Querschnittsaufgabe: Messung des Magnetfeldes unterhalb einer Hochspannungsfreileitung

Größe: px
Ab Seite anzeigen:

Download "Querschnittsaufgabe: Messung des Magnetfeldes unterhalb einer Hochspannungsfreileitung"

Transkript

1 orlesung "Grunlagen er Elektrotechnik" Seite von 5 Querschnittsaufgabe: Messung es Magnetfeles unterhalb einer Hochspannungsfreileitung. Ziel Die folgene Aufgabe soll azu ienen, einige Methoen un Kenntnisse zu en verschieenen Themen er orlesungen Grunlagen er Elektrotechnik + auf eine querschnittliche Aufgabenstellung anzuwenen. n ieser Aufgabe betrifft as hauptsächlich ie Themen Wechselstrom, Drehstrom Magnetisches Fel, Durchflutungsgesetz, nuktionsgesetz Elektronik, Operationsverstärker Die Aufgabe ist bewusst unscharf gestellt.. Problem un Lösungsansatz Unterhalb jeer Freileitung wir urch en elektrischen Strom in en Leitern ein magnetisches Fel erzeugt. Es soll ein Messgerät entworfen weren, mit em as magnetische Fel unterhalb einer 8 k-freileitung gemessen weren kann. Das Messgerät soll aus einer Spule (ohne Eisen) bestehen, in er as von er Freileitung erzeugte Fel eine Spannung inuziert. Diese Spannung wir urch einen oer mehrere Operationsverstärker verstärkt. Am Ausgang es erstärkers soll ein (Wechselspannungs-) oltmeter angeschlossen sein, as bei Nennstrom in er Freileitung eine Spannung von etwa (Effektivwert) anzeigen soll. Der erstärker soll als Tiefpass zur Unterrückung von höherfrequenten Einflüssen geschaltet sein. Für ie Auslegung sin folgene Einzelfragen zu klären:. Wie stark etwa ist as magnetische Fel un welche ichtung hat es? (stromlos) Freileitung L L Messspule L erstärker. Wie ist er Zusammenhang zwischen Querschnittsfläche, Winungszahl un inuzierter Spannung (bei Nennstrom in er Freileitung) für eine Messspule?. Wie könnte ie Spule aussehen, wenn man mit einer erstärkerstufe auskommen möchte? 4. Wäre ie Spule wesentlich einfacher, wenn man zwei erstärkerstufen verwenen würe? 5. Wie müsste man en erstärker beschalten, amit sich ein Tiefpassverhalten ergibt? 6. Wie müsste man ie Grenzfrequenz für en Tiefpass sinnvoll wählen un wie müsste afür er Operationsverstärker beschaltet weren?. Berechnungen.. Stärke un ichtung es magnetischen Feles Die Skizze zeigt ie ungefähre Lage er rei Leiter es Drehstromsstems. n er ealität besteht jeer Leiter aus vier einzelnen Leitern (iererbünel). Wegen es großen Abstanes vom Messort kann as aber als ein Leiter angesehen weren. Für ie Abschätzung er magnetischen Felstärke am Ort er Messspule wir er Einfluss er Ere außer Acht gelassen. Außerem wir mittig unterhalb er rei Leiter gemessen un er Einfluss es zweiten Drehstromsstems auf er anern Mastseite nicht berücksichtigt. Dann ergibt sich am Ort er Messspule urch en Leiter, er vom Strom (in üblicher Weise in er kompleen Darstellung er Wechselgrößen) urchflossen ist, as Fel [Skript ET, Gleichung 9.5]: Messort b m L α L a m c m L n A H ( ) α H ( ) H ( ) Technische Universität Hamburg-Harburg, nstitut für Elektrische Energiessteme un Automation Prof. Dr.-ng. G. Ackermann, Eißenorfer Str. 8, 7 Hamburg

2 orlesung "Grunlagen er Elektrotechnik" Seite von 5 ( ) H a + b Für ie Überlagerung er Feler er rei Leiter ist eine Aufteilung in ie vertikale un horizontale Komponente nötig, also H ( ) H( ) cos( α) π H ( ) H( ) sin( α) (.) π + ( a b ) Sinngemäß wir für ie rei aneren Leiter verfahren. Das gesamte Fel ergibt sich aus er Aition er einzelnen Komponenten. Für as Drehstromsstem ist [ Skrip ET, Kap. 7.] + + Damit kann ie Summenformel vereinfacht weren, wie in er unten stehenen Tabelle argestellt ist. n er Messung soll nur ie horizontale Komponente gemessen weren. ertiefene Frage: Was kann (bei einem smmetrischen Drehstromsstem) über ie zeitliche Phasenlage zwischen en beien Felkomponeten gesagt weren un wie groß ist ie gesamte maimal vorkommene Felstärke? Was kann über ie ichtung ausgesagt weren? Leiter, Größe H H Summe Scheitelwert für Nennstrom Hˆ + π ( a b ) π ( a c) + a π a c + ( a + b ) n a π + + ( ) b n b + a c ( a b ) π ( a b ) Hˆ mit en gegebenen Zahlenwerten H ˆ 7,5 A/m ( B ˆ 9,4 T ) H ˆ 5,7 A/m (kein Zahlenreher!) (Zum ergleich: Das stationäre Magnetfel er Ere hat in Deutschlan eine Flussichte von B Ere 5 T.).. Spannung abhängig von Querschnitt un Winungszahl Nach em nuktionsgesetz ist für eine ünne Spule mit er Querschnittsfläche A un er Winungszahl n ie inuzierte Spannung [Skrip ET, Gleichung 9.8]: Mit u i () () ( A n ) ΦSpule, H t H t (.) t t H t Hˆ t () sin( ω ) folgt er Effektivwert [Skript ET, Kap. 5..5] er inuzierten Spannung Technische Universität Hamburg-Harburg, nstitut für Elektrische Energiessteme un Automation Prof. Dr.-ng. G. Ackermann, Eißenorfer Str. 8, 7 Hamburg

