Versuch 2 Die Gravitationswaage
|
|
|
- Theodor Feld
- vor 8 Jahren
- Abrufe
Transkript
1 Physikalisches A-Praktikum Versuch 2 Die Gravitationswaage Praktikanten: Julius Strake Niklas Bölter Gruppe: 17 Betreuer: Hendrik Schmidt Durchgeführt: Unterschrift:
2
3 Inhaltsverzeichnis 1 Einleitung 4 2 Theorie 4 3 Durchführung 6 4 Auswertung 6 5 Diskussion 8 A Tabellen und Grafiken 9
4 4 2 THEORIE 1 Einleitung In diesem Versuch soll die Gravitationskonstante γ mit Hilfe der Gravitationswaage bestimmt werden. Diese wurde im neunzehnten Jahrhundert von Cavendish und Eötvös entwickelt und bis heute gibt es kaum Experimente, die größere Genauigkeit bei ähnlichem Aufwand erlauben. 2 Theorie Abbildung 1: Skizze des Aufbaus der Gravitationswaage (Verändert nach LP [? ]) Das von Isaac Newton formulierte Gravitationsgesetz für die Kraft zwischen zwei massebehafteten Körpern der Massen M und m mit vektoriellem Abstand r lautet [3]: F = γ Mm r 2 e r. (1) Die in diesem Versuch verwendete Gravitationswaage nach Cavendish und Eötvös (siehe Abb. 1) besteht aus einem Torsionsfaden, an dem zwei kleine Metallkugeln und ein Spiegel angebracht sind. Dieser Teil des Aufbaus befindet sich in einem evakuierten Glasbehälter, der zusätzlich mit einem Kupfernetz vor statischen Aufladungen geschützt ist. Ein auf den Spiegel gerichteter Laser erzeugt einen Lichtpunkt auf einer gut ablesbaren Skala. Außerhalb des Behälters befinden sich außerdem zwei große Eisenkugeln, die mit Hilfe eines Drehtellers um den Glasbehälter gedreht werden können, wobei der Winkel auf einer Winkelskala abzulesen ist. In einer beliebigen Ruhelage müssen sich alle wirkenden Drehmoment ausgleichen, es entspricht also das Torsionsmoment des Fadens M T dem wegen der Gravitationskraft zwischen den Kugeln wirkenden Drehmoment M G. Für letzteres folgt mit Gleichung 1 für beide Kugelpaare zusammen: M G = 2aγ Mm d 2 sin β, (2)
5 5 Abbildung 2: Schematischer Aufbau mit einigen wichtigen Größen (Verändert nach LP [? ]) wobei d den Abstand einer einer kleinen Kugel zur jeweils näherliegenden großen angibt und a und β in Abbildung 2 definiert sind. Hat der Faden den Radius r F und die Länge l F, so ergibt sich für kleine ϕ [3]: M T = Dϕ = G πr4 F 2l F ϕ (3) mit dem materialabhängigen Torsionsmodul G und der Winkelrichtgröße D. Letztere kann über eine Messung der Periodendauer der Schwingung der Torsionshantel mit Trägheitsmoment Θ bestimmt werden [1]: D = 4π2 T 2 Θ (4) ( ) = 4π2 2 T 2 2m 5 r2 + a 2. (5) Das Trägheitsmoment ergibt sich aus dem Trägheitsmoment einer Kugel mit Radius r und Masse m bei Rotation um die eigene Achse Θ SP = 2 5 mr2 und Anwendung des Steinerschen Satzes bei Verschiebung der Drehachse um die Länge a: Θ a = m ( 2 5 r2 + a 2). Anschließend wird noch berücksichtigt, dass es sich bei der Torsionshantel um zwei Kugeln des Radius r im Abstand a handelt. Gibt d den Abstand zwischen einer kleinen Kugel und der näherliegenden großen Kugel und δ den gegenüberliegenden Winkel an, so ergibt sich aus dem Sinussatz: sin β = b d sin δ. Da die Auslenkung der Torsionshantel ϕ immer nur wenige Grad beträgt, lässt sich die Näherung δ = α ϕ α verwenden. Für d folgt dann mit dem Cosinussatz d 2 = a 2 + b 2 2ab cos δ, also insgesamt mit den Gleichungen 2, 3 und 5: ( ) 2 γ = 4π 2 ϕ 5 r2 + a 2 a2 + b 2 2ab cos α 3 T 2. (6) Mab sin α
