Versuch 1 Der Pohlsche Resonator

Größe: px
Ab Seite anzeigen:

Download "Versuch 1 Der Pohlsche Resonator"

Transkript

1 Physikalisches A-Praktikum Versuch 1 Der Pohlsche Resonator Praktikanten: Julius Strake Niklas Bölter Gruppe: 17 Betreuer: Hendrik Schmidt Durchgeführt: Unterschrift:

2

3 Inhaltsverzeichnis 1 Einleitung 4 2 Theorie Der harmonische Oszillator Oszillator mit äußerer Anregung Durchführung 5 4 Auswertung 6 5 Diskussion 9 A Tabellen und Grafiken 1

4 4 2 THEORIE 1 Einleitung Bei diesem Versuch wird das nach dem Göttinger Physikprofessor Robert Wichard Pohl benannte Pohlsche Rad benutzt, um die physikalischen Eigenschaften eines gedämpften harmonischen Oszillators zu untersuchen. 2 Theorie 2.1 Der harmonische Oszillator Bei einem harmonischen Oszillator wirkt auf ein physikalisches Objekt eine Rückstellkraft, die proportional zur Auslenkung von einer Ruhelage ist. Beim Pohlschen Resonator wird das rückstellende Drehmoment T auf eine Schwungscheibe durch eine Spiralfeder erzeugt (Meschede, 26, S. 85): T = Dϕ J ϕ = Dϕ Dabei bezeichnet D die Federkonstante der Feder und J das Trägheitsmoment der Schwungscheibe. Dies beschreibt einen ungedämpften harmonischen Oszillator mit der Eigenfrequenz ω : ϕ(t) = ϕ cos(ω t) (1) D ω = J. (2) Zusätzlich wird das Pohlsche Rad durch Reibung und eine Wirbelstrombremse gebremst, dabei ist das bremsende Drehmoment linear von der Winkelgeschwindigkeit abhängig, so dass sich insgesamt folgende Gleichung ergibt: ϕ = 2k ϕ D J ϕ = ϕ + 2k ϕ + ω 2 ϕ Hier bezeichnet k die Dämpfungskonstante der gedämpften Oszillation. Diese Differentialgleichung hat zwei Lösungen (Meschede, 26, S. 15): ϕ(t) = ϕ exp(λt) λ 1,2 = k ± k 2 ω 2 Bei der hier vorliegenden schwachen Dämpfung ergibt sich ein negativer Radikand, der Realteil liefert nun die Gleichung für die gedämpfte Schwingung: ϕ(t) = ϕ exp( kt) sin(ω e t) (3) ω e = ω 2 k2 (4)

5 2.2 Oszillator mit äußerer Anregung 5 Dabei ist das Verhältnis zweier aufeinanderfolgender Maxima nur von der einhüllenden Exponentialfunktion abhängig, was zur Definition des logarithmischen Dekrements Λ führt: ( ) ϕ(t) Λ = ln = kt (5) ϕ(t + T ) 2.2 Oszillator mit äußerer Anregung Bei einer sinusförmigen äußeren Anregung mit der Anregungsfrequenz ω ergibt sich ein zusätzlicher Term in der Differentialgleichung: N cos(ωt) = ϕ + 2k ϕ + ω 2 ϕ Eine Lösung für den stationären Zustand lautet (Meschede, 26, S. 154): N ϕ(t) = cos(ωt + φ) (6) (ω 2 ω 2 ) 2 + (2kω) 2 ( ) 2kω φ = arctan ω 2 (7) ω2 Dabei bezeichnet φ die Phasenverschiebung zwischen äußerer Anregung und Oszillator. 3 Durchführung Winkelskala 5 Rad mit Zeiger (schwingendes System) Spiralfeder Übertragungshebel Wirbelstrombremse, Justierung Exzenter Abbildung 1: Skizze des Pohlschen Resonators (Quelle: Schaaf und Große-Knetter, LP). Der Pohlsche Resonator (Abb. 1) besteht aus einem Schwungrad, welches mit einer Spiralfeder verbunden ist. Die Dämpfung der Schwingung kann mit einer Wirbelstrombremse eingestellt werden.

6 6 4 AUSWERTUNG Das äußere periodische Anregungsmoment wird mittels eines computergesteuerten Schrittmotors erzeugt. Der Computer wird auch für die Aufname der Messwerte benutzt, bei der das Programm kpohl eingesetzt wird. Zuerst wird die freie gedämpfte Schwingung (ohne äußere Anregung) für verschiedene Einstellungen der Wirbelstrombremse gemessen. Danach wird die erzwungene Schwingung für verschiedene Frequenzen zwischen 1 mhz und 6 mhz gemessen, und zwar ebenfalls für verschiedene Einstellungen der Wirbelstrombremse. Dabei werden möglichst viele Messreihen in der Nähe der Resonanzfrequenz durchgeführt. 4 Auswertung Zuerst werden die Abklingkurven φ(t) aufgetragen (Abb. 4, Abb. 5, Abb. 6 sowie Abb. 7). Nun wird die Zeit über der Zahl der Amplitudendurchläufe aufgetragen (Abb. 8), dann wird mit gnuplot via linearer Regression die Eigenfrequenz der Oszillation bestimmt, denn in einer Periode hat der Oszillator natürlich zwei Amplitudendurchläufe, also mit t(x) = m x + b T = 2m = ωe /2π: ω e, mm = (2.69 ±.3) Hz ω e,4 mm = (2.117 ±.5) Hz ω e,6 mm = (2.139 ±.9) Hz ω e,8 mm = (2.114 ±.21) Hz Jetzt werden die logarithmischen Dekremente von zwei aufeinanderfolgenden Extrema bestimmt (Tab. 2), als Mittelwert ergeben sich: Λ mm = (.16 ±.7) Λ 4 mm = (.449 ±.3) Λ 6 mm = (.862 ±.18) Λ 8 mm = (1.489 ±.57) Dabei wurde die Standardabweichung für die Fehlerabschätzung benutzt. Mit Formel (5) kann nun leicht die Dämpfungskonstante k bestimmt werden: Λ = kt k = Λω e 2π σ k = 1 (Λσ ωe ) 2 + (ω e σ Λ ) 2 2π k mm = (.34 ±.1)1 1 Hz k 4 mm = (1.51 ±.3)1 1 Hz k 6 mm = (2.93 ±.4)1 1 Hz k 8 mm = (5.1 ±.15)1 1 Hz

