lösung von inhomogenen und

Mehr

Mit s = l ϕ bekommt man dann aus der Newtonschen Gleichung (Beschleunigung a hat entgegengesetzte Richtung wie die Auslenkung s):

Mit s = l ϕ bekommt man dann aus der Newtonschen Gleichung (Beschleunigung a hat entgegengesetzte Richtung wie die Auslenkung s): S1 Matheatisches und physikaisches Pende Stoffgebiet: Versuchszie: Literatur: Schwingungen ageein, atheatisches Pende, physikaisches Pende, Steinerscher Satz Matheatische Behandung von Schwingungsvorgängen

Mehr

Fourier-Reihen und Fourier-Integrale

Fourier-Reihen und Fourier-Integrale Kapitel 4 Fourier-Reihen und Fourier-Integrale 4.1 Fourier-Reihen periodischer Funktionen Dieser Abschnitt befasst sich mit Fourier-Reihen: der Sinusreihe, der Kosinusreihe und der Exponentialreihe e ikx.

Mehr

Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya

Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya Differentialgleichungen Aufgaben mit Lösungen Jörg Gayler, Lubov Vassilevskaya ii Inhaltsverzeichnis. Tabelle unbestimmter Integrale............................... iii.. Integrale mit Eponentialfunktionen........................

Mehr

Lösungen der Übungsaufgaben von Kapitel 4

Lösungen der Übungsaufgaben von Kapitel 4 Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 4 zu 4.1 4.1.1 Eine Funktion f : R R sei als Nullfunktion für x 0 und als x x für x 0 definiert.

Mehr

6 Komplexe Integration

6 Komplexe Integration 6 Komplexe Integration Ziel: Berechne für komplexe Funktion f : D W C Integral der Form f(z)dz =? wobei D C ein Weg im Definitionsbereich von f. Fragen: Wie ist ein solches komplexes Integral sinnvollerweise

Mehr

a) Zeigen Sie, dass sich für eine lange Spule die magn. Flussdichte in der Mitte mit der Näherungsformel berechnen lässt.

a) Zeigen Sie, dass sich für eine lange Spule die magn. Flussdichte in der Mitte mit der Näherungsformel berechnen lässt. Aufgaben Magnetfed einer Spue 83. In einer Spue(N = 3, =,5m), die in Ost-West-Richtung iegt, wird eine Magnetnade gegen die Nord-Süd-Richtung um 11 ausgeenkt. Berechnen Sie die Stärke des Stromes in 5

Mehr

Seminar Einführung in die Kunst mathematischer Ungleichungen

Seminar Einführung in die Kunst mathematischer Ungleichungen Seminar Einführung in die Kunst mathematischer Ungleichungen Geometrie und die Summe von Quadraten Clara Brünn 25. April 2016 Inhaltsverzeichnis 1 Einleitung 2 1.1 Geometrie allgemein.................................

Mehr

Fachbereich Mathematik Hochschule Regensburg. Kurz-Skriptum zu Fourierreihen. Prof. Dr. Michael Fröhlich

Fachbereich Mathematik Hochschule Regensburg. Kurz-Skriptum zu Fourierreihen. Prof. Dr. Michael Fröhlich Fachbereich Mathematik Hochschule Regensburg Kurz-Skriptum zu Fourierreihen Prof. Dr. Michael Fröhlich Inhaltsverzeichnis p-periodische Funktionen und trigonometrische Reihen 4. p-periodische Funktionen................................

Mehr

Lösung 04 Klassische Theoretische Physik I WS 15/16. c n = 1 T. c n,u e inωt + c n,u e inωt] c n e inωt = c 0 +

Lösung 04 Klassische Theoretische Physik I WS 15/16. c n = 1 T. c n,u e inωt + c n,u e inωt] c n e inωt = c 0 + Karlsruher Institut für Technologie Institut für theoretische Festkörperphysik www.tfp.kit.edu Lösung 4 Klassische Theoretische Physik I WS 5/6 Prof. Dr. G. Schön 2 Punkte Sebastian Zanker, Daniel Mendler

Mehr

4.3 Anwendungen auf Differentialgleichungen

4.3 Anwendungen auf Differentialgleichungen 7 4.3 Anwendungen auf Differentialgleichungen Die Laplace-Transformation wird gerne benutzt, um lineare Differentialgleichungen mit konstanten Koeffizienten y n + a n y n +... + a y + a 0 y ft zu lösen,

Mehr

1. Vorlesung Partielle Differentialgleichungen

1. Vorlesung Partielle Differentialgleichungen 1. Vorlesung Partielle ifferentialgleichungen Wolfgang Reichel Übersee-Vorlesung aus Oaxaca, Mexiko, 19. Oktober 2010 Institut für Analysis KIT University of the State of Baden-Wuerttemberg and National

Mehr

Analysis II (FS 2015): Vektorfelder und Flüsse

Analysis II (FS 2015): Vektorfelder und Flüsse Analysis II (FS 215): Vektorfelder und Flüsse Dietmar A. Salamon ETH-Zürich 7. April 215 1 Der Fluss eines Vektorfeldes Sei U R n eine offene Menge und sei f : U R n eine lokal Lipschitz-stetige Abbildung.

Mehr

Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker

Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker Übungsblatt Musterlösung Fachbereich Rechts- und Wirtschaftswissenschaften Wintersemester 06/7 Aufgabe (Definitionsbereiche) Bestimme

Mehr

Beispiele linearer Randwertprobleme

Beispiele linearer Randwertprobleme Kapitel 1 Beispiele linearer Randwertprobleme Die Problemstellung wird zuerst an einigen Beispielen aus der Physik erläutert. Die Methode der Greenschen Funktion verwendet eine Superposition von partikulären

Mehr

Abiturprüfung Mathematik 13 Technik A II - Lösung mit CAS

Abiturprüfung Mathematik 13 Technik A II - Lösung mit CAS GS.6.6 - m6_3t-a_lsg_cas_gs.pdf Abiturprüfung 6 - Mathematik 3 Technik A II - Lösung mit CAS Teilaufgabe Gegeben ist die Funktion f mit ( x ) mit der Definitionsmenge D ( x ) ( x 3) f IR \ { ; 3 }. Teilaufgabe.

Mehr