6 6 4 AUSWERTUNG 3 Durchführung Zunächst wird die Nullage der Drehwaage bestimmt, wobei sich alle vier Kugeln in einer Ebene befinden sollten. Anschließend werden die großen Kugeln vorsichtig um den Winkel α = 45 ausgelenkt. Über mindestens fünf Perioden wird nun in Abständen von je 15 Sekunden die Auslenkung des Lichtzeigers y(t) bestimmt. Auch die Maximalausschläge werden notiert. Jetzt werden die großen Kugeln um den Winkel 90 zurückgedreht, sodass ein Winkel von α = 45 gegenüber der anfänglichen Position eingestellt ist. Die obige Messung wird nun wiederholt. 4 Auswertung Zunächst werden aus den Extrema der Messwerte die neuen Ruhelagen der Torsionshantel ȳ 1 für α = 45 und ȳ 2 für α = 45 bestimmt. Hierfür wird für drei aufeinanderfolgende Extrema y 1,i, y 2,i, y 3,i die Formel ȳ i = 1 4 (y 1,i + 2 y 2,i + y 3,i ) verwendet. Anschließend wird ȳ i aus dem arithmetischen Mittel der so erhaltenen Werte bestimmt. Nach Abzug der ursprünglichen Ruhelage y 0 = cm ergibt sich: ȳ 1 = ( ± 0.05) cm ȳ 2 = (10.53 ± 0.05) cm Der Fehler ergibt sich hierbei aus dem fortgepflanzten Fehler der Messwerte, der mit σ Mess = 0.25 cm abgeschätzt wurde. Nach dem Auftragen der Messwerte (siehe Abb. 3, 4) erhält man aus einer Regression 1 die Werte für die Periodendauer der Schwingungen für die beiden Messungen: T 1 = (548.0 ± 0.3) s T 2 = (539.9 ± 0.2) s Bezeichnet l den senkrechten Abstand des Spiegels am Torsionsfaden zur Messskala, so lässt sich nun aus Gleichung 6 mit ϕ = 1 2 arctan ( ȳ i /l) je ein Wert für γ bestimmen: γ 1 = (5.90 ± 0.62) m 3 kg 1 s 2 γ 2 = (6.83 ± 0.61) m 3 kg 1 s 2 γ = (6.37 ± 0.44) m 3 kg 1 s 2 Der Fehler des Mittelwerts ergibt sich aus den fortgepflanzten Fehlern in γ i : σ γ,i = γ i (σϕ,i ϕ i ) 2 ( + 2 σ ) 2 ( T,i 2ab sin α + T i a 2 + b 2 2ab cos α σ α Die Abweichung vom Literaturwert [2] beträgt somit etwa 4.5 %. Das Torsionsmodul des Fadens ergibt sich durch gleichsetzen des Torsionsmoments mit dem durch die Schwerkraft der großen Kugeln ausgeübten Drehmoment. Diese sind durch die Gleichungen 2 und 3 gegeben. Es folgt: G π r4 F ϕ = γ 2 a M m 2 l F d 2 G = γ 4 a M m l F d 2 ϕ π r 4 F sin β sin β 1 via gnuplot, χ 2 red,1 χ2 red,2 0.65; hierfür wurde eine Gleichung für den gedämpften Oszillator zu einer Geradengleichung addiert. ) 2
7 7 130 Regression Messwerte y [cm] t [s] Abbildung 3: Messwerte der ersten Messreihe bei α = 45. Wie oben folgt d 2 = a 2 + b 2 2ab cos α mit sin β = b d sin δ und δ α. Insgesamt ergibt sich dann unter Verwendung von ϕ = 1 2 arctan ( ȳ i /l) das Torsionsmodul zu: 4 l F a b M m sin α G = γ π rf 4 ϕ a 2 + b 2 2 a b cos α 3 Es folgt dann schließlich mit dem Literaturwert für die Gravitationskonstante γ Lit = m 3 kg 1 s 1 das Torsionsmodul des Fadens: G = (1.53 ± 0.05) Pa
8 8 5 DISKUSSION Regression Messwerte 150 y [cm] t [s] Abbildung 4: Messwerte der zweiten Messreihe bei α = Diskussion Zunächst ist zu bemerken, mit welch geringem Messaufwand das Ergebnis zu erzielen war. Verglichen mit anderen Messvarianten scheint die Gravitationswaage also eine sehr simple, aber trotzdem recht genaue Messung zu erlauben. Es fällt jedoch auf, dass bei der ersten Messung die neue Ruhelage in Richtung der ursprünglichen Nulllage zu driften scheint. Eine Erklärung hierfür wäre, dass der Faden möglicherweise vor Beginn des Versuchs eine Torsion aufwies. Man kann annehmen, dass eine weitere Torsion des Fadens in die Richtung der bereits vorhandenen Verdrillung auch zu plastischen Verformungen führt, die dann die gemessenen Nichtlinearitäten hervorrufen. Dafür spricht auch, dass die Messungen bei Torsion in die andere Richtung den Erwartungen entsprachen, der Faden also wieder ein lineares Verhalten aufwies. Die Verdrillung in diese Richtung führte also wahrscheinlich nicht zur Verformung des Materials. Möglich wäre auch eine über die Dauer des Versuchs zunehmende statische Aufladung der Luft, da am Versuchstag ein Gewitter aufzog. Trotz des Kupfergitters könnte dies zu einer Störung der Messung führen. Grundsätzliche Fehlerquellen des Versuchs bestehen außerdem in der statischen Aufladung der Kugeln an sich, die bei zu großen Ladungen auch durch das Kupfergitter Kräfte auf die kleinen Kugeln auswirken würden. Auch die Masse des Gebäudes könnte sich auf die Genauigkeit des Versuchs auswirken. Da die verwendete Apparatur I in Fensternähe aufgebaut ist, könnte die einseitige Masseverteilung des Gebäudes zu einer grundsätzlichen Auslenkung der kleinen Kugeln beitragen.