7 7 Mit Gleichung (4) lässt sich jetzt auch die ungedämpfte Eigenfrequenz ω berechnen: ω 2 e = ω 2 k 2 ω = ωe 2 + k 2 (ω e σ k ) 2 + (kσ ωe ) 2 σ ω = ω 2 e + k 2 ω, mm = (2.69 ±.2) Hz ω,4 mm = (2.122 ±.4) Hz ω,6 mm = (2.159 ±.5) Hz ω,8 mm = (2.173 ±.16) Hz Mit den Dämpfungskonstanten und der ungedämpften Eigenfrequenz ω, mm können nun über die Formel (6) Vorhersagen über die Resonanzfrequenz der getriebenen Oszillation gemacht werden: ϕ(t) = N cos(ωt + φ) (ω 2 ω 2 ) 2 + (2kω) 2 =! d ( (ω 2 dω ω 2 ) 2 + (2kω) 2) ω r = ω 2 2k2 (ω σ k ) σ ωr = 2 + (kσ ω ) 2 ω 2 2k 2 Die Ergebnisse und die experimentell bestimmten Resonanzfrequenzen sind in Tab. 1 zusammengefasst. ω r [Hz] Vorhersage Experiment 4 mm Dämpfung 2.6 ± ±.4 6 mm Dämpfung 2.3 ±.5 2. ±.4 8 mm Dämpfung 1.94 ± ±.4 Tabelle 1: Resonanzfrequenzen der getriebenen Oszillation

8 8 4 AUSWERTUNG 12 1 Dämpfung 4mm Dämpfung 6mm Dämpfung 8mm Amplitude ϕ [ ] Anregungsfrequenz ω /ω [-] Abbildung 2: Amplituden bei verschiedenen Anregungsfrequenzen 1 Phasenverschiebung φ /π [-] Dämpfung 4 mm Dämpfung 6 mm Dämpfung 8 mm Anregungsfrequenz ω /ω [-] Abbildung 3: Phasenverschiebung bei verschiedenen Anregungsfrequenzen

9 9 5 Diskussion Zuerst fällt auf, dass die Eigenfrequenzen der freien Oszillation signifikant der Theorie wiedersprechen, tendenziell werden sie bei größerer Dämpfung ebenfalls größer, obwohl das Gegenteil der Fall sein sollte! Es wurden mehrere Ansätze getestet, zuerst nur mit dem Abstand von Nulldurchgängen, dann mittels linearer Regression über alle Amplitudenduchgänge, aber alle haben denselben Trend bestätigt. Die Ursache dafür ist unklar, aber vermutlich ist zumindestens die erste gemessene Frequenz, bei der geringsten Dämpfung, verlässlich. Hier konnten natürlich auch am meisten Messwerte aufgenommen werden. Die Logarithmischen Dekremente sind im Gegensatz dazu qualitativ auf jeden Fall aussagekräftig, bei höherer Dämpfung steigen sie signifikant an. Durch die merkwürdigen Ergebnisse bei den Eigenfrequenzen sind aber die Dämpfungskonstanten vermutlich stärker fehlerbehaftet als die mit der Gaußschen Fehlerfortpflanzung bestimmten Fehler vermuten lassen. Bei den ungedämpften Eigenfrequenzen ist eine starke Abweichung von bis zu 5% zu verzeichnen, die sicherlich von den oben beschriebenen Problemen abhängt. Auch hier ist aber vermutlich dem ersten Ergebnis, welches für die weitere Auswertung gebraucht wurde, noch am ehesten zu vertrauen. Beim Frequenzgang (Abb. 2) haben wir leider bei 4 mm Dämpfung nicht genug Messreihen für den Bereich 32 mhz bis 38 mhz gemacht, so dass die Regression mit dem arctan Ansatz aus Formel (7) bei dieser Dämpfung nicht wirklich vertrauenswürdig ist (χ 2 red = 2.77). Die anderen beiden Regressionen zeigen aber eine sehr gute Übereinstimmung mit der Theorie (χ 2 red,6 mm =.29, χ2 red,8 mm =.12). Bei der Phasenverschiebung (Abb. 3) mussten verschiedene Probleme umgangen werden, was zu einer etwas unorthodoxen Lösung geführt hat (Abb. 9). Qualitativ scheint das Phasendiagramm aber auf jeden Fall mit der Theorie übereinzustimmen. Der Wert für 6 Hz fällt bei allen drei Dämpfungen sehr stark ab, für 4 mm Dämpfung war er sogar vollständig unbrauchbar (φ = 128 ) und wurde für die Regression ignoriert.

10 1 A TABELLEN UND GRAFIKEN A Tabellen und Grafiken 15 Amplitude ϕ Auslenkungswinkel ϕ(t) [ ] Zeit t [ms] Abbildung 4: Abklingkurve der freien Schwingung für mm Dämpfung

11 11 15 Amplitude ϕ Auslenkungswinkel ϕ(t) [ ] Zeit t [ms] Abbildung 5: Abklingkurve der freien Schwingung für 4 mm Dämpfung 15 Amplitude ϕ Auslenkungswinkel ϕ(t) [ ] Zeit t [ms] Abbildung 6: Abklingkurve der freien Schwingung für 6 mm Dämpfung

12 12 A TABELLEN UND GRAFIKEN 2 15 Amplitude ϕ Auslenkungswinkel ϕ(t) [ ] Zeit t [ms] Abbildung 7: Abklingkurve der freien Schwingung für 8 mm Dämpfung 25 2 Zeit t in [ms] mm Dämpfung Lineare Regression 4 mm Dämpfung Lineare Regression 6 mm Dämpfung Lineare Regression 8 mm Dämpfung Lineare Regression Amplitudendurchlauf [#] Abbildung 8: Lineare Regression zur Bestimmung der Eigenfrequenz ω e