3 orlesung "Grunlagen er Elektrotechnik" Seite von 5 U ˆ ieff, ω H A n un bei 5 Hz un mit er oben ermittelten Felstärke folgt: U A n,9 (.) m ieff, Wollte man ohne erstärker auskommen, ann könnte man etwa eine Spule mit einem Durchmesser von,5 m un 46 Winungen bauen... Spule für eine erstärkerstufe Es wir ein üblicher Operationverstärker mit einer Leerlaufverstärkung von 5 angesetzt. Damit ie Leerlaufverstärkung hinreichen wenig Einfluss hat, muss ausreichen gegengekoppelt weren. Die erstärkung ergibt sich [Skript ET, Kap..]: + λ Ab etwa λ > ist ausreichen unabhängig von er Leerlaufverstärkung es Operationsverstärkers. Mit em Faktor als eserve kann mit einer erstärkerstufe somit maimal ie erstärkung 5 erreicht weren. Damit folgt aus Gleichung (.) A n 4,8 5 m A n,96 m was z. B. mit einer Spule von cm Durchmesser un Winungen zu erreichen wäre..4. Spule für zwei erstärkerstufen Man käme ann mit A n 5 Winungen.,9 m aus, also z. B. mit einer Spule mit cm Durchmesser un leiglich Anmerkung: Die sehr hohe erstärkung macht ie Anornung sehr empfinlich gegen Störungen..5. erstärker mit Tiefpassverhalten.5.. Alternative: Nicht-invertierener erstärker Mit zunehmener Frequenz muss ie Gegenkopplungsimpeanz abnehmen. Deshalb kommt z. B. ie argestellte Schaltung in Frage. Dafür ergibt sich ie erstärkung für sinusförmige Größen [Skript ET, Kap...6] + _ + C U U j C A + E ( + ω ) für ( + j ω C ) (.4) U E U A Die Messspule wir in ieser Schaltung nicht von einem Strom urchflossen, eshalb braucht ie nuktivität er Messspule nicht berücksichtigt zu weren: C.5.. Alternative: nvertierener erstärker Für ie argestellte Schaltung ergibt sich ie erstärkung für sinusförmige Größen [Skript ET, Kap...6] UA (.5) U + j ω C E ( ) Jetzt muss aber berücksichtigt weren, ass ie Messspule von L _ + U i U E U A Technische Universität Hamburg-Harburg, nstitut für Elektrische Energiessteme un Automation Prof. Dr.-ng. G. Ackermann, Eißenorfer Str. 8, 7 Hamburg

4 orlesung "Grunlagen er Elektrotechnik" Seite 4 von 5 einem Strom urchflossen wir. Die gesamte Spulenspannung setzt sich also aus er von em äußeren Fel inuzierten Spannung (Gleichung (.)) sowie er urch ie Selbstinuktivität verursachten Spannung zusammen: () ( ) H t i() t u A n + L t t Das führt auf as in er Skizze argestellte Ersatzschaltbil für ie Messspule. Bei er Berechnung er erstärkung ist eshalb in Gleichung (.5) formal er Wierstan urch ie eihenschaltung aus un L zu ersetzen, es ergibt sich also insgesamt: UA (.6) U + j ω L + j ω C i ( ) ( ) (Dies ist ein Tiefpass. Ornung, weil bei hohen Frequnzen ie erstärkung quaratisch mit er Frequenz abnimmt.) Es ist zu prüfen, ob L groß genug ist, amit es sich überhaupt nenneswert auswirkt..6. Grenzfrequenz für en erstärker.6.. Alternative: Nicht-invertierener erstärker Ziel ist es, hauptsächlich as urch en 5-Hz-Strom erzeugte Fel zu messen. Es kommen meist auch geringe Anteile mit 5 Hz, 5 Hz un höherer Frequenz vor. Deshalb wäre es vorteilhaft, wenn man bei f n 5 Hz fast ie maimale erstärkung un bei 5 Hz schon eine wesentlich reuzierte erstärkung hätte. Setzt man z. B. in Gleichung (.) ω C,4 mit ω f ein, ann folgt aus Gleichung (.4) mit er Gleichstromverstärkung n n n G f ( 5 Hz) G G,98 +,4 f ( 5 Hz) G G,447, + 5,4 ( ) womit ie Beingung brauchbar erfüllt wäre. Es folgen somit ie Beingungen zur Bestimmung er Bauelemente:,4 C,7 ms π fn 5 Für sollte etwa gelten kω < < MΩ, um einerseits einen zu großen Strom vom Ausgang es erstärkers zu vermeien un anerseits auch zu vermeien, ass eine nicht-ieale solierung en Wierstanswert zu sehr beeinflusst. Für ie beien Grenzfälle sowie einen Fall für Werte azwischen erhält man folgene Dimensionierungen: Alternative a) Alternative b) Alternative c) kω kω MΩ Ω 4 Ω kω C 7 nf 6,4 nf,7 nf Alternative b) scheint plausibel mit eserve zu beien Grenzen zu sein. Technische Universität Hamburg-Harburg, nstitut für Elektrische Energiessteme un Automation Prof. Dr.-ng. G. Ackermann, Eißenorfer Str. 8, 7 Hamburg

5 orlesung "Grunlagen er Elektrotechnik" Seite 5 von Alternative: nvertierener erstärker Gegenüber em nicht-invertierenen erstärker ist hauptsächlich er Einfluss er nuktivität er Messspule zu untersuchen. Für einen Drahtring mit em Durchmesser a, un einem Drahturchmesser kann man er Literatur für ie Selbstinuktivität entnehmen: L a a ln Nimmt man statt er einen Winung n Winungen Draht, ann ist ie nuktivität mit n umzurechnen [Skript ET, Gleichung 9.]. Durch Betrachtung er Geometrie man kann mit kreisförmigen Leitern en aum nur zu etwa 9 % füllen - erhält man aus em Durchmessser D es isolierten Drahtes en Durchmesser es Drahtbünels (für nicht allzu kleines n:) D n,9 Somit folgt für ie Selbstinuktivität er Spule: L n a a ln Setzt man als Drahturchmesser, mm an un nimmt wie in Kapitel. vorgeschlagen einen Spulenurchmesser von cm un Winungen, ann ist:, mm, mm,9, m L, ln,5 mh Damit ergibt sich er Einfluss er Spuleninuktivität für Gleichung (.6) mit en in Kapitel.6. angegebenen Alternativen. Alternative a) Alternative b) Alternative c) kω kω MΩ Ω 4 Ω kω Der Term C 7 nf 6,4 nf,7 nf ω ν L/,5,8 -,5 - ( + j ω L) hat also im relevanten Frequenzbereich keinen praktischen Einfluss auf ie gesamte erstärkung. Technische Universität Hamburg-Harburg, nstitut für Elektrische Energiessteme un Automation Prof. Dr.-ng. G. Ackermann, Eißenorfer Str. 8, 7 Hamburg

Musterloesung. Name:... Vorname:... Matr.-Nr.:...