9 9 A Tabellen und Grafiken Extremaler Messwert y i 1. Mittelung ȳ 2. Mittelung ȳ [cm] [cm] [cm] Tabelle 1: Extrema der Schwingungen bei Auslenkung α = 45 Extremaler Messwert y i 1. Mittelung ȳ 2. Mittelung ȳ [cm] [cm] [cm] Tabelle 2: Extrema der Schwingungen bei Auslenkung α = 45 Literatur [1] Große-Knetter, Jörn ; Schaaf, Peter: Das Physikalische Praktikum : Handbuch 2012 für Studentinnen und Studenten der Physik. Universitätsverlag Göttingen, 2012 [2] Lide, David P. (Hrsg.): CRC Handbook of Chemistry and Physics. 90. Ausgabe. CRC, 2010 [3] Meschede, Dieter: Gerthsen Physik. 23. Ausgabe. Springer, 2006
Die Gravitationswaage
Physikalisches Praktikum für das Hauptfach Physik Versuch 02 Die Gravitationswaage Sommersemester 2005 Name: Daniel Scholz Mitarbeiter: Hauke Rohmeyer EMail: [email protected] Gruppe: 13 Assistent:
Versuch 08 Der Dampfdruck von Wasser
Physikalisches A-Praktikum Versuch 08 Der Dampfdruck von Wasser Praktikanten: Julius Strake Niklas Bölter Gruppe: 17 Betreuer: Hendrik Schmidt Durchgeführt: 22.05.2012 Unterschrift: Inhaltsverzeichnis
Praktikum I PP Physikalisches Pendel
Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische
Elastizität und Torsion
INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 Elastizität und Torsion 1 Einleitung Ein Flachstab, der an den
PP Physikalisches Pendel
PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung
Name: Gruppe: Matrikel-Nummer:
Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober
Physikalisches Anfaengerpraktikum. Trägheitsmoment
Physikalisches Anfaengerpraktikum Trägheitsmoment Ausarbeitung von Marcel Engelhardt & David Weisgerber (Gruppe 37) Montag, 1. März 005 email: [email protected] [email protected] 1 1. Einleitung
1.2 Schwingungen von gekoppelten Pendeln
0 1. Schwingungen von gekoppelten Pendeln Aufgaben In diesem Experiment werden die Schwingungen von zwei Pendeln untersucht, die durch eine Feder miteinander gekoppelt sind. Für verschiedene Kopplungsstärken
Fachhochschule Flensburg. Torsionsschwingungen
Name : Fachhochschule Flensburg Fachbereich Technik Institut für Physik und Werkstoffe Name: Versuch-Nr: M5 Torsionsschwingungen Gliederung: Seite 1. Das Hookesche Gesetz für Torsion 1 1.1 Grundlagen der
Versuch 1 Der Pohlsche Resonator
Physikalisches A-Praktikum Versuch 1 Der Pohlsche Resonator Praktikanten: Julius Strake Niklas Bölter Gruppe: 17 Betreuer: Hendrik Schmidt Durchgeführt: 26.6.212 Unterschrift: Inhaltsverzeichnis 1 Einleitung
Drehwaage von Cavendish
Drehwaage von Cavendish 1. Disposition Wir vermuten, dass sich die zwei Stahlkugeln, welche symmetrisch platziert sind, durch die zwei grösseren Kugeln angezogen werden und sich dadurch verschieben. In
3. Versuch M2 - Trägheitsmomente. zum Physikalischen Praktikum
HUMBOLDT-UNIVERSITÄT ZU BERLIN INSTITUT FÜR PHYSIK 3. Versuch M2 - Trägheitsmomente zum Physikalischen Praktikum Bearbeitet von: Andreas Prang 504337 Jens Pöthig Abgabe in der Übung am 10.05.2005 Anlagen:
Versuch dp : Drehpendel
U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch dp : Drehpendel Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung
Resonanz Versuchsvorbereitung
Versuche P1-1,, Resonanz Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 0.1.010 1 1 Vorwort Im Praktikumsversuch,,Resonanz geht es um freie
Versuch 5 Kapillarität und Viskosität
Physikalisches A-Praktikum Versuch 5 Kapillarität und Viskosität Praktikanten: Julius Strake Niklas Bölter Gruppe: 17 Betreuer: Hendrik Schmidt Durchgeführt: 24.04.2012 Unterschrift: Inhaltsverzeichnis
Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund
Fadenpendel M) Ziel des Versuches Der Aufbau dieses Versuches ist denkbar einfach: eine Kugel hängt an einem Faden. Der Zusammenhang zwischen der Fadenlänge und der Schwingungsdauer ist nicht schwer zu
Versuch 11 Messung großer Widerstände
