Infos: Buffons Nadel 05/2013

Größe: px
Ab Seite anzeigen:

Download "Infos: Buffons Nadel 05/2013"

Transkript

1 Mathematik- Unterrichts- Einheiten- Datei e. V. Klasse 7; LK 05/013 Buffons Nael Infos: Im 18. Jahrhunert beteiligten sich eine Reihe von Aeligen an er Weiterentwicklung er Naturwissenschaften un Mathematik. So auch er französische Comte e Buffon. Seine vielen Werke sin inzwischen vergessen. Aber nach ihm ist bis heute ie Lösung eines berühmten mathematischen Experiments benannt (s. Überschrift): Auf einer horizontalen Fläche sin parallele Linien mit gleichem Abstan zu sehen (ein liniertes Blatt Papier, ein Dielenboen o. ä.). Eine Nael wir geworfen un lanet auf er Fläche. Mit welcher Wahrscheinlichkeit trifft sie eine Linie? Einige Bezeichnungen un Vorgaben Den Abstan er Linien nenne, ie Naellänge l. Es soll l < gelten, amit immer höchstens eine Linie getroffen wir. Georges-Louis Marie Leclerc, Comte e Buffon (* 7. September 1707 in Montbar; 16. April 1788 in Paris) aus: wikipeia, April 013 Buffons Ieen a) Beschreibung es Zufallsversuchs mit Variablen Zu jeem Naelwurf lässt sich er Abstan y zwischen er Naelmitte un er näher gelegenen Linie bestimmen; ebenso er (kleinere) Winkel, en ie Nael mit einer Parallelen zu en Linien urch en Naelmittelpunkt bilet. b y Skizze 1 Die beien Größen y un sin entscheien afür, ob ie Nael eine Linie trifft bei vorgegebenem l un. Der Fall tritt ein, sobal y b gilt. In em rechtwinkligen Dreieck mit er Kathete b ergibt sich b = sin. b) Anornung er relevanten Größen Alle hier infrage kommenen Datenpunkte ( y) liegen in einem Rechteck mit er Breite un er Länge. Arbeitsblatt es Monats Mai 013

2 Legt man ein Koorinatensystem mit em Ursprung in ie linke untere Ecke es Rechtecks, so kann man f() = sin skizzieren. Die Fläche unter er Kurve (innerhalb es Rechtecks) markiert ie "günstigen Fälle" für ein Treffen einer Linie urch ie Nael. Die gesamte Rechteckfläche zeigt alle "möglichen Fälle". 1. a) Zeichne as Rechteck passen zu en Daten er gegebenen Skizze. b) Markiere en Punkt im Rechteck, er zur Skizze 1 gehört.. Erläutere ie Berechnung von b. 3. Skizziere ie Funktion f() in as Koorinatensystem un schraffiere ie "günstige" Fläche. 4. Berechne ie Fläche unter er Kurve in en Rechteckgrenzen. 5. Berechne ie Rechteckfläche. 6. Bestimme P(ie geworfene Nael trifft eine Linie) in Abhängigkeit von l un. 7. Wie änert sich ie Wahrscheinlichkeit bei Vergrößerung von l, wie bei Vergrößerung von? Passt as plausibel zur Problematik? 8. Berechne ie Wahrscheinlichkeit für ie Situation in Skizze 1. Zusatz 1: Statistische Bestimmung er Wahrscheinlichkeit a) Passen zur Länge l er Stecknaeln (oer kleinen Holzpickern) in einer Packung hat ie Lehrperson Parallelen im Abstan auf ein A3-Blatt gezeichnet für jee/n Schüler/in; oer as Experiment nutzt en Parkettboen in er Aula. Jee/r lässt eine Nael aus einer abgesprochenen Höhe 100-mal auf as Blatt oer as Parkett hinunterfallen. Zähle mit, wie oft u wirfst, notiere in einer Strichliste, wie oft eine Linie getroffen wir. b) Die Werte weren z. B. an er Tafel gesammelt, aiert un es wir jeweils ie relative Häufigkeit berechnet. c) Vergleiche ie letzte berechnete relative Häufigkeit mit er Wahrscheinlichkeit, ie sich nach er Formel in 6 ergibt. Zusatz : Simulation Da man alle Werte für ( y) als gleichwahrscheinlich unterstellt, kann man as Problem auch iskret untersuchen. a) Lege Werte für l un fest. b) Erzeuge mit Excel Zufallszahlen zwischen 0 un für, ebenso für y zwischen 0 un. c) Berechne b. ) Zähle ie Zufallsversuche un ie Fälle mit y b. e) Berechne P nach 4000 Versuchen un vergleiche. Zusatz 3: Experimentelle -Bestimmung Mit er vorgegebenen Formel für ie Wahrscheinlichkeit lässt sich as Experiment in Zusatz 1 oer ie Simulation in Zusatz auch nutzen, um experimentell anzunähern. Arbeitsblatt es Monats Mai 013