13 13 mm Dämpfung 4 mm Dämpfung 6 mm Dämpfung 8 mm Dämpfung Tabelle 2: Logarithmische Dekremente der freien Oszillation i f i n t ( measurement [ Anregungsfrequenz ] ) > : d i f f e r e n c e = zero f l o a t ( measurement [ Nullpunkt Erreger [ ms ] ] ) _phase = 3 6. ( d i f f e r e n c e % t i m e s c a l e )/ t i m e s c a l e # Use a d a p t i v e t i m e s c a l e, the frequency given # by the computer i s c o m p l e t e l y i n a c c u r a t e. : ( t i m e s c a l e = ( zero time ) zero = time # Crap v a l u e s in the f i r s t seconds. i f time < 1. : continue # Average over t he phase a n g l e s phase = phase f l o a t ( phasecount )/ f l o a t ( phasecount + 1) phasecount = phasecount + 1 phase = phase + _phase/ f l o a t ( phasecount ) Abbildung 9: Python Code zur Berechnung der Phasenverschiebung

14 14 LITERATUR Literatur [Meschede 26] 26 Meschede, Dieter: Gerthsen Physik. 23. Ausgabe. Springer, [Schaaf und Große-Knetter ] Schaaf, Peter ; Große-Knetter, Jörn: LP - Der Pohlsche Resonator. URL Zugriffsdatum:

Versuch 1: Pohlscher Resonator

Versuch 1: Pohlscher Resonator Versuch 1: Pohlscher Resonator Inhaltsverzeichnis 1 Einführung 3 2 Theorie 3 2.1 Herleitung der Differentialgleichung...................... 3 2.2 Lösung der Differentialgleichung........................

Mehr

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung)

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) 10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) Versuche: Pendel mit zwei Längen Sandpendel ohne/mit Dämpfung erzwungene Schwingung mit ω

Mehr

Versuch 3 Das Trägheitsmoment

Versuch 3 Das Trägheitsmoment Physikalisches A-Praktikum Versuch 3 Das Trägheitsmoment Praktikanten: Julius Strake Niklas Bölter Gruppe: 17 Betreuer: Hendrik Schmidt Durchgeführt: 10.07.2012 Unterschrift: Inhaltsverzeichnis 1 Einleitung

Mehr

Dieter Suter - 223 - Physik B3, SS03

Dieter Suter - 223 - Physik B3, SS03 Dieter Suter - 223 - Physik B3, SS03 4.4 Gedämpfte Schwingung 4.4.1 Dämpfung und Reibung Wie bei jeder Bewegung gibt es bei Schwingungen auch dissipative Effekte, d.h. es wird Schwingungsenergie in Wärmeenergie

Mehr

Versuch Erzwungene Schwingung

Versuch Erzwungene Schwingung Versuch Erzwungene Schwingung erneuert aus Studiengebühren Vorbereitung: Drehschwingung, Gedämpfte Schwingung, Erzwungene Schwingung, Phasenraumdiagramme, Wirbelstrombremse Literatur: Standard-Lehrbücher

Mehr

Inhaltsverzeichnis. 1 Einleitung 2

Inhaltsverzeichnis. 1 Einleitung 2 Inhaltsverzeichnis 1 Einleitung Physikalische Grundlagen.1 Dynamik am Pohlschen Rad............................ Herleitung der Schwingungsgleichung...................... 3.3 Lösung der Schwingungsgleichung........................

Mehr

Messprotokoll 13.9.1907, Partner Albert Einstein

Messprotokoll 13.9.1907, Partner Albert Einstein Messprotokoll 3.9.97, Partner Albert Einstein Aufgabe Eigenfrequenz des Drehpendels messen Dauer von 5 Schwingungen bei anfänglicher Auslenkung von 8 Skalenteilen: Dauer von 5 Schwingungen bei anfänglicher

Mehr

Drehpendel. Praktikumsversuch am Gruppe: 3. Thomas Himmelbauer Daniel Weiss

Drehpendel. Praktikumsversuch am Gruppe: 3. Thomas Himmelbauer Daniel Weiss Drehpendel Praktikumsversuch am 10.11.2010 Gruppe: 3 Thomas Himmelbauer Daniel Weiss Abgegeben am: 17.11.2010 Inhaltsverzeichnis 1 Einleitung 2 2 Versuchsaufbau 2 3 Eigenfrequenzbestimmung 2 4 Dämpfungsdekrementbestimmung

Mehr

Grundpraktikum der Physik. Versuch 3: Freie und erzwungene Schwingung mit dem Drehpendel

Grundpraktikum der Physik. Versuch 3: Freie und erzwungene Schwingung mit dem Drehpendel Grundpraktikum der Physik Versuch 3: Freie und erzwungene Schwingung mit dem Drehpendel Konrad Steible Anne Götz 14. Oktober 2005 1 Inhaltsverzeichnis 1 Theoretische Grundlagen 3 1.1 Mechanische harmonische

Mehr

Labor zur Vorlesung Physik

Labor zur Vorlesung Physik Labor zur Vorlesung Physik 1. Vorbereitung Die folgenden Begriffe sollten Sie kennen und erklären können: Freie und erzwungene harmonische Schwingungen, Eigenfrequenz, Schwingungsdauer, Dämpfungsgrad,

Mehr

Mechanik. LD Handblätter Physik. Erzwungene harmonische und chaotische Drehschwingungen P1.5.3.4. Schwingungslehre Drehpendel nach Pohl

Mechanik. LD Handblätter Physik. Erzwungene harmonische und chaotische Drehschwingungen P1.5.3.4. Schwingungslehre Drehpendel nach Pohl YS 2013-08 Mechanik Schwingungslehre Drehpendel nach Pohl LD Handblätter Physik P1.5.3.4 Erzwungene harmonische und chaotische Drehschwingungen Aufzeichnung und Auswertung mit CASSY Versuchsziele Aufnahme

Mehr

Versuch 2 Die Gravitationswaage

Versuch 2 Die Gravitationswaage Physikalisches A-Praktikum Versuch 2 Die Gravitationswaage Praktikanten: Julius Strake Niklas Bölter Gruppe: 17 Betreuer: Hendrik Schmidt Durchgeführt: 03.07.2012 Unterschrift: Inhaltsverzeichnis 1 Einleitung