Musterloesung. Name:... Vorname:... Matr.-Nr.:... 2. Klausur Grunlagen er Elektrotechnik I-B 16. Juni 2003 berlin Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten Trennen Sie en Aufgabensatz nicht auf. Benutzen Sie für ie Lösung er Aufgaben

Mehr

Übungen zur Physik II PHY 121, FS 2018

Übungen zur Physik II PHY 121, FS 2018 Übungen zur Physik II PHY 2, FS 208 Serie 0 Abgabe: Dienstag, 5. Mai 2 00 Quellenfrei = source-free Wirbel = curl, ey, vortex Verschiebungsstrom = isplacement current Eisenkern = iron/magnet core quellenfreies

Mehr

Physik LK 12, Klausur 04 Induktion - Lösung

Physik LK 12, Klausur 04 Induktion - Lösung Physik LK 12, Klausur 4 Inuktion - Lösung 2.5.211 Die echnungen bitte vollstänig angeben un ie Einheiten mitrechnen. ntwortsätze schreiben, wenn Zahlenwerte zu berechnen sin. Die eibung ist bei allen ufgaben

Mehr

3.5 RL-Kreise und Impedanz

3.5 RL-Kreise und Impedanz 66 KAPITEL 3. ELEKTRISCHE SCHALTUNGEN 3.5 RL-Kreise un Impeanz Neues Element: Spule Spannung an einer Spule: V = L Q Selbstinuktivität (Einheit: Henry) [L] = 1 V s A Ursache für as Verhalten einer Spule:

Mehr

Physik LK 12, 4. KA Maxwell + Wechselstromkreise Lösung E C. B d A. E d A. dt A

Physik LK 12, 4. KA Maxwell + Wechselstromkreise Lösung E C. B d A. E d A. dt A Aufgabe I: Maxwell-Gleichungen 1.1 Gib eine gültige Definition für ie Inuktionsspannung an un erkläre ie physikalischen Grunlagen. Die Inuktionsspannung U in ist efiniert als as Linienintegral er inuzierten

Mehr

Strahl. B r. d 60 d. = 2 1, As. Damit der α-strahl die zweite Blende trifft, muß er Kreisbahn mit Radius d beschreiben, d.h. es muß gelten.

Strahl. B r. d 60 d. = 2 1, As. Damit der α-strahl die zweite Blende trifft, muß er Kreisbahn mit Radius d beschreiben, d.h. es muß gelten. Freiwillige Aufgaben zur Vorlesung WS 00/003, Blatt 5 53) Ein Strahl von -Teilchen soll aus seiner ursprünglichen ichtung it Hilfe eines hoogenen Magnetfeles u 60 abgelenkt weren, so aß er zwei entsprechene,

Mehr

2.5 Kondensatoren und Feldenergie

2.5 Kondensatoren und Feldenergie 30 KAPITEL 2. ELEKTOSTATIK 2.5 Konensatoren un Felenergie Aus en echnungen für eine unenlich ausgeehnte Platte mit homogener Laungsichte, ie wir in en Abschnitten 2.2 un 2.4 vorgenommen haben, können wir

Mehr

1.1.8 Radialsymmetrisches elektrisches Feld, Coulomb-Gesetz; Kapazität des Kugelkondensators

1.1.8 Radialsymmetrisches elektrisches Feld, Coulomb-Gesetz; Kapazität des Kugelkondensators 8 Raialsymmetrisches elektrisches Fel, Coulomb-Gesetz; Kapazität es Kugelkonensators Die Felstärke im raialen Fel - as Coulombsche Gesetz Am Ene es letzten Kapitels wure ie Grungleichung es elektrischen

Mehr

Aufgabenblatt zum Seminar 11 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 11 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Seminar PHYS70357 Elektrizitätslehre un Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Othmar Marti, (othmar.marti@uni-ulm.e). 07. 2009 Aufgaben. Berechnen

Mehr

Physik 11 Das Ampersche Durchflutungsgesetz. 1. Das Magnetfeld eines stromdurchflossenen Drahtes

Physik 11 Das Ampersche Durchflutungsgesetz. 1. Das Magnetfeld eines stromdurchflossenen Drahtes 1. Das Magnetfel eines stromurchflossenen Drahtes I 1. Das Magnetfel eines stromurchflossenen Drahtes I 1. Das Magnetfel eines stromurchflossenen Drahtes I Die Fellinien es Feles eines stromurchflossenen,

Mehr

Aufgabe 1: Interferenz von Teilchen und Wellen

Aufgabe 1: Interferenz von Teilchen und Wellen Lösungsvorschlag Übung 6 Aufgabe 1: Interferenz von Teilchen un Wellen a) Konstruktive bzw. estruktive Interferenz beschreibt ie Tatsache, ass sich überlagerne Wellen gegenseitig verstärken bzw. auslöschen

Mehr

Logik / Kombinatorik - Hinweise zur Lösungsfindung

Logik / Kombinatorik - Hinweise zur Lösungsfindung Logik / Kombinatorik Hinweise zur Lösungsfinung Aufgabe 1) Günstige Bezeichnungen einführen; Tabelle anfertigen un ie unmittelbaren Folgerungen aus bis eintragen (siehe linke Tabelle). Da ies noch nicht

Mehr

= 1 und der Ladung Q aufgefasst. Die elektrische Feldstärke beträgt 1, N/C, so dass die Entladung durch einen Blitz unmittelbar bevorsteht.

= 1 und der Ladung Q aufgefasst. Die elektrische Feldstärke beträgt 1, N/C, so dass die Entladung durch einen Blitz unmittelbar bevorsteht. Aufgaben Konensator 57. Zwei kreisförmige Metallplatten mit em Raius 0 cm, ie parallel im Abstan von 0 cm angeornet sin, bilen einen Plattenkonensator. In er Mitte zwischen en Platten hängt an einem ünnen

Mehr

1.1. Der Kondensator Flächenladungsdichte. Versuch 1: Gegeben: wird konstant gehalten,

1.1. Der Kondensator Flächenladungsdichte. Versuch 1: Gegeben: wird konstant gehalten, .. Der Konensator.. Flächenlaungsichte Versuch : Gegeben: wir konstant gehalten, elektrisches Fel E ie Fläche i er Plättchen wir variiert. Fläche er Konensatorplatten ist gegeben, er Betrag er Laung auf

Mehr

b) Der von den Schleifen umschlossene Fluss darf sich nicht ändern. Daraus folgt: B u = B r /2 = B o. c) 1. Zeitbereich: Φ u = B u b (a vt)+b r b ( Br

b) Der von den Schleifen umschlossene Fluss darf sich nicht ändern. Daraus folgt: B u = B r /2 = B o. c) 1. Zeitbereich: Φ u = B u b (a vt)+b r b ( Br Elektromagnetische Feler I Lösung zur Klausur vom 8. Februar 014 1. a gra ( a r = a b rot ( a r = a c iv ( e r = /r α/ 180 10 5 40 70 α/ ra π 7π/6 5π/4 4π/3 3π/ sinα 0 1/ / 3/ 1 cosα 1 3/ / 1/ 0 tanα 0

Mehr

da U E d W. Stark; Berufliche Oberschule Freising W12 U12

da U E d W. Stark; Berufliche Oberschule Freising  W12 U12 .4 Zusammenhang von elektrischer Felstärke un Spannung eines Plattenkonensators n ie positive Platte eins Konensators, er mit einer Stromquelle er Spannung verbunen ist, wir ein zunächst elektrisch neutrales

Mehr

Lehrfach: Messtechnik - Grundlagen. Versuch: Kapazitive Füllstandsmessung

Lehrfach: Messtechnik - Grundlagen. Versuch: Kapazitive Füllstandsmessung FM 2 Lehrfach: Messtechnik - Grunlagen Versuch: Kapazitive Füllstansmessung Oc Hochschule Zittau/Görlitz; Fakultät Elektrotechnik un Informatik Prof. Dr.-Ing. Kratzsch, Prof. Dr.-Ing. habil. Hampel i.r.