Physikalisches A-Praktikum Versuch 11 Messung großer Widerstände Praktikanten: Gruppe: Julius Strake Niklas Bölter B006 Betreuer: Johannes Schmidt Durchgeführt: 13.09.2012 Unterschrift: E-Mail: [email protected]
Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( )
Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 005/06 Julian Merkert (1999) Versuch: P1-0 Pendel - Vorbereitung - Vorbemerkung Das einfachste Modell, um einen Pendelversuch zu beschreiben,
Protokoll Grundpraktikum I: M3 - Elastizität und Torsion
Protokoll Grundpraktikum I: M3 - Elastizität und Torsion Sebastian Pfitzner. Mai 13 Durchführung: Sebastian Pfitzner (553983), Anna Andrle (5577) Arbeitsplatz: Platz 4 Betreuer: Jacob Michael Budau Versuchsdatum:
M1 Maxwellsches Rad. 1. Grundlagen
M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten
120 Gekoppelte Pendel
120 Gekoppelte Pendel 1. Aufgaben 1.1 Messen Sie die Schwingungsdauer zweier gekoppelter Pendel bei gleichsinniger und gegensinniger Schwingung. 1.2 Messen Sie die Schwingungs- und Schwebungsdauer bei
Versuch P1-20 Pendel Vorbereitung
Versuch P1-0 Pendel Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 9. Januar 01 Inhaltsverzeichnis Aufgabe 1 1.1 Reduzierte Pendellänge............................. 1. Fallbeschleunigung
Versuch 4 Kreiselpräzession
Physikalisches A-Praktikum Versuch 4 Kreiselpräzession Protokollant: Julius Strake Mitpraktikant Niklas Bölter Gruppe: 17 Betreuer: Hendrik Schmidt Durchgeführt: 17.07.2012 Unterschrift: Inhaltsverzeichnis
Übungsblatt 13 Physik für Ingenieure 1
Übungsblatt 13 Physik für Ingenieure 1 Othmar Marti, (othmarmarti@physikuni-ulmde 1 00 1 Aufgaben für die Übungsstunden Schwingungen 1 Zuerst nachdenken, dann in Ihrer Vorlesungsmitschrift nachschauen
S1 Bestimmung von Trägheitsmomenten
Christian Müller Jan Philipp Dietrich S1 Bestimmung von Trägheitsmomenten Versuch 1: a) Versuchserläuterung b) Messwerte c) Berechnung der Messunsicherheit ud u Versuch 2: a) Erläuterungen zum Versuchsaufbau
Das Gasinterferometer
Physikalisches Praktikum für das Hautfach Physik Versuch 24 Das Gasinterferometer Wintersemester 2005 / 2006 Name: Mitarbeiter: EMail: Grue: Daniel Scholz Hauke Rohmeyer [email protected] B9 Assistent:
Klassische Theoretische Physik II (Theorie B) Sommersemester 2016
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD
Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch. Münster, den
M1 Pendel Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch Münster, den 15.01.000 INHALTSVERZEICHNIS 1. Einleitung. Theoretische Grundlagen.1 Das mathematische Pendel. Das Federpendel.3 Parallel- und
F A C H A R B E I T. Leistungskurs Physik 12 (2005/06) BESTIMMUNG DER GRAVITATIONSKONSTANTEN. Kevin Kaatz. Städt. Gymnasium Moltkestraße Gummersbach
F A C H A R B E I T Leistungskurs Physik 1 (005/06) BESTIMMUNG DER GRAVITATIONSKONSTANTEN Kevin Kaatz Facharbeit Physik LK 1 Bestimmung der Gravitationskonstanten Kevin Kaatz Vorwort (Anmerkung zur Facharbeit)
Versuch M1 für Nebenfächler mathematisches Pendel
Versuch M1 für Nebenfächler mathematisches Pendel I. Physikalisches Institut, Raum HS126 Stand: 19. April 2016 generelle Bemerkungen bitte Versuchsaufbau (rechts, mitte, links) angeben bitte Versuchspartner
Versuch M1: Feder- und Torsionsschwingungen
Versuch M1: Feder- und Torsionsschwingungen Aufgaben: Federschwingungen: 1 Bestimmen Sie durch Messung der Dehnung in Abhängigkeit von der Belastung die Richtgröße D (Federkonstante k) von zwei Schraubenfedern
Fit in Mathe. Juni Klassenstufe 10. Trigonometrie mit Sinus- und Kosinussatz
Thema Musterlösungen 1 Trigonometrie mit Sinus- und Kosinussatz Vorbemerkungen Für Winkelangaben wird hier, wenn nicht anders angegeben, das Bogenmaß verwendet. Es gilt 1 rad = 360 π 57, bezeichnet das
Klausur zur Vorlesung E1 Mechanik (6 ECTS)
Ludwig Maximilians Universität München Fakultät für Physik Klausur zur Vorlesung E1 Mechanik WS 2013/2014 17. Feb. 2014 für Studierende im Lehramt und Nebenfach Physik (6 ECTS) Prof. J. Rädler, Prof. H.