Mehr

Der Pohlsche Resonator

Der Pohlsche Resonator Physikalisches Praktikum für das Hauptfach Physik Versuch 01 Der Pohlsche Resonator Sommersemester 005 Name: Daniel Scholz Mitarbeiter: Hauke Rohmeyer EMail: [email protected] Gruppe: 13 Assistent:

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimentalphysik 1 1 Fakultät für Physik Technische Universität München Bernd Kohler & Daniel Singh Blatt 2 WS 2014/2015 24.03.2015 Ferienkurs Experimentalphysik 1 ( ) - leicht ( ) - mittel

Mehr

III. Schwingungen und Wellen

III. Schwingungen und Wellen III. Schwingungen und Wellen III.1 Schwingungen Physik für Mediziner 1 Schwingungen Eine Schwingung ist ein zeitlich periodischer Vorgang Schwingungen finden im allgemeinen um eine stabile Gleichgewichtslage

Mehr

M 10 Resonanz und Phasenverschiebung bei der mechanischen Schwingung

M 10 Resonanz und Phasenverschiebung bei der mechanischen Schwingung Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum M 1 esonanz und Phasenverschiebung bei der mechanischen Schwingung Aufgaben 1. Bestimmen Sie die Frequenz der freien gedämpften Schwingung

Mehr

Erzwungene Schwingungen

Erzwungene Schwingungen Universität Potsdam Institut für Physik und Astronomie Grundpraktikum S4 Erzwungene Schwingungen Dieses Experiment enthält zwei Bestandteile: Es werden Zusammehänge zwischen erregender und erregter Schwingung

Mehr

Praktikum Physik. Protokoll zum Versuch 3: Drehschwingungen. Durchgeführt am Gruppe X

Praktikum Physik. Protokoll zum Versuch 3: Drehschwingungen. Durchgeführt am Gruppe X Praktikum Physik Protokoll zum Versuch 3: Drehschwingungen Durchgeführt am 27.10.2011 Gruppe X Name 1 und Name 2 ([email protected]) ([email protected]) Betreuer: Wir bestätigen hiermit, dass wir das

Mehr

Praktikum I PP Physikalisches Pendel

Praktikum I PP Physikalisches Pendel Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische

Mehr

Schwingung, Resonanz, Dämpfung

Schwingung, Resonanz, Dämpfung In diesem Versuch untersuchen Sie Schwingungen und ihre Gesetzmäßigkeiten mit einem Drehschwingssystem als ein Beispiel für die unzähligen Oszillatoren, die Ihnen in fast allen Gebieten der Physik begegnen

Mehr

Versuch 10 Die Potenzialwaage

Versuch 10 Die Potenzialwaage Physikalisches A-Praktikum Versuch 10 Die Potenzialwaage Praktikanten: Gruppe: Julius Strake Niklas Bölter B006 Betreuer: Johannes Schmidt Durchgeführt: 12.09.2012 Unterschrift: E-Mail: [email protected]

Mehr

P1-12,22 AUSWERTUNG VERSUCH RESONANZ

P1-12,22 AUSWERTUNG VERSUCH RESONANZ P1-12,22 AUSWERTUNG VERSUCH RESONANZ GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 0.1. Drehpendel - Harmonischer Oszillator. Bei dem Drehpendel handelt es sich um einen harmonischen Oszillator. Das Trägheitsmoment,

Mehr

Schwingwagen ******

Schwingwagen ****** 5.3.0 ****** Motivation Ein kleiner Wagen und zwei Stahlfedern bilden ein schwingungsfähiges System. Ein Elektromotor mit Exzenter lenkt diesen Wagen periodisch aus seiner Ruhestellung aus. Die Antriebsfrequenz

Mehr

Freie Gedämpfte Schwingungen

Freie Gedämpfte Schwingungen PHYSIKALISCHE GRUNDLAGEN Freie Gedämpfte Schwingungen durchgeführt am 4.06.200 von Matthias Dräger, Alexander Narweleit und Fabian Pirzer Physikalische Grundlagen. Schwingungen Als Schwingung bezeichnet

Mehr

Versuch III. Drehpendel. Oliver Heinrich. Bernd Kugler Abgabe:

Versuch III. Drehpendel. Oliver Heinrich. Bernd Kugler Abgabe: Versuch III Drehpendel Oliver Heinrich [email protected] Bernd Kugler [email protected] 12.10.2006 Abgabe: 03.11.2006 Betreuer: Alexander Berg 1 Inhaltsverzeichnis 1 Theoretische Grundlagen 3

Mehr

Laborversuche zur Physik I. Versuch I-03: Pohlsches Rad

Laborversuche zur Physik I. Versuch I-03: Pohlsches Rad Laborversuche zur Physik I Versuch I-03: Pohlsches Rad Versuchsleiter: Autoren: Kuschel Kai Dinges Michael Beer Gruppe: 15 Versuchsdatum: 5.12.2005 Inhaltsverzeichnis 2 Aufgaben und Hinweise 2 2.1 Inbetriebnahme...................................

Mehr

Der Pohlsche Resonator

Der Pohlsche Resonator Physikalisches Grundpraktikum Versuch 1 Der Pohlsche Resonator Praktikant: Tobias Wegener Alexander Osterkorn E-Mail: [email protected] [email protected] Tutor: Gruppe:

Mehr

Vorlesungen: 16.1. 2006 30.1. 2006. 7 Differentialgleichungen. Inhaltsverzeichnis

Vorlesungen: 16.1. 2006 30.1. 2006. 7 Differentialgleichungen. Inhaltsverzeichnis Vorlesungen: 16.1. 2006 30.1. 2006 7 Differentialgleichungen Inhaltsverzeichnis 7 Differentialgleichungen 1 7.1 Differentialgleichungen 1. Ordnung...................... 2 7.1.1 Allgemeine Bemerkungen zu

Mehr

Versuch 15 Dia- und Paramagnetismus

Versuch 15 Dia- und Paramagnetismus Physikalisches A-Praktikum Versuch 15 Dia- und Paramagnetismus Praktikanten: Gruppe: Julius Strake Niklas Bölter B006 Betreuer: Johannes Schmidt Durchgeführt: 07.09.2012 Unterschrift: E-Mail: [email protected]