Mehr

Übungsblatt 5 ( )

Übungsblatt 5 ( ) Experimentalphysik für Naturwissenschaftler 2 Universität Erlangen Nürnberg SS 20 Übungsblatt 5 (08.07.20) ) Magnetische Fellinien Welche er folgenen Fellinienbiler sin richtig un welche nicht? a) richtig

Mehr

2.4. GAUSSSCHER SATZ π ε 0 r 2. π r 2)

2.4. GAUSSSCHER SATZ π ε 0 r 2. π r 2) 2.4. GAUSSSCHER SATZ 23 2.4 Gaußscher Satz Das Fel einer Punktlaung genügt er Gleichung: E = 1 4 π ε 0 Q r 2 Desweiteren berechnet sich ie Oberfläche einer Kugel, eren Punkte vom Mittelpunkt en Abstan

Mehr

Physik-Praktikum 13.1 Daniel Bilic W4 Optisches Gitter / Linienspektren

Physik-Praktikum 13.1 Daniel Bilic W4 Optisches Gitter / Linienspektren Physik-Praktikum 3. Daniel Bilic 5.2.06 W4 Optisches Gitter / Linienspektren. Versuchsaufbau: Der Versuch war wie gefolgt aufgebaut. Wir stellten eine Spektrallampe auf eine Schien, ie er Schiene entlang

Mehr

Übungen zu Experimentalphysik 2

Übungen zu Experimentalphysik 2 Physik Department, Technische Universität München, PD Dr. W. Schindler Übungen zu Experimentalphysik 2 SS 13 - Lösungen zu Übungsblatt 4 1 Schiefe Ebene im Magnetfeld In einem vertikalen, homogenen Magnetfeld

Mehr

623 Wärmeleitung. Arbeitsauftrag. Anwendung

623 Wärmeleitung. Arbeitsauftrag. Anwendung 63 Wärmeleitung Die Zusammenhänge bei er Wärmeämmung eines Hauses sin im üblichen gymnasialen Physikunterricht ein relatives Stiefkin. Wenn man ie Literatur zu ieser Thematik liest, muss man en Einruck

Mehr

3.1. Prüfungsaufgaben zur Elektrostatik

3.1. Prüfungsaufgaben zur Elektrostatik 3.. Prüfungsaufgaben zur Elektrostatik ufgabe a: Fellinien Zeichne ie Fellinien für zwei verschoben parallel angeornete gleichnamig gelaenen Platten: Lösung: ufgabe b: Fellinien Zeichne ie Fellinien für

Mehr

Wie funktioniert der Wellenschnüffler? 10 Antworten.

Wie funktioniert der Wellenschnüffler? 10 Antworten. Wie funktioniert der Wellenschnüffler? 10 Antworten. 1 2 4 5 7 19 10 8 3 6 1) Dioden funktionieren wie elektrische Ventile: Sie lassen den Strom nur in eine Richtung durch. Die Diode dient hier als Schutzdiode

Mehr

Versuch P1-83,84 Ferromagnetische Hysteresis. Auswertung. Von Ingo Medebach und Jan Oertlin. 4. Januar 2010

Versuch P1-83,84 Ferromagnetische Hysteresis. Auswertung. Von Ingo Medebach und Jan Oertlin. 4. Januar 2010 Versuch P1-83,84 Ferromagnetische Hysteresis Auswertung Von Ingo Medebach und Jan Oertlin 4. Januar 2010 Inhaltsverzeichnis 1. Induktivität und Verlustwiderstand einer Luftspule...2 1.1. Induktivität und

Mehr

Implizite Differentiation

Implizite Differentiation Implizite Differentiation -E -E Implizite Darstellung Eine Funktion ist in impliziter Form gegeben, wenn ie Funktionsgleichung nach keiner er beien Variablen x un y aufgelöst ist. Beispielsweise x y =

Mehr

Explizite und Implizite Darstellung einer Funktion

Explizite und Implizite Darstellung einer Funktion Eplizite un Implizite Darstellung einer Funktion Für ie implizite Differentiation weren ie Begriffe implizite un eplizite Darstellung von Funktionen benötigt. Bisher haben wir eine Funktion (Zusammenhang

Mehr

Physik 2 ET, SoSe 2013 Aufgaben mit Lösung 6. Übung (KW 26/27) Luftspalt ) Zyklotron )

Physik 2 ET, SoSe 2013 Aufgaben mit Lösung 6. Übung (KW 26/27) Luftspalt ) Zyklotron ) 6. Übung (KW 26/27) Aufgabe 1 (E 3.2 Luftspalt ) Ein Eisenjoch mit einem Luftspalt er Spaltbreite s ist mit N Winungen Kupferraht umwickelt (Abmessungen siehe Skizze). Wie groß muss ie Stromstärke I in

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fax:

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fa:

Mehr

Operationsverstärker. Sascha Reinhardt. 17. Juli 2001

Operationsverstärker. Sascha Reinhardt. 17. Juli 2001 Operationsverstärker Sascha Reinhardt 17. Juli 2001 1 1 Einführung Es gibt zwei gundlegende Operationsverstärkerschaltungen. Einmal den invertierenden Verstärker und einmal den nichtinvertierenden Verstärker.

Mehr

Klausur zu Naturwissenschaftliche Grundlagen und Anwendungen

Klausur zu Naturwissenschaftliche Grundlagen und Anwendungen Prof. Dr. K. Wüst WS 2008/2009 FH Gießen Friedberg, FB MNI Studiengang Informatik Klausur zu Naturwissenschaftliche Grundlagen und Anwendungen 13.2.2009 Aufgabenstellung mit Musterlösungen Punkteverteilung

Mehr

d) Teilaufg d) wurde wegen inkonsistenter Angabe storniert und die Punkte umverteilt m 1 g v 2 S gr Dm1 v 1

d) Teilaufg d) wurde wegen inkonsistenter Angabe storniert und die Punkte umverteilt m 1 g v 2 S gr Dm1 v 1 Lösung Klausur E1 Mechanik vom 11. April 2013 Aufgabe 1: Affentheater (16 Punkte) a) r(t) = x(t) = vx 0 t = v 0 cos α t y(t) v y 0 t 1 2 gt2 v 0 sin α t 1 2 gt2 b) y(x) = y(t(x)) mit t = x y(x) = x tan

Mehr

Elektrotechnik Protokoll - Wechselstromkreise. André Grüneberg Mario Apitz Versuch: 16. Mai 2001 Protokoll: 29. Mai 2001