Physik GK ph1, 2. KA Kreisbew., Schwingungen und Wellen Lösung
Aufgabe 1: Kreisbewegung Einige Spielplätze haben sogenannte Drehscheiben: Kreisförmige Plattformen, die in Rotation versetzt werden können. Wir betrachten eine Drehplattform mit einem Radius von r 0 =m,
Versuch M6 für Physiker Trägheitsmoment und Drehschwingungen
Versuch M6 für Physiker Trägheitsmoment und Drehschwingungen I. Physikalisches Institut, Raum HS126 Stand: 21. Oktober 2015 Generelle Bemerkungen bitte Versuchsaufbau (rechts, mitte, links) angeben bitte
Übungsblatt 4 ( )
Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 0 Übungsblatt 4 (08.06.0) ) Geladene Kugeln Zwei homogen geladene Eisenkugeln mit den Ladungen Q = q = q = 0, 0µC haben einen
P1-12,22 AUSWERTUNG VERSUCH RESONANZ
P1-12,22 AUSWERTUNG VERSUCH RESONANZ GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 0.1. Drehpendel - Harmonischer Oszillator. Bei dem Drehpendel handelt es sich um einen harmonischen Oszillator. Das Trägheitsmoment,
Themengebiet: Mechanik. Tabelle 1: Gegenüberstellung der sich entsprechenden Größen bei Translation und Rotation
Seite 1 1 Literatur Themengebiet: Mechanik W. Kranzer, So interessant ist Physik, Köln, 1982, S. 63-65, 331-335 R. L. Page, The Physics of Human Movement, Exeter, 1978, S. 45-56 2 Grundlagen 2.1, Drehmoment,
Bestimmung der Newtonschen. Gravitationskonstante mit Hilfe der. Gravitationswaage
Versuchsprotokoll PL-I Berlin, den 15. Mai 000 Bestimmung der Newtonschen Gravitationskonstante mit Hilfe der Gravitationswaage Isaac Newton 164 bis 177 Der Versuch wurde aufgebaut und durchgeführt in
Theoretische Physik: Mechanik
Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und
2. Klausur zur Theoretischen Physik I (Mechanik)
2. Klausur zur Theoretischen Physik I (echanik) 09.07.2004 Aufgabe 1 Physikalisches Pendel 4 Punkte Eine homogene, kreisförmige, dünne Platte mit Radius R und asse ist am Punkt P so aufgehängt, daß sie
Amplitude, Periode und Frequenz Lesetext, Lückentext, Arbeitsblatt
Lehrerinformation 1/7 Arbeitsauftrag In Partnerarbeiten sollen die Informationen zum Schall zusammengetragen werden und mithilfe des Arbeitsblattes sollen Lückentexte ausgefüllt, Experimente durchgeführt
3. Versuch: Fadenpendel
Physikpraktikum für Pharmazeuten Universität Regensburg Fakultät Physik 3. Versuch: Fadenpendel In diesem Versuch werden Sie mit den mechanischen Grundlagen vertraut gemacht. Anhand eines Fadenpendels
Im Folgenden wird die Bedeutung der auftretenden Parameter A, ω, ϕ untersucht. 1. y(t) = A sin t Skizze: A = 1, 2, 1 /2
19 9. Harmonische Schwingungen (Sinusschwingungen) Der Punkt P rotiert gleichförmig in der Grundebene um den Ursprung O mit der Winkelgeschwindigkeit in positivem Drehsinn. Zur Zeit t = 0 schliesst uuur
Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum
Fachrichtung Physik Physikalisches Grundpraktikum Versuch: RO Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010 Rotation Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Allgemeine Grundlagen 2 2.1
Versuch 17.2 Der Transistor
Physikalisches A-Praktikum Versuch 17.2 Der Transistor Praktikanten: Gruppe: Julius Strake Niklas Bölter B006 Betreuer: Johannes Schmidt Durchgeführt: 11.09.2012 Unterschrift: E-Mail: [email protected]
Aufgabe 1: Elektro-mechanischer Oszillator
37. Internationale Physik-Olympiade Singapur 6 Lösungen zur zweiten Runde R. Reindl Aufgabe : Elektro-mechanischer Oszillator Formeln zum Plattenkondensator mit der Plattenfläche S, dem Plattenabstand
Theoretische Physik I: Lösungen Blatt Michael Czopnik
Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin
Physik für Biologen und Geowissenschaftler 15. Juni Grundlagen 2 SI - Einheiten... 2 Fehlerberechnung... 2
Formelsammlung Physik für Biologen und Geowissenschaftler 15. Juni 2005 Inhaltsverzeichnis 1 Grundlagen 2 SI - Einheiten............................................... 2 Fehlerberechnung.............................................
Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen
Experimentalphysik für ET Aufgabensammlung 1. Erhaltungsgrößen An einem massenlosen Faden der Länge L = 1 m hängt ein Holzklotz mit der Masse m 2 = 1 kg. Eine Kugel der Masse m 1 = 15 g wird mit der Geschwindigkeit
3.2 Das physikalische Pendel (Körperpendel)
18 3 Pendelschwingungen 32 Das physikalische Pendel (Körperpendel) Ein starrer Körper (Masse m, Schwerpunkt S, Massenträgheitsmoment J 0 ) ist um eine horizontale Achse durch 0 frei drehbar gelagert (Bild
Versuch 14 Mathematisches Pendel
Versuch 14 Mathematisches Pendel II Literatur W. Walcher, Praktikum der Physik, B.G.Teubner Stuttgart. Standardwerke der Physik: Gerthsen, Bergmann-Schäfer, Tipler. Homepage des Praktikums: http://www.physi.uni-heidelberg.de/einrichtungen/ap/
Mathematisches und physisches Pendel Harmonische und anharmonische Schwingungen
Ausarbeitung zum Versuch Mathematisches und physisches Pendel Harmonische und anharmonische Schwingungen Versuch 24 des physikalischen Grundpraktikums Kurs I, Teil II an der Universität Würzburg Sommersemester
Messung der Lichtgeschwindigkeit mit dem Foucault schen Drehspiegelversuch
PeP Vom Kerzenlicht zum Laser Versuchsanleitung Versuch 3: Messung der Lichtgeschwindigkeit Messung der Lichtgeschwindigkeit mit dem Foucault schen Drehspiegelversuch Theoretische Grundlagen: Drehbewegungen
Experimentalphysik E1
Experimentalphysik E1 6. Nov. Gravitation + Planetenbewegung Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html Kraft = Impulsstrom F = d p dt = dm dt v = dn
Vorbereitung. Resonanz. Carsten Röttele. 17. Januar Drehpendel, freie Schwingungen 3. 2 Drehpendel, freie gedämpfte Schwingungen 3
Vorbereitung Resonanz Carsten Röttele 17. Januar 01 Inhaltsverzeichnis 1 Drehpendel, freie Schwingungen 3 Drehpendel, freie gedämpfte Schwingungen 3 3 Messung der Winkelrichtgröße D 4 4 Drehpendel, erzwungene
Geometrische Optik Versuchsauswertung
Versuche P-3,40,4 Geometrische Optik Versuchsauswertung Marco A. Harrendorf, Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 08..200 Inhaltsverzeichnis Versuch
Aus der Schwingungsdauer eines physikalischen Pendels.
2.4 Trägheitsmoment aus Winkelbeschleunigung 69 2.4. Trägheitsmoment aus Winkelbeschleunigung Ziel Bestimmung des Trägheitsmomentes eines Rades nach zwei Methoden: Aus der Winkelbeschleunigung, die es
Laborversuche zur Physik I. Versuch I-03: Pohlsches Rad
Laborversuche zur Physik I Versuch I-03: Pohlsches Rad Versuchsleiter: Autoren: Kuschel Kai Dinges Michael Beer Gruppe: 15 Versuchsdatum: 5.12.2005 Inhaltsverzeichnis 2 Aufgaben und Hinweise 2 2.1 Inbetriebnahme...................................
Lichtgeschwindigkeit Versuchsauswertung
Versuche P1-42,44 Lichtgeschwindigkeit Versuchsauswertung Marco A. Harrendorf, Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 22.11.2010 1 Inhaltsverzeichnis
Theoretische Mechanik
Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten
Mechanische Schwingungen Aufgaben 1
Mechanische Schwingungen Aufgaben 1 1. Experiment mit Fadenpendel Zum Bestimmen der Fallbeschleunigung wurde ein Fadenpendel verwendet. Mit der Fadenlänge l 1 wurde eine Periodendauer von T 1 =4,0 s und
Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik
Fakultät für Physik Wintersemester 16/17 Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Dr. Andreas K. Hüttel Blatt 8 / 7.1.16 1. Schwerpunkte Berechnen Sie den Schwerpunkt in
Versuchsvorbereitung: P1-42, 44: Lichtgeschwindigkeitsmessung
Praktikum Klassische Physik I Versuchsvorbereitung: P1-42, 44: Lichtgeschwindigkeitsmessung Christian Buntin Gruppe Mo-11 Karlsruhe, 30. November 2009 Inhaltsverzeichnis 1 Drehspiegelmethode 2 1.1 Vorbereitung...............................