Mehr

Physikalisches Anfaengerpraktikum. Pohlsches Rad

Physikalisches Anfaengerpraktikum. Pohlsches Rad Physikalisches Anfaengerpraktikum Pohlsches Rad Ausarbeitung von Marcel Engelhardt & David Weisgerber (Gruppe 37) Mittwoch, 6. März 25 email: [email protected] [email protected] ()Einführung

Mehr

Versuch 16 Der Transformator

Versuch 16 Der Transformator Physikalisches A-Praktikum Versuch 16 Der Transformator Praktikanten: Gruppe: Julius Strake Niklas Bölter B006 Betreuer: Johannes Schmidt Durchgeführt: 10.09.2012 Unterschrift: E-Mail: [email protected]

Mehr

MR Mechanische Resonanz

MR Mechanische Resonanz MR Mechanische Resonanz Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis Grundlagen 2. Freie, ungedämpfte Schwingung....................... 2.2 Freie, gedämpfte Schwingung........................

Mehr

Physikalisches Grundpraktikum Technische Universität Chemnitz

Physikalisches Grundpraktikum Technische Universität Chemnitz Physikalisches Grundpraktikum Technische Universität Chemnitz Protokoll «A1 - Messung der Lichtgeschwindigkeit» Martin Wolf Betreuer: Dr. Beddies Mitarbeiter: Martin Helfrich

Mehr

Aufgabe 1: Klausur Physik für Maschinenbauer (SS 2009) Lösungen 1. (10 Punkte)

Aufgabe 1: Klausur Physik für Maschinenbauer (SS 2009) Lösungen 1. (10 Punkte) Klausur Physik für Maschinenbauer (SS 2009) Lösungen 1 Aufgabe 1: Schiefe Ebene Auf einer reibungsfreien, schiefen Ebene mit dem Winkel 30 befindet sich eine Kiste der Masse m = 100 kg zunächst in Ruhe.

Mehr

Auswertung P1-22 Schwingungen & Resonanz

Auswertung P1-22 Schwingungen & Resonanz Auswertung P- Schwingungen & Resonanz Michael Prim & Tobias Volkenandt 4. November 5 Aufgabe Drehpendel/Pohlsches Rad und freie Schwingungen Mit dem Messwerterfassungssystem CASSY nahmen wir die Auslenkung

Mehr

Vorbereitung. Resonanz. Carsten Röttele. 17. Januar Drehpendel, freie Schwingungen 3. 2 Drehpendel, freie gedämpfte Schwingungen 3

Vorbereitung. Resonanz. Carsten Röttele. 17. Januar Drehpendel, freie Schwingungen 3. 2 Drehpendel, freie gedämpfte Schwingungen 3 Vorbereitung Resonanz Carsten Röttele 17. Januar 01 Inhaltsverzeichnis 1 Drehpendel, freie Schwingungen 3 Drehpendel, freie gedämpfte Schwingungen 3 3 Messung der Winkelrichtgröße D 4 4 Drehpendel, erzwungene

Mehr

b) Sie sind in der Lage, Experimente mit dem PASCO System durchzuführen, die Daten zu exportieren und in Excel auszuwerten und darzustellen.

b) Sie sind in der Lage, Experimente mit dem PASCO System durchzuführen, die Daten zu exportieren und in Excel auszuwerten und darzustellen. Das ist das Paradebeispiel eines schwingenden, schwach gedämpften Systems. waren vor der Erfindung des Quarz Chronometers die besten Zeitgeber in Taschenuhren. Als Unruh bestimmten sie die Dauer einer

Mehr

Physik für Oberstufenlehrpersonen. Frühjahrssemester Schwingungen und Wellen

Physik für Oberstufenlehrpersonen. Frühjahrssemester Schwingungen und Wellen Physik für Oberstufenlehrpersonen Frühjahrssemester 2018 Schwingungen und Wellen Zum Einstieg in das neue Semester Schwingungen Schwingungen spielen bei natürlichen Prozessen bedeutende Rolle: -Hören und

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK Physik A/B1 A WS SS 17 13/14 Inhalt der Vorlesung A1 1. Einführung Methode der Physik Physikalische Größen Übersicht über die vorgesehenen Themenbereiche. Teilchen A. Einzelne Teilchen Beschreibung

Mehr

Gekoppelte Schwingung

Gekoppelte Schwingung Versuch: GS Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: C. Blockwitz am 01. 07. 000 Bearbeitet: E. Hieckmann J. Kelling F. Lemke S. Majewsky i.a. Dr. Escher Aktualisiert: am 16. 09. 009

Mehr

GP Getriebenes Pendel

GP Getriebenes Pendel GP Getriebenes Pendel Blockpraktikum Frühjahr 7 (Gruppe ) 5. April 7 Inhaltsverzeichnis 1 Einführung Theoretische Grundlagen 3 Versuchsdurchführung 3 4 Messergebnisse und Auswertung 3 4.1 Abhängigkeit

Mehr

Harmonische Schwingungen

Harmonische Schwingungen Kapitel 6 Harmonische Schwingungen Von periodisch spricht man, wenn eine feste Dauer zwischen wiederkehrenden ähnlichen oder gleichen Ereignissen besteht. Von harmonisch spricht man, wenn die Zeitentwicklung

Mehr

A02 Schwingung Resonanz Dämpfung

A02 Schwingung Resonanz Dämpfung A Schwingung Resonanz Dämpfung (A) x t t A Schwingung Resonanz Dämpfung Ziele In diesem Versuch untersuchen Sie Schwingungsphänomene und deren Gesetzmäßigkeiten mit einem Drehschwingsystem ein Beispiel

Mehr

Hochschule Düsseldorf University of Applied Sciences. 12. Januar 2017 HSD. Physik. Schwingungen III

Hochschule Düsseldorf University of Applied Sciences. 12. Januar 2017 HSD. Physik. Schwingungen III Physik Schwingungen III Wiederholung Komplexe Zahlen Harmonischer Oszillator DGL Getrieben Gedämpft Komplexe Zahlen Eulersche Formel e i' = cos ' + i sin ' Komplexe Schwingung e i!t = cos!t + i sin!t Schwingung