Elektrotechnik Protokoll - Wechselstromkreise. André Grüneberg Mario Apitz Versuch: 16. Mai 2001 Protokoll: 29. Mai 2001 Elektrotechnik Protokoll - Wechselstromkreise André Grüneberg Mario Apitz Versuch: 6. Mai Protokoll: 9. Mai 3 Versuchsdurchführung 3. Vorbereitung außerhalb der Versuchszeit 3.. Allgemeine Berechnungen

Mehr

Halbleiter. Differenzieller Widerstand

Halbleiter. Differenzieller Widerstand Scnces Cologne Dipl.-ng. (FH) Dipl.-Wirt. ng. (FH) G. Danlak Differenzller Wierstan DW- Stan: 9.3.6; m Steigung einer Funktion in einem Punkt x zu ermitteln, bestimmt man ihren Differenzialuotnten. Das

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Ruolf Feile Dipl. Phys. Markus Domschke Sommersemester 00 4. 8. Juni 00 Physik für Bauingenieure Übungsblatt 9 Gruppenübungen. Konensator Zwei quaratische Metallplatten mit

Mehr

EMV-Referat des DARC e.v.

EMV-Referat des DARC e.v. Stan: 01 / 98 980100_Sicherheitsabstan.oc Inhaltsangabe Inhaltsangabe 1 1. Aufnahme aller technischen Stationsaten (ewinn- u. Dämpfungswerte) 1.1 Blockschaltbil 1. Antennengewinn (Angabe es Herstellers)

Mehr

2.2 Elektrisches Feld

2.2 Elektrisches Feld 2.2. ELEKTRISCHES FELD 9 2.2 Elektrisches Fel Coulomb Gesetz: F i Q i F i = Q i 1 Q j Rij 2 R i R j R ij 4π ɛ j+i 0 }{{} elektrisches Fel am Ort R i Das elektrische Fel, as ie Laung am Ort R i spürt -

Mehr

4. Zusammenhang von elektrischer Feldstärke und Spannung eines Kondensators; Kapazität eines Kondensators

4. Zusammenhang von elektrischer Feldstärke und Spannung eines Kondensators; Kapazität eines Kondensators 4. Zusammenhang von elektrischer Felstärke un Spannung eines Konensators; Kapazität eines Konensators Zusammenhang von elektrischer Felstärke un Spannung eines Plattenkonensators Überlegung: Eine positive

Mehr

Spezifische Ladung e/m des Elektrons

Spezifische Ladung e/m des Elektrons Einführung Speifische Laung em es Elektrons. Allgemeines Ziel ieses Versuchs ist es eine wichtige Konstante er Atomphysik, ie speifische Laung es Elektrons u messen. Diese Konstante lässt sich urch Ablenkung

Mehr

Wechselstromkreis E 31

Wechselstromkreis E 31 E 3 kreis kreis E 3 Aufgabenstellung. Bestimmung von Phasenverschiebungen zwischen Strom und Spannung im kreis.2 Aufbau und ntersuchung einer Siebkette 2 Physikalische Grundlagen n einem kreis (Abb.) befinde

Mehr

Grundlagen der Elektrotechnik 3. Übungsaufgaben

Grundlagen der Elektrotechnik 3. Übungsaufgaben Campus Duisburg Grundlagen der Elektrotechnik 3 Nachrichtentechnische Systeme Prof. Dr.-Ing. Ingolf Willms Version Juli 08 Aufgabe 1: Man bestimme die Fourier-Reihenentwicklung für die folgende periodische

Mehr

Diplomvorprüfung SS 2010 Fach: Grundlagen der Elektrotechnik Dauer: 90 Minuten

Diplomvorprüfung SS 2010 Fach: Grundlagen der Elektrotechnik Dauer: 90 Minuten Diplomvorprüfung Grundlagen der Elektrotechnik Seite 1 von 8 Hochschule München FK 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2010 Fach: Grundlagen

Mehr

Gekoppelte Pendel und Kopplungsgrad

Gekoppelte Pendel und Kopplungsgrad Fakultät für Physik un Geowissenschaften Physikalisches Grunpraktikum M Gekoppelte Penel un Kopplungsgra Aufgaben. Messen Sie für rei Stellungen er Kopplungsfeer jeweils ie Schwingungsauer T er gleichsinnigen

Mehr

Laborpraktikum 2 Kondensator und Kapazität

Laborpraktikum 2 Kondensator und Kapazität 18. Januar 2017 Elektrizitätslehre II Martin Loeser Laborpraktikum 2 Kondensator und Kapazität 1 Lernziele Bei diesem Versuch wird das elektrische Verhalten von Kondensatoren untersucht und quantitativ

Mehr

Aufgaben zum Wochenende (2)

Aufgaben zum Wochenende (2) Aufgaben zum Wochenene () Alle Koorinatensysteme seien kartesisch.. Berechnen Sie zu a =(, 3, ) un b =(,, ), c =(, 3, ) : a 3, 4 a b, b ( a c), a 4 b ( ) c. Rechnen Sie möglichst praktisch.. Lösen Sie

Mehr

Dem Wettstreit zwischen beiden Bestrebungen trägt die Freie Energie Rechnung (bei konstanter Temperatur und konstantem Volumen).

Dem Wettstreit zwischen beiden Bestrebungen trägt die Freie Energie Rechnung (bei konstanter Temperatur und konstantem Volumen). Jees ystem strebt zwei Zielen entgegen:.) Minimum er Energie.) Maximum er Entropie Minimum er pot. Energie Maximum er Entropie atsächliche erteilung: Minimum er reien Energie Dem Wettstreit zwischen beien

Mehr

9 Vorlesung: Auswertung von Messungen Fehlerrechnung

9 Vorlesung: Auswertung von Messungen Fehlerrechnung 9 Voresung: 3.. 005 Auswertung von Messungen Feherrechnung Ein wissenschaftiches Ergebnis git erst ann as gesichert, wenn es von einer zweiten Arbeitsgruppe experimente bestätigt wure. Um ie Reprouzierbarkeit

Mehr

Leistungselektronik und Antriebstechnik Laborberichte. Christian Burri Tobias Plüss Pascal Schwarz

Leistungselektronik und Antriebstechnik Laborberichte. Christian Burri Tobias Plüss Pascal Schwarz Leistungselektronik und Antriebstechnik Laborberichte Christian Burri Tobias Plüss Pascal Schwarz 26. April 2013 Inhaltsverzeichnis 1 Asynchronmaschine am Netz 3 1.1 Versuchsaufbau......................................