Wiederholungsaufgaben Klasse 10
Wiederholungsaufgaben Klasse 10 (Lineare und quadratische Funktionen / Sinus, Kosinus, Tangens und Anwendungen) 1. In welchem Punkt schneiden sich zwei Geraden, wenn eine Gerade g durch die Punkte A(1
Messung der Astronomischen Einheit durch Spektroskopie der Sonne
Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Messung der Astronomischen Einheit durch Spektroskopie der Sonne (mit Lösungen) 1 Einleitung
Praktikum Physik. Protokoll zum Versuch 4: Schallwellen. Durchgeführt am Gruppe X
Praktikum Physik Protokoll zum Versuch 4: Schallwellen Durchgeführt am 03.11.2011 Gruppe X Name 1 und Name 2 ([email protected]) ([email protected]) Betreuer: Wir bestätigen hiermit, dass wir das Protokoll
Schwerpunktfach Physik und Anwendungen der Mathematik
Schriftliche Maturitätsprüfung 2014 Kantonsschule Reussbühl Luzern Schwerpunktfach Physik und Anwendungen der Mathematik Prüfende Lehrpersonen Klasse Hannes Ernst ([email protected]) Luigi Brovelli
F-Praktikum B. WS 2005/2006 RWTH Aachen Versuch XIV - Stern-Gerlach Experiment
F-Praktikum B WS 2005/2006 RWTH Aachen Versuch XIV - Stern-Gerlach Experiment Inhaltsverzeichnis 1 Motivation, Prinzip und Ziele 3 2 Aufbau und Durchführung des Experiments 4 3 Auswertung 4 3.1 Ziele................................................
Die Entwicklung des Erde-Mond-Systems
THEORETISCHE AUFGABE Nr. 1 Die Entwicklung des Erde-Mond-Systems Wissenschaftler können den Abstand Erde-Mond mit großer Genauigkeit bestimmen. Sie erreichen dies, indem sie einen Laserstrahl an einem
Physik LK 11, 3. Klausur Schwingungen und Wellen Lösung
Die Rechnungen bitte vollständig angeben und die Einheiten mitrechnen. Antwortsätze schreiben. Die Reibung ist bei allen Aufgaben zu vernachlässigen, wenn nicht explizit anders verlangt. Besondere Näherungen
Übungen zu Physik 1 für Maschinenwesen
Physikdepartment E13 WS 2011/12 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung
Trägheitsmomente starrer Körper
Trägheitsmomente starrer Körper Mit Hilfe von Drehschwingungen sollen für einen Würfel und einen Quader die Trägheitsmomente für verschiedene Drehachsen durch den Schwerpunkt gemessen werden. Das zugehörige
Die Lichtbrechung am gleichseitigen Prisma bei Totalreflexion an der zweiten Grenzfläche (Verfasser: Prof. Dr. Klaus Dräger)
Die Lichtbrechung am gleichseitigen Prisma bei Totalreflexion an der zweiten Grenzfläche (Verfasser: Prof. Dr. Klaus Dräger) Roger Bacon : de multiplicatone specierum Klassenstufe Oberthemen Unterthemen
Das Foucaultsche Pendel
Das Foucaultsche Pendel Inhaltsverzeichnis 1. Vorwort 2. Einleitung 3. Material und Methoden 4. Resultate 5. Diskussion 6. Schlusswort 7. Literaturliste Vorwort Wir beschäftigen uns mit dem Foucaultschen
Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung
Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Ein Kondensator besteht aus zwei horizontal angeordneten, quadratischen
Versuch 13 Magnetfeld von Spulen
Physikalisches A-Praktikum Versuch 3 Magnetfeld von Spulen Protokollant: Mitpraktikant: Gruppe: Niklas Bölter Julius Strake B6 Betreuer: Johannes Schmidt Durchgeführt: 7.9.22 Unterschrift: E-Mail: [email protected]
Experimentalphysik I: Mechanik
Ferienkurs Experimentalphysik I: Mechanik Wintersemester 15/16 Probeklausur - Lösung Technische Universität München 1 Fakultät für Physik 1. Wilhelm Tell (13 Punkte) Wilhelm Tell will mit einem Pfeil (m
Praktikum MI Mikroskop
Praktikum MI Mikroskop Florian Jessen (Theorie) Hanno Rein (Auswertung) betreut durch Christoph von Cube 16. Januar 2004 1 Vorwort Da der Mensch mit seinen Augen nur Objekte bestimmter Größe wahrnehmen
Fadenpendel. Phase Inhalt Sozialform Medien Standards Hinführung Fadenpendel am Beispiel einer Schiffschaukel Plenum Arbeitsblätter E1
.1 Stundenverlaufsplan Phase Inhalt Sozialform Medien Standards Hinführung Fadenpendel am Beispiel einer Schiffschaukel Plenum Arbeitsblätter E1 Hypothesenbildung Von welchen Größen hängt die Periode eines
Versuch 8: Der Dampfdruck von Wasser
Versuch 8: Der Dampfdruck von Wasser Inhaltsverzeichnis 1 Einführung 3 2 Theorie 3 2.1 Reale Gase.................................... 3 2.2 Dampfdruck................................... 3 2.3 Arrhenius-Plot.................................
VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme
V. Grundbegriffe und -ergebnisse der Magnetostatik 5 V..4 Magnetisches Feld induziert durch einfache Ladungsströme m Fall eines Ladungsstroms durch einen dünnen Draht vereinfacht sich das ntegral im Biot
KREISFUNKTIONEN. Allgemeines
KREISFUNKTIONEN Allgemeines Um die Graphen der Winkelfunktionen zeichnen und verstehen zu können, ist es wichtig, den Einheitskreis zu kennen. Zunächst stellt man sich einen Kreis mit dem Radius 1 vor.
Aufgabe 1: Klausur Physik für Maschinenbauer (SS 2009) Lösungen 1. (10 Punkte)
Klausur Physik für Maschinenbauer (SS 2009) Lösungen 1 Aufgabe 1: Schiefe Ebene Auf einer reibungsfreien, schiefen Ebene mit dem Winkel 30 befindet sich eine Kiste der Masse m = 100 kg zunächst in Ruhe.
IE1. Modul Elektrizitätslehre. Coulomb sches Gesetz und ε 0
IE1 Modul Elektrizitätslehre Coulomb sches Gesetz und ε 0 In diesem Experiment soll das Coulomb sche Gesetz experimentell überprüft werden. Aus den Messungen soll weiterhin ε 0 - die Perimittivität des
PP - Physikalisches Pendel Blockpraktikum Frühjahr 2005
PP - Physikaisches Pende Bockpraktikum Frühjahr 2005 Regina Schweizer, Aexander Seizinger, Tobias Müer Assistent Heiko Eite Tübingen, den 14. Apri 2005 1 Theoretische Grundagen 1.1 Mathematisches Pende
Blatt 10. Hamilton-Formalismus- Lösungsvorschlag
Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus
Physikprotokoll: Fehlerrechnung. Martin Henning / Torben Zech / Abdurrahman Namdar / Juni 2006
Physikprotokoll: Fehlerrechnung Martin Henning / 736150 Torben Zech / 7388450 Abdurrahman Namdar / 739068 1. Juni 2006 1 Inhaltsverzeichnis 1 Einleitung 3 2 Vorbereitungen 3 3 Messungen und Auswertungen
Praktikumssemesterarbeit für Numerik Aufgabe 1 HU-Berlin, Sommersemester 2005
Praktikumssemesterarbeit für Numerik Aufgabe HU-Berlin, Sommersemester 2005 Mario Krell Volker Grabsch 24. Juli 2005 Inhaltsverzeichnis Herleitung aus der Physik. Voraussetzungen und Annahmen Allgemein
Übungsaufgaben Physik II
Fachhochschule Dortmund Blatt 1 1. Ein Auto hat leer die Masse 740 kg. Eine Nutzlast von 300 kg senkt den Wagen in den Radfedern um 6 cm ab. Welche Periodendauer hat die vertikale Schwingung, die der Wagen
Satellitennavigation-SS 2011
Satellitennavigation-SS 011 LVA.-Nr. 183.060 Gerhard H. Schildt Buch zur Vorlesung: ISBN 978-3-950518-0-7 erschienen 008 LYK Informationstechnik GmbH www.lyk.at [email protected] Satellitennavigation GPS,
Vorkurs Mathematik Übungen zu Komplexen Zahlen
Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten
(von Punkt A nach Punkt B) gemessen und auch die entsprechenden Zenitwinkel z B
Aufgabe a.1 Verwendet dieses elementare geometrische Verhältnis der Strecken, um die Höhe eines Turmes oder eines sonstigen hohen Gebäudes in eurer Nähe zu bestimmen. Dokumentiert euer Experiment. Wiederholt
1. Unterteilung von allgemeinen Dreiecken in rechtwinklige
Trigonometrie am allgemeinen Dreieck Wir können auch die Seiten und Winkel von allgemeinen Dreiecken mit Hilfe der Trigonometrie berechnen. Die einfachste Variante besteht darin, ein beliebiges Dreieck
Vektorrechnung in der Physik und Drehbewegungen
Vektorrechnung in der Physik und Drehbewegungen 26. November 2008 Vektoren Vektoren sind bestimmt durch a) Betrag und b) Richtung Beispiel Darstellung in 3 Dimensionen: x k = y z Vektor in kartesischen
Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.
Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m