Mehr

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder 6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung

Mehr

Erzwungene Schwingungen

Erzwungene Schwingungen Fachrichtung Physik Physikalisches Grundpraktikum Versuch: ES Erstellt: M. Kauer B. Scholz Aktualisiert: am 28. 06. 2016 Erzwungene Schwingungen Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Theoretische Grundlagen

Mehr

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Torsionsoszillator

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Torsionsoszillator Anfänger-Praktikum I WS 11/12 Michael Seidling Timo Raab Praktikumsbericht: Torsionsoszillator 1 Inhaltsverzeichnis Inhaltsverzeichnis I. Einführung 3 II. Grundlagen 3 1. Torsionsfeder 3 2. Trägheitsmoment

Mehr

Versuch e - Lineares Pendel

Versuch e - Lineares Pendel UNIVERSITÄT REGENSBURG Naturwissenschaftliche Fakultät II - Physik Anleitung zum Grundlagenpraktikum A für Bachelor of Nanoscience Versuch e - Lineares Pendel 23. überarbeitete Auflage 2011 Dr. Stephan

Mehr

2 Mechanische Schwingungen und Wellen. 2.1 Mechanische Schwingungen

2 Mechanische Schwingungen und Wellen. 2.1 Mechanische Schwingungen 2 Mechanische Schwingungen und Wellen 2.1 Mechanische Schwingungen 2.1.1 Harmonische Schwingungen Federpendel, Fadenpendel 2.1.2 Gedämpfte Schwingungen 2.1.3 Erzwungene Schwingungen 2.2 Wellen 2.2.1 Transversale

Mehr

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum Fachrichtung Physik Physikalisches Grundpraktikum Versuch: RO Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010 Rotation Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Allgemeine Grundlagen 2 2.1

Mehr

A1.1: Einfache Filterfunktionen

A1.1: Einfache Filterfunktionen A1.1: Einfache Filterfunktionen Man bezeichnet ein Filter mit dem Frequenzgang als Tiefpass erster Ordnung. Daraus lässt sich ein Hochpass erster Ordnung nach folgender Vorschrift gestalten: In beiden

Mehr

Ausarbeitung Pohlsches Rad / Chaos Autoren: Simone Lingitz, Sebastian Jakob

Ausarbeitung Pohlsches Rad / Chaos Autoren: Simone Lingitz, Sebastian Jakob Ausarbeitung Pohlsches Rad / Chaos Autoren: Simone Lingitz, Sebastian Jakob 1. Vorarbeiten zu Hause 1.1 Erzwungene Schwingung einer Feder mit Dämpfung Bewegungsgleichung: m & x + b x& + k x m g = F cos(

Mehr

Versuch 07 Der Adiabatenexponent c p/c V

Versuch 07 Der Adiabatenexponent c p/c V Physikalisches A-Praktikum Versuch 07 Der Adiabatenexponent c p/c V Praktikanten: Julius Strake Niklas Bölter Gruppe: 17 Betreuer: Hendrik Schmidt Durchgeführt: 15. 05. 2012 Unterschrift: Inhaltsverzeichnis

Mehr

A02 Schwingungen - Auswertung

A02 Schwingungen - Auswertung A2 Schwingungen - Auswertung 6. Messungen 6.1 Bestimmung der Eigenfrequenz mit der Stoppuhr Vorbereitung: Erfassen der Messunsicherheit Reaktionszeit,12,3,8,12,11,9,2,6,8,16 s, 87s,1 s 1 Bei auf Nullmarke

Mehr

Versuch 14 Wechselstromwiderstände

Versuch 14 Wechselstromwiderstände Physikalisches A-Praktikum Versuch 14 Wechselstromwiderstände Praktikanten: Gruppe: Julius Strake Niklas Bölter B006 Betreuer: Johannes Schmidt Durchgeführt: 18.09.2012 Unterschrift: E-Mail: [email protected]

Mehr

Physik 2. Schwingungen.

Physik 2. Schwingungen. Physik Schwingungen 3 Physik 2. Schwingungen. SS 16 2. Sem. B.Sc. Oec. und B.Sc. CH Physik Fluide 5 Themen Parameter einer Schwingung Harmonischer Oszillator Gedämpfter harmonischer Oszillator Resonanz

Mehr

I. Mechanik. 10.Vorlesung EP WS2008/9. 6. Hydro- und Aerodynamik a) Kontinuitäts- und Bernoulli-Gleichung b) Viskosität Fortsetzung: Hagen-Poisenille

I. Mechanik. 10.Vorlesung EP WS2008/9. 6. Hydro- und Aerodynamik a) Kontinuitäts- und Bernoulli-Gleichung b) Viskosität Fortsetzung: Hagen-Poisenille 10.Vorlesung EP WS2008/9 I. Mechanik 6. Hydro- und Aerodynamik a) Kontinuitäts- und Bernoulli-Gleichung b) Viskosität Fortsetzung: Hagen-Poisenille 7. Schwingungen Versuche: Pendel mit zwei Längen Sandpendel

Mehr

5 Schwingungen und Wellen

5 Schwingungen und Wellen 5 Schwingungen und Wellen Schwingung: Regelmäßige Bewegung, die zwischen zwei Grenzen hin- & zurückführt Zeitlich periodische Zustandsänderung mit Periode T ψ ψ(t) [ ψ(t-τ)] Wellen: Periodische Zustandsänderung

Mehr

Versuch 5 Kapillarität und Viskosität

Versuch 5 Kapillarität und Viskosität Physikalisches A-Praktikum Versuch 5 Kapillarität und Viskosität Praktikanten: Julius Strake Niklas Bölter Gruppe: 17 Betreuer: Hendrik Schmidt Durchgeführt: 24.04.2012 Unterschrift: Inhaltsverzeichnis

Mehr

Protokoll Grundpraktikum I: M9 - Reversionspendel

Protokoll Grundpraktikum I: M9 - Reversionspendel Protokoll Grundpraktikum I: M9 - Reversionspendel Sebastian Pfitzner. Juni 013 Durchführung: Sebastian Pfitzner (553983), Anna Andrle (55077) Arbeitsplatz: Platz Betreuer: Peter Schäfer Versuchsdatum:

Mehr

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Gekoppelte Pendel

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Gekoppelte Pendel Anfänger-Praktikum I WS 11/1 Michael Seidling Timo Raab Praktikumsbericht: Gekoppelte Pendel 1 Inhaltsverzeichnis Inhaltsverzeichnis I. Einführung 4 II. Grundlagen 4 1. Harmonische Schwingung 4. Gekoppelte

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester Physik-Institut der Universität Zürich Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester 2016 Physik-Institut der Universität Zürich Inhaltsverzeichnis 4 Resonanz (R) 4.1 4.1 Einleitung........................................