Mehr

Aufgaben zur Großübung

Aufgaben zur Großübung Mathematische Methoen II (SoSe 07) Aufgaben zur Großübung Aufgaben für 03. April 07. Bestimmen Sie jeweils f() eplizit un geben Sie en maimalen Definitionsbereich von g(), h() un f() an. f() = (g h)(),

Mehr

Diplomvorprüfung WS 2010/11 Fach: Grundlagen der Elektrotechnik, Dauer: 90 Minuten

Diplomvorprüfung WS 2010/11 Fach: Grundlagen der Elektrotechnik, Dauer: 90 Minuten Diplomvorprüfung GET Seite 1 von 8 Hochschule München FK 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A eigene Aufzeichnungen Matr.-Nr.: Hörsaal: Diplomvorprüfung WS 2010/11 Fach: Grundlagen

Mehr

Das elektrische Feld als Energiespeicher

Das elektrische Feld als Energiespeicher Laungsquantelung Das elektrische Fel als Energiespeicher 79. Das elektrische Fel als Energiespeicher a) Welche Beobachtung legt nahe, ass in einem elektrischen Fel Energie gespeichert ist? b) Zeigen Sie,

Mehr

Kondensator und Spule

Kondensator und Spule Hochschule für angewandte Wissenschaften Hamburg Naturwissenschaftliche Technik - Physiklabor http://www.haw-hamburg.de/?3430 Physikalisches Praktikum ----------------------------------------------------------------------------------------------------------------

Mehr

PC & Mac Education Ltd EX01GL1DM

PC & Mac Education Ltd  EX01GL1DM 335 Kategorie «Sonerformat» Option B Typ Die Kategorie «Sonerformat» A lässt eingegebene Zahlen speziell formatieren. Wählen Sie im Auswahlfenster «Typ» B as gewünschte Sonerformat. Nebenstehen Beispiele

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 2. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 2. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fa:

Mehr

Diplomvorprüfung SS 2009 Grundlagen der Elektrotechnik Dauer: 90 Minuten

Diplomvorprüfung SS 2009 Grundlagen der Elektrotechnik Dauer: 90 Minuten Diplomvorprüfung Grundlagen der Elektrotechnik Seite 1 von 7 Hochschule München Fakultät 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2009 Grundlagen

Mehr

Praktikum Radioaktivität und Dosimetrie" Absorption von β-strahlung

Praktikum Radioaktivität und Dosimetrie Absorption von β-strahlung Praktikum Raioaktivität un Dosimetrie" Absorption von β-strahlung 1. Aufgabenstellung 1.1 Bestimmen Sie ie Schichticke von Glimmerplättchen aus er Absorptionskurve. 1. Ermitteln Sie en Massenabsorptionskoeffizienten

Mehr

Mathematische Kenntnisse

Mathematische Kenntnisse Lehrbrief 1 Technik Seite 1 von 9 Mathematische Kenntnisse Mathematik? Eigentlich sollte es och um Amateurfunk gehen. Amateurfunk ist nun mal ein technisches Hobby, eshalb sin einige grunlegene mathematische

Mehr

Physikalisches Praktikum 3. Semester

Physikalisches Praktikum 3. Semester Torsten Leddig 3.November 004 Mathias Arbeiter Betreuer: Dr.Hoppe Physikalisches Praktikum 3. Semester - Feldmessung - 1 Aufgaben: 1. Elektrisches Feld 1.1 Nehmen Sie den Potenziallinienverlauf einer der

Mehr

Musterlösungen. Theoretische Physik I: Klassische Mechanik

Musterlösungen. Theoretische Physik I: Klassische Mechanik Blatt 4 08.11.01 Musterlösungen Theoretische Physik I: Klassische Mechanik Prof. Dr. G. Alber MSc Nena Balanesković Die Lagrange Methoe zweiter Art, Symmetrien un Erhaltungsgrößen 1. y r x Gegeben sei

Mehr

3.7 RLC-Elemente in Vierpolschaltungen

3.7 RLC-Elemente in Vierpolschaltungen 3.7. RC-EEMENTE IN VIERPOSCHATUNGEN 73 3.7 RC-Elemente in Vierpolschaltungen In er Praxis ist ein Einheitssignal eine Überlagerung vieler Frequenzen. Gewünscht: Weiterverarbeitung es Signals wie z.b. em

Mehr

Lehrfach: Grundlagen der Elektrotechnik. Versuch: Wechselstromnetzwerke

Lehrfach: Grundlagen der Elektrotechnik. Versuch: Wechselstromnetzwerke WSNW P_10_05.docx Oc Lehrfach: Grundlagen der Elektrotechnik Versuch: Wechselstromnetzwerke Hochschule Zittau/Görlitz; Fakultät Elektrotechnik und Informatik Prof. Dr. techn. Stefan Kornhuber/Prof. Dr.-Ing.

Mehr

Klausur Grundlagen der Elektrotechnik B

Klausur Grundlagen der Elektrotechnik B Prof. Dr. Ing. Joachim Böcker Klausur Grundlagen der Elektrotechnik B 19.08.2008 Name: Matrikelnummer: Vorname: Studiengang: Fachprüfung Leistungsnachweis Aufgabe: (Punkte) 1 (16) 2 (23) 3 (22) 4 (21)

Mehr

Physik-eA-2010 Klausur des 4.Semesters 15. Februar Untersuchungen eines Americiumpräparats - Am241

Physik-eA-2010 Klausur des 4.Semesters 15. Februar Untersuchungen eines Americiumpräparats - Am241 Physik-eA-200 lausur es 4Semesters 5 Februar 200 Untersuchungen eines Americiumpräparats - Am24 I I Spektrum eines Americiumpräparates treten ua ie Energien E, =5,387 MeV, E, 2 =5,442 MeV un E, 3 =5,484

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak 4. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 9 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu en Hausaufgaben: Aufgabe H. a)

Mehr

TG TECHNOLOGISCHE GRUNDLAGEN 17 ELEKTRONIK, DIGITALTECHNIK UND PROGRAMMIERUNG REPETITIONEN 2 OPERATIONSVERSTÄRKER. 1 Summierender Operationsverstärker

TG TECHNOLOGISCHE GRUNDLAGEN 17 ELEKTRONIK, DIGITALTECHNIK UND PROGRAMMIERUNG REPETITIONEN 2 OPERATIONSVERSTÄRKER. 1 Summierender Operationsverstärker TECHNOLOGISCHE GRUNDLAGEN e1 e2 = 8 1 Summierender Operationsverstärker Welche Spannung erhält man am Ausgang eines summierenden Operationsverstärkers, wenn die Eingangsspannungen U = U 0, V betragen,

Mehr

Schaltwerksanalyse-Übungen

Schaltwerksanalyse-Übungen Schaltwerksanalyse-Übungen Übung : Gegeben ist folgene Schaltung, eren Funktion zu bestimmen ist. c Ergänzen Sie as folgene Signal-Zeit-iagramm. c ie Lösung kann sehr zeitaufwenig sein, wenn man keine

Mehr

Aufgabe 1: n (2) n (1)

Aufgabe 1: n (2) n (1) Aufgabe 1: In er mechanischen Verfahrenstechnik weren häufig analytische Funktionen, wie ie RRSB- Verteilung (Rosin-Rammler-Sperling-Bennett) benutzt, um Partikelgrößenverteilungen zu beschreiben. Sin

Mehr

0 1 0 b Die inverse Funktion muss die Translation um b sein und hat daher die homogene Matrix b b 1

0 1 0 b Die inverse Funktion muss die Translation um b sein und hat daher die homogene Matrix b b 1 Homogene Koorinaten Aufgabe. In homogener Darstellung ist ie Translation f R 4 R 4 um einen Vektor b R 3 eine lineare Funktion un kann aher urch eine Matri Vektor Multiplikation realisiert weren. Wie sieht

Mehr

5 Zeitabhängige Felder

5 Zeitabhängige Felder Carl Hanser Verlag München 5 Zeitabhängige Felder Aufgabe 5.13 Die spannungsabhängige Kapazität eines Kondensators kann für den Bereich 0... 60 V durch folgende Gleichung angenähert werden: Geben Sie allgemein

Mehr

Ferromagnetische Hysterese Versuch P1 83, 84

Ferromagnetische Hysterese Versuch P1 83, 84 Auswertung Ferromagnetische Hysterese Versuch P1 83, 84 Iris Conradi, Melanie Hauck Gruppe Mo-02 19. August 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Induktivität und Verlustwiderstand einer Lustspule

Mehr

Aufgabe 3.4: HPLC mit Dispersion

Aufgabe 3.4: HPLC mit Dispersion Aufgabe.4 HPLC mit Disersion Um eine Trennsäule (D 5 mm, L mm, µm,,5) zu betreiben, steht eine Druckifferenz von P bar zur erfügung. Die Stoffwerte er Flüssigkeit sin ρ f kg/m³, ν f -6 m²/s.. Berechnen

Mehr

Physik GK 12, AB 01 Stromfluss / Elektrostatik Lösung =10 s beträgt 4 na.

Physik GK 12, AB 01 Stromfluss / Elektrostatik Lösung =10 s beträgt 4 na. ufgabe 1: Elektrische Laung un elektrischer Strom 1.1. uf eine Metallkugel weren immer mehr Laungen aufgebracht. Die Menge er Laungen auf er Kugel folgt er Funktion Q(t )=(0,1t 2 s 2 + 2t s 1 )nc. Wir

Mehr

2. Parallel- und Reihenschaltung. Resonanz

2. Parallel- und Reihenschaltung. Resonanz Themen: Parallel- und Reihenschaltungen RLC Darstellung auf komplexen Ebene Resonanzerscheinungen // Schwingkreise Leistung bei Resonanz Blindleistungskompensation 1 Reihenschaltung R, L, C R L C U L U

Mehr

4 Übertrager und Transformatoren

4 Übertrager und Transformatoren 4 Übertrager un Transformatoren Skript zum Kurs Elektrizätslehre 3 im Herbstsemester 07 Autoren: Martin Schlup, Martin Weisenhorn Winterthur, im August 07 Zürcher Hochschule für Angewante Wissenschaften

Mehr

Felder und Wellen WS 2017/2018 C = U = φ(2) φ(1)

Felder und Wellen WS 2017/2018 C = U = φ(2) φ(1) Feler un Wellen WS 017/018 Musterlösung zum 6. Tutorium 1. Aufgabe (**) Kapazität kann für jee beliebige Leiteranornung efiniert weren C = εe = f E s s }{{} φ() φ(1) Sin mehrere Leiter vorhanen, befinen

Mehr

Infos: Buffons Nadel 05/2013

Infos:  Buffons Nadel 05/2013 Mathematik- Unterrichts- Einheiten- Datei e. V. Klasse 7; LK 05/013 Buffons Nael Infos: www.mue.e Im 18. Jahrhunert beteiligten sich eine Reihe von Aeligen an er Weiterentwicklung er Naturwissenschaften

Mehr

Physik LK 12, 3. Kursarbeit Induktion - Lösung

Physik LK 12, 3. Kursarbeit Induktion - Lösung Physik K 1, 3. Kursarbeit Induktion - ösung.0.013 Aufgabe I: Induktion 1. Thomson ingversuch 1.1 Beschreibe den Thomson'schen ingversuch in Aufbau und Beobachtung und erkläre die grundlegenden physikalischen

Mehr

3 Erzwungene Konvektion 1

3 Erzwungene Konvektion 1 3 Erzwungene Konvektion 3. Grunlagen er Konvektion a) erzwungene Konvektion (Strömung angetrieben urch Pumpe oer Gebläse) b) freie Konvektion (Dichteunterschiee aufgrun von Temperaturunterschieen) c) Konensation

Mehr

Lösung Repetitionsübung

Lösung Repetitionsübung Lösung Repetitionsübung A1: Differential- un Integralrechnung a) x e x2 /4 = x 2 e x2 /4 x ln sinh(x ex +1) = cosh(x ex +1) sinh(x e x +1) (ex +x e x ) = e x (1 + x) coth(x e x +1) x y e xy = x x = ( 1

Mehr

Operationsverstärker

Operationsverstärker Operationsverstärker Martin Adam Versuchsdatum: 17.11.2005 Betreuer: DI Bojarski 23. November 2005 Inhaltsverzeichnis 1 Versuchsbeschreibung 2 1.1 Ziel................................... 2 1.2 Aufgaben...............................

Mehr

Studiengang Sensorsystemtechnik Aufgabenblätter

Studiengang Sensorsystemtechnik Aufgabenblätter Stuiengang Sensorsystemtechnik Aufgabenblätter Physik ST2 1. Aufgabe (S-25) Thema: Coulomb-Gesetz, elektrisches Fel, Superpositionsprinzip Zwei positive gleiche Punktlaungen q befinen sich auf er y-achse,

Mehr

Klausur , Grundlagen der Elektrotechnik II (BSc. MB, EUT) Seite 1 von 5

Klausur , Grundlagen der Elektrotechnik II (BSc. MB, EUT) Seite 1 von 5 Klausur 18.09.2009, Grundlagen der Elektrotechnik II (BSc. MB, EUT) Seite 1 von 5 1 (6 Punkte) Matr.-Nr.: In der Schaltung sind die beiden Lampen identisch und die Batterie sei eine ideale Spannungsquelle.