Mehr

9. Vorlesung Wintersemester

9. Vorlesung Wintersemester 9. Vorlesung Wintersemester 1 Die Phase der angeregten Schwingung Wertebereich: bei der oben abgeleiteten Formel tan φ = β ω ω ω0. (1) ist noch zu sehen, in welchem Bereich der Winkel liegt. Aus der ursprünglichen

Mehr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr Dynamik der ebenen Kreisbewegung Eine Kreis- oder Rotationsbewegung entsteht, wenn ein Drehmoment:: M = Fr um den Aufhängungspunkt des Kraftarms r (von der Drehachse) wirkt; die Einheit des Drehmoments

Mehr

Lösung der harmonischen Oszillator-Gleichung

Lösung der harmonischen Oszillator-Gleichung Lösung der harmonischen Oszillator-Gleichung Lucas Kunz 8. Dezember 016 Inhaltsverzeichnis 1 Physikalische Herleitung 1.1 Gravitation................................... 1. Reibung.....................................

Mehr

Mathias Arbeiter 02. Mai 2006 Betreuer: Herr Bojarski. Operationsverstärker. OPV-Kenndaten und Grundschaltungen

Mathias Arbeiter 02. Mai 2006 Betreuer: Herr Bojarski. Operationsverstärker. OPV-Kenndaten und Grundschaltungen Mathias Arbeiter 02. Mai 2006 Betreuer: Herr Bojarski Operationsverstärker OPV-Kenndaten und Grundschaltungen Inhaltsverzeichnis 1 Eigenschaften von Operationsverstärkern 3 1.1 Offsetspannung..........................................

Mehr

POHLsches 1 Drehpendel

POHLsches 1 Drehpendel POHLsches 1 Drehpendel Aufgabenstellung: Charakterisieren Sie das Schwingungsverhalten eines freien sowie eines periodisch angeregten Drehpendels. Stichworte zur Vorbereitung: Schwingungen, harmonische

Mehr

AUSWERTUNG: SCHWINGUNGEN, RESONANZVERHALTEN 1. AUFGABE 1

AUSWERTUNG: SCHWINGUNGEN, RESONANZVERHALTEN 1. AUFGABE 1 AUSWERTUNG: SCHWINGUNGEN, RESONANZVERHALTEN TOBIAS FREY & FREYA GNAM, GRUPPE 6, DONNERSTAG 1. AUFGABE 1 An das Winkel-Zeit-Diagramm (Abb. 1) haben wir eine einhüllende e-funktion der Form e = Ae βt angelegt.

Mehr

Versuch 12 Die spezifische Elektronenladung e/m e

Versuch 12 Die spezifische Elektronenladung e/m e Physikalisches A-Praktikum Versuch 12 Die spezifische Elektronenladung e/m e Praktikanten: Gruppe: Julius Strake Niklas Bölter B006 Betreuer: Johannes Schmidt Durchgeführt: 14.09.2012 Unterschrift: E-Mail:

Mehr

8. Periodische Bewegungen

8. Periodische Bewegungen 8. Periodische Bewegungen 8.1 Schwingungen 8.1.1 Harmonische Schwingung 8.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 8.1.4 Erzwungene Schwingung 8. Periodische Bewegungen Schwingung Zustand y wiederholt

Mehr

Versuch 4 Kreiselpräzession

Versuch 4 Kreiselpräzession Physikalisches A-Praktikum Versuch 4 Kreiselpräzession Protokollant: Niklas Bölter Mitpraktikant: Julius Strake Gruppe: 17 Betreuer: Hendrik Schmidt Durchgeführt: 17. 07. 2012 Unterschrift: Inhaltsverzeichnis

Mehr

9. Periodische Bewegungen

9. Periodische Bewegungen Inhalt 9.1 Schwingungen 9.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 9.1.4 Erzwungene Schwingung 9.1 Schwingungen 9.1 Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen

Mehr

Tutorium Physik 2. Schwingungen

Tutorium Physik 2. Schwingungen 1 Tutorium Physik 2. Schwingungen SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 9. SCHWINGUNGEN 9.1 Bestimmen der

Mehr

Physikalisches Praktikum Pohlsches Rad Freie und erzwungene Schwingungen

Physikalisches Praktikum Pohlsches Rad Freie und erzwungene Schwingungen Physikalisches Praktikum Pohlsches Rad Freie und erzwungene Schwingungen utoren: Markus Krieger Nicolai Löw Erstellungsdatum: 4. Juni 2000 Disclaimer: lle von mir im Internet unter http://www.krieger-online.de

Mehr

Differentialgleichungen 2. Ordnung

Differentialgleichungen 2. Ordnung Differentialgleichungen 2. Ordnung 1-E1 1-E2 Einführendes Beispiel Freier Fall Viele Geschichten ranken sich um den schiefen Turm von Pisa: Der Legende nach hat der aus Pisa stammende Galileo Galilei bei

Mehr

2010-03-08 Klausur 3 Kurs 12Ph3g Physik

2010-03-08 Klausur 3 Kurs 12Ph3g Physik 00-03-08 Klausur 3 Kurs Ph3g Physik Lösung Ein Federpendel mit der Federkonstante D=50 N schwingt mit derselben Frequenz wie ein m Fadenpendel der Länge 30 cm. Die Feder sei masselos. Die Auslenkung des

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Einführungsversuch (EV) Herbstsemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Einführungsversuch (EV) Herbstsemester Physik-Institut der Universität Zürich Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Einführungsversuch (EV) Herbstsemester 2017 Physik-Institut der Universität Zürich Inhaltsverzeichnis 1 Einführungsversuch (EV) 11 11 Einleitung

Mehr

Mathematisch-Naturwissenschaftliche Fakultät I der Humboldt-Universität zu Berlin Institut für Physik Physikalisches Grundpraktikum.