Mehr

ET-Praktikumsbericht 3. Semester I (Versuch 4, Zeit-/Frequenzverhalten von Vierpolen) Inhaltsverzeichnis 1 Der RC-Tiefpass Messung bei konstante

ET-Praktikumsbericht 3. Semester I (Versuch 4, Zeit-/Frequenzverhalten von Vierpolen) Inhaltsverzeichnis 1 Der RC-Tiefpass Messung bei konstante Praktikumsbericht Elektrotechnik 3.Semester Versuch 4, Vierpole 7. November Niels-Peter de Witt Matrikelnr. 8391 Helge Janicke Matrikelnr. 83973 1 ET-Praktikumsbericht 3. Semester I (Versuch 4, Zeit-/Frequenzverhalten

Mehr

1. Probeklausur. φ = 2x 2 y(z 1).

1. Probeklausur. φ = 2x 2 y(z 1). Übungen zur T: Theoretische Mechanik, SoSe04 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45. Probeklausur Dr. Reinke Sven Isermann Reinke.Isermann@lmu.e Übung.: Gegeben sei ie Funktion φ = x y z. a Berechnen

Mehr

TG TECHNOLOGISCHE GRUNDLAGEN LÖSUNGSSATZ 17 ELEKTRONIK, DIGITALTECHNIK UND PROGRAMMIERUNG REPETITIONEN 2 OPERATIONSVERSTÄRKER

TG TECHNOLOGISCHE GRUNDLAGEN LÖSUNGSSATZ 17 ELEKTRONIK, DIGITALTECHNIK UND PROGRAMMIERUNG REPETITIONEN 2 OPERATIONSVERSTÄRKER TECHNOLOGISCHE GRUNDLAGEN LÖSUNGSSATZ e1 e2 = 8 1 Summierender Operationsverstärker Welche Spannung erhält man am Ausgang eines summierenden Operationsverstärkers, wenn die Eingangsspannungen U = U 0,

Mehr

Aufgabe Summe Note Mögliche Punkte Erreichte Punkte

Aufgabe Summe Note Mögliche Punkte Erreichte Punkte Universität Siegen Grundlagen der Elektrotechnik für Maschinenbauer Fachbereich 1 Prüfer : Dr.-Ing. Klaus Teichmann Datum : 7. April 005 Klausurdauer : Stunden Hilfsmittel : 5 Blätter Formelsammlung DIN

Mehr

Grundlagen der Elektrotechnik B

Grundlagen der Elektrotechnik B Prof. Dr. Ing. Joachim Böcker Grundlagen der Elektrotechnik B 14.03.2012 Name: Matrikelnummer: Vorname: Studiengang: Fachprüfung Leistungsnachweis Aufgabe: (Punkte) 1 (22) 2 (24) 3 (17) 4 (17) 5 (20) Note

Mehr

Formatieren. Kategorie «Sonderformat» Kategorie «Benutzerdefiniert» Zellen. Theorieteil

Formatieren. Kategorie «Sonderformat» Kategorie «Benutzerdefiniert» Zellen. Theorieteil 321 Beispiel: In Zelle A2 A befinet sich ie Zahl 32, er 2 Nachkommastellen zugewiesen wuren. In Zelle B2 B befinet sich ieselbe Zahl 32, jeoch als Text formatiert. Kategorie «Sonerformat» Die Kategorie

Mehr

Arbeitsbereich Technische Aspekte Multimodaler Systeme (TAMS) Praktikum der Technischen Informatik T2 2. Kapazität. Wechselspannung. Name:...

Arbeitsbereich Technische Aspekte Multimodaler Systeme (TAMS) Praktikum der Technischen Informatik T2 2. Kapazität. Wechselspannung. Name:... Universität Hamburg, Fachbereich Informatik Arbeitsbereich Technische Aspekte Multimodaler Systeme (TAMS) Praktikum der Technischen Informatik T2 2 Kapazität Wechselspannung Name:... Bogen erfolgreich

Mehr

PFEIFER-Verbundankernadeln

PFEIFER-Verbundankernadeln PFEIFER-erbunankernaeln Artikel Nr. 05.382 Artikel Nr. 05.383 Artikel Nr. 05.384 erbinungstechnik Sanwichankersystem Unter Berücksichtigung er neuen Winnorm DIN 1055-4 NEU! PFEIFER-erbunankernaeln aus

Mehr

Einführung in die Mechanik Teil 4: Kinematik (4)

Einführung in die Mechanik Teil 4: Kinematik (4) SERVICE NEWSLEER Ausgabe: / 5 Im letzten eil er Serie wure bereits ie Bereitstellung von Verzerrungstensoren angekünigt. Wie as Wort bereits impliziert muss ein Maß gefunen weren, as ie Deformation es

Mehr

Klausur 4 Kurs 12Ph2 Physik-e

Klausur 4 Kurs 12Ph2 Physik-e 007-06-1 Kausur 4 Kurs 1Ph Physik-e Lösung Version 007-07-03 1 Eräutern Sie, warum bei er Wehsespannung ie Sheitespannung immer größer as ie effektive Spannung ist un berehnen Sie ie Sheitespannung für

Mehr

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik erbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik ersuch 3 Grundschaltungen der Wechselstromtechnik Teilnehmer: Name orname Matr.-Nr. Datum der

Mehr

Übung (9) . Geben Sie auch eine geometrische Deutung des Resultats an. 2 3j, e jπ7/4, 2e 4jπ/3.

Übung (9) . Geben Sie auch eine geometrische Deutung des Resultats an. 2 3j, e jπ7/4, 2e 4jπ/3. Übung (9). Drücken Sie 3 ³ b (4 a ( 5) c) aus urch a b c. Geben Sie auch eine geometrische Deutung es Resultats an.. Vereinfachen Sie: ( x 4 y) (3 y 5 x). ³ ³³ ³ 3. Vereinfachen Sie en Ausruck a 3 b 3

Mehr

Klausurvorbereitung Elektrotechnik für Maschinenbau. Thema: Gleichstrom

Klausurvorbereitung Elektrotechnik für Maschinenbau. Thema: Gleichstrom Klausurvorbereitung Elektrotechnik für Maschinenbau 1. Grundbegriffe / Strom (5 Punkte) Thema: Gleichstrom Auf welchem Bild sind die technische Stromrichtung und die Bewegungsrichtung der geladenen Teilchen

Mehr

(2 π f C ) I eff Z = 25 V

(2 π f C ) I eff Z = 25 V Physik Induktion, Selbstinduktion, Wechselstrom, mechanische Schwingung ösungen 1. Eine Spule mit der Induktivität = 0,20 mh und ein Kondensator der Kapazität C = 30 µf werden in Reihe an eine Wechselspannung

Mehr

Aufgaben zur Wechselspannung

Aufgaben zur Wechselspannung Aufgaben zur Wechselspannung Aufgabe 1) Ein 30 cm langer Stab rotiert um eine horizontale, senkrecht zum Stab verlaufende Achse, wobei er in 10 s 2,5 Umdrehungen ausführt. Von der Seite scheint paralleles

Mehr

Kostenfunktion - Der Cournotsche Punkt

Kostenfunktion - Der Cournotsche Punkt Kostenfunktion Seite 1 von 8 Wilfrie Rohm Kostenfunktion - Der Cournotsche Punkt Der Cournotsche Punkt C beschreibt ie gewinnmaximale Preis-Mengen-Kombination mit en Koorinaten C(p c ; x c ). Er sagt aus,

Mehr