Mathematisch-Naturwissenschaftliche Fakultät I der Humboldt-Universität zu Berlin Institut für Physik Physikalisches Grundpraktikum. Mathematisch-Naturwissenschaftliche Fakultät I der Humboldt-Universität zu Berlin Institut für Physik Physikalisches Grundpraktikum Versuchsprotokoll zur Bestimmung der Federkonstante (F4) am Arbeitsplatz

Mehr

Physikprotokoll: Massenträgheitsmoment. Issa Kenaan Torben Zech Martin Henning Abdurrahman Namdar

Physikprotokoll: Massenträgheitsmoment. Issa Kenaan Torben Zech Martin Henning Abdurrahman Namdar Physikprotokoll: Massenträgheitsmoment Issa Kenaan 739039 Torben Zech 738845 Martin Henning 736150 Abdurrahman Namdar 739068 1. Juni 2006 1 Inhaltsverzeichnis 1 Vorbereitung zu Hause 3 2 Versuchsaufbau

Mehr

4.2 Der Harmonische Oszillator

4.2 Der Harmonische Oszillator Dieter Suter - 208 - Physik B3, SS03 4.2 Der Harmonische Oszillator 4.2.1 Harmonische Schwingungen Die Zeitabhängigkeit einer allgemeinen Schwingung ist beliebig, abgesehen von der Periodizität. Die mathematische

Mehr

Übertragungsglieder mit harmonischer Erregung

Übertragungsglieder mit harmonischer Erregung Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum Protokoll-Nr.: 2 Übertragungsglieder mit harmonischer Erregung Protokollant: Jens Bernheiden Gruppe: 2 Aufgabe durchgeführt:

Mehr

Nichtlineare Schwingungen Dezember 2005

Nichtlineare Schwingungen Dezember 2005 Westfälische Wilhelms-Universität Münster Institut für Angewandte Physik Experimentelle Übungen für Fortgeschrittene Nichtlineare Schwingungen Dezember 2005 Physikalische Systeme werden meist anhand linearer

Mehr

Elastizität und Torsion

Elastizität und Torsion INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 Elastizität und Torsion 1 Einleitung Ein Flachstab, der an den

Mehr

S4 Erzwungene Schwingung Protokoll

S4 Erzwungene Schwingung Protokoll Christian Müller Jan Philipp Dietrich S4 Erzwungene Schwingung Protokoll I. Freie Schwingung a) Erläuterung b) Bestimmung der Eigenkreisfrequenz c) Bestimmung des Dämpfungsmaß β II. Erzwungene Schwingung

Mehr

Schwingungen. a. Wie lautet die Gleichung für die Position der Masse als Funktion der Zeit? b. Die höchste Geschwindigkeit des Körpers.

Schwingungen. a. Wie lautet die Gleichung für die Position der Masse als Funktion der Zeit? b. Die höchste Geschwindigkeit des Körpers. Schwingungen Aufgabe 1 Sie finden im Labor eine Feder. Wenn Sie ein Gewicht von 100g daran hängen, dehnt die Feder sich um 10cm. Dann ziehen Sie das Gewicht 6cm herunter von seiner Gleichgewichtsposition

Mehr

Schwingungen. Harmonische Schwingung. Rückstellkraft. Newton. Schwingungsgleichung. mit 𝜔! = Ansatz: Einsetzen: Auch 𝑥! 𝑡 = 𝐵 sin 𝜔!

Schwingungen. Harmonische Schwingung. Rückstellkraft. Newton. Schwingungsgleichung. mit 𝜔! = Ansatz: Einsetzen: Auch 𝑥! 𝑡 = 𝐵 sin 𝜔! Schwingungen Harmonische Schwingung 𝐹"#"$ = 𝑥 Rückstellkraft Newton 𝐹 = 𝑚𝑎 𝑥 = 𝑚𝑥 = 𝑚 Bewegungsgleichung + 𝜔 𝑥 = 0 mit 𝜔 = Ansatz: 𝑥 𝑡 = 𝐴𝜔 sin 𝜔 𝑡 𝑥 𝑡 = 𝐴𝜔 cos 𝜔 𝑡 Schwingungsgleichung 𝑥 𝑡 = 𝐴 cos 𝜔 𝑡

Mehr

Drehpendel nach Pohl (Lineare und nichtlineare Schwingungen)

Drehpendel nach Pohl (Lineare und nichtlineare Schwingungen) Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum 17a Drehpendel nach Pohl (Lineare und nichtlineare Schwingungen) Aufgaben 1. Bestimmen Sie die Frequenz f d, die Abklingkonstante

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Gedämpfte & erzwungene Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 16. Dez. 16 Harmonische Schwingungen Auslenkung

Mehr

Versuch: Drehpendel. Labor Physik und Grundlagen der Elektrotechnik. Prof. Dr. Karlheinz Blankenbach Dipl.-Phys. Michael Bauer

Versuch: Drehpendel. Labor Physik und Grundlagen der Elektrotechnik. Prof. Dr. Karlheinz Blankenbach Dipl.-Phys. Michael Bauer Labor Physik und Grundlagen der Elektrotechnik Versuch: Drehpendel Prof. Dr. Karlheinz Blankenbach Dipl.-Phys. Michael Bauer Blankenbach / drehpendel.doc 1 Drehpendel Das Drehpendel nach R.W. Pohl ist

Mehr

M13. Gekoppeltes Pendel

M13. Gekoppeltes Pendel M3 Gekoppeltes Pendel In diesem Versuch werden die Schwingungen von zwei Pendeln untersucht, die durch eine Feder miteinander gekoppelt sind. Für verschiedene Kopplungsstärken werden die Schwingungsdauern

Mehr

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II Physik Schwingungen II Ort, Geschwindigkeit, Beschleunigung x(t) = cos! 0 t v(t) =ẋ(t) =! 0 sin! 0 t t a(t) =ẍ(t) =! 2 0 cos! 0 t Energie In einem mechanischen System ist die Gesamtenergie immer gleich

Mehr