3 BEARBEITUNG 1. a), b) x 1,57 cm = cm Punktkoorinaten (siehe x) passen zu Skizze 1: = 3 bzw. 3 = 180 0,56 un y = 1,3. In em rechtwinkligen Dreieck (in er Skizze 1 links unten) gilt: b sin = / b = sin 3. f() = sin (mit gestreckter -Achse) 4. Größe er Fläche unter er Kurve: sin cos Größe er Rechteckfläche: graue Fläche Gesamtfläche 6. P(ie geworfene Nael trifft eine Linie ) = 7. Qualitativ ist ie Formel plausibel: Die Wahrscheinlichkeit sollte größer weren, wenn l größer wir, un bei Vergrößerung er Dielenbreite sollte sie abnehmen. 8. l = 3 cm; = 4 cm 3 P = 4 47,7 % 4 Arbeitsblatt es Monats Mai 013

4 Zusatz 1: Statistische Bestimmung er Wahrscheinlichkeit Zum Beispiel an er Tafel wir auf Zuruf er Schüler/innen ie zweite Spalte er Tabelle gefüllt un zeilenweise ergänzt. Nach em Gesetz er großen Zahl stabilisiert sich ie relative Häufigkeit in er rechten Spalte mit zunehmener Wurfzahl bei er Wahrscheinlichkeit. Wurfzahl Trefferzahl relative Häufigkeit Summe Wurfzahl Summe Trefferzahl relative Häufigkeit % ,0 % % ,0 % % ,3 % % ,0 % Zusatz : Simulation Excel-Programm; nach Voreinstellung er Rekursionsmöglichkeit nutzbar 1 Naelwurf auf parallele Linien: Mit welcher Wahrscheinlichkeit trifft ie Nael eine Linie? 3 4 "Wert für en Abstan er Parallelen " 4 3 "Wert für ie Naellänge l" 5 0, "=Zufallszahl()*PI()/ Erzeugung eines Zufallswinkels alpha" 6 1, "=Zufallszahl()*/ Erzeugung eines Zufallsabstanes y zur nächsten Linie" 7 1 "Wert für en Startschalter 0; 1, wenn alle Summationen starten sollen" "=(A8+WENN(A6<=A4/*sin(A5);1;0))*A7 Summation er Trefferzahlen" "=(A9+1)*A7 Summation er Würfezahl" 10 0,471 "=Runen(A8/A9;4) Anteil gerunet auf 4 Nachkommastellen" ,4775 "=RUNDEN(*A4/(PI()*A3);4) er berechnete Wahrscheinlichkeitswert nach Buffon" Nach run 4000 Versuchen ergibt sich eine relative Häufigkeit von 47,1 % (für l = 3 un = 4). Die Formel oben erwartet run 47,7 %. Die relative Häufigkeit liegt nahe bei er Wahrscheinlichkeit. Zusatz : Experimentelle -Bestimmung Mit en Werten aus Zusatz ergibt sich ist schon eine gute Näherung für ,477 un araus 3,145. Das Arbeitsblatt es Monats Mai 013

5 ZUM ARBEITSBLATT DES MONATS MAI 013 Das Arbeitsblatt es Monats Mai heißt: Buffons Nael. Sollen Ihre Schüler-innen pi experimentell bestimmen? Wollen Sie Ihre Schüler-innen ie Wahrscheinlichkeit für as Schneien von Parkettlinien urch geworfene Naeln experimentell bestimmen un abei as Gesetz er Großen Zahl entecken lassen? Das geht mit Teilen es Arbeitsblattes ab Klasse 7. Oer wollen Sie ie genialen Mathematisierungsschritte Buffons von Ihrem Leistungskurs Mathematik nachentecken un abei eine tolle Schnittstelle zwischen Analysis un Stochastik nutzen lassen? Zuem kann man mit em Problem auch in ie Simulation stochastischer Prozesse mit Excel einführen unter Rückgriff auf iese Excel-Datei. Arbeitsblatt es Monats Mai 013

Implizite Differentiation

Implizite Differentiation Implizite Differentiation -E -E Implizite Darstellung Eine Funktion ist in impliziter Form gegeben, wenn ie Funktionsgleichung nach keiner er beien Variablen x un y aufgelöst ist. Beispielsweise x y =

Mehr

Mathematik 1 -Arbeitsblatt 1-9: Multiplizieren mehrgliedriger Termee. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB

Mathematik 1 -Arbeitsblatt 1-9: Multiplizieren mehrgliedriger Termee. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB Schule Thema Personen Bunesgymnasium für Berufstätige Salzburg Mathematik 1 -Arbeitsblatt 1-9: Multiplizieren mehrglieriger Termee 1F Wintersemester 01/013 Unterlagen: LehrerInnenteam GFB Ein neues Problem

Mehr

f x durch die Funktionsgleichung

f x durch die Funktionsgleichung 1. Aufgabe In einem ebenen Geläne soll für eine neue Bahntrasse auf einer Strecke von km er zugehörige Bahnamm neu errichtet weren. Dabei sollen ie folgenen, in er Abbilung angeeuteten Beingungen eingehalten

Mehr

Klausur zur Höheren Mathematik 1/2

Klausur zur Höheren Mathematik 1/2 Stroppel/Sänig 4.. Klausur zur Höheren Mathematik / für Ingenieurstuiengänge Bitte beachten Sie ie folgenen Hinweise: Bearbeitungszeit: 8 Minuten Erlaubte Hilfsmittel: Vier Seiten DIN A4 eigenhänig hanbeschrieben.

Mehr

Erste schriftliche Wettbewerbsrunde. Klasse 7

Erste schriftliche Wettbewerbsrunde. Klasse 7 Erste schriftliche Wettbewerbsrune Die hinter en Lösungen stehenen Prozentzahlen zeigen, wie viel Prozent er Wettbewerbsteilnehmer ie gegebene Lösung angekreuzt haben. Die richtigen Lösungen weren fettgeuckt

Mehr

Klausur zur Höheren Mathematik 1/2

Klausur zur Höheren Mathematik 1/2 Stroppel/Sänig 4. 0. 0 Klausur zur Höheren Mathematik / für Ingenieurstuiengänge Bitte beachten Sie ie folgenen Hinweise: Bearbeitungszeit: 40 Minuten Erlaubte Hilfsmittel: Vier Seiten DIN A4 eigenhänig

Mehr

Mathematikunterricht auf dem ipad mit der TI NSPIRE CAS APP

Mathematikunterricht auf dem ipad mit der TI NSPIRE CAS APP Mathematikunterricht auf dem ipad mit der TI NSPIRE CAS APP Seite 0 von 12 Schuljahrgänge 5/6 Schuljahrgänge 7/8 Schuljahrgänge 9/10 Umgang mit natürlichen Zahlen Körper und Figuren Umgang mit Brüchen

Mehr

Mathematikaufgaben > Analysis > Kurven (Polarkoordinaten)

Mathematikaufgaben > Analysis > Kurven (Polarkoordinaten) Michael Buhlmann Mathematikaufgaben > Analysis > Kurven Polarkoorinaten Aufgabe: Gegeben sei für reelle Winkel φ ie Kurve K als Karioie Herzkurve in Polarkoorinaten: im x-y-koorinatensystem. r, φ a Skizziere

Mehr

II.1 sin, cos, tan im rechtwinkligen Dreieck und im Einheitskreis

II.1 sin, cos, tan im rechtwinkligen Dreieck und im Einheitskreis II.1 sin, cos, tan im rechtwinkligen Dreieck und im Einheitskreis 263/1 a) c = 5 cm; 53,13 ; 36,87 b) b = 12 cm; 22,62 ; 67,38 c) a 4,11 cm; b 5,66 cm; = 54 d) c 7,46 cm; b 6,58 cm; = 62 e) c 1631,73 cm;

Mehr

Dr. Neidhardt Thema: Parabeln. [ein Bindeglied zwischen Geometrie und Algebra ] Referent: Christian Schuster

Dr. Neidhardt Thema: Parabeln. [ein Bindeglied zwischen Geometrie und Algebra ] Referent: Christian Schuster Dr. Neihart 14.11.03 Thema: Parabeln [ein Bineglie zwischen Geometrie un Algebra ] Referent: Christian Schuster Glieerung: Anwenungsgebiete un Vorkommen von Parabel Erscheinungen in er Natur Parabeln:

Mehr

f x n ) 2 1 Gleichung (*) f' x 1 f'' x 1

f x n ) 2 1 Gleichung (*) f' x 1 f'' x 1 Das Newtonsche Näherungsverfahren, Teil Theorie - Konvergenzkriterium f x n Allgemeine Lösung: x n = x n f' x f' x n n 0 Nach er Fachliteratur (Bronstein/Semenjajew) arf man hier von einer Cauchy-Folge

Mehr

Musterloesung. Name:... Vorname:... Matr.-Nr.:...

Musterloesung. Name:... Vorname:... Matr.-Nr.:... 2. Klausur Grunlagen er Elektrotechnik I-B 16. Juni 2003 berlin Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten Trennen Sie en Aufgabensatz nicht auf. Benutzen Sie für ie Lösung er Aufgaben

Mehr

III. Integralrechnung 7. Übungen für die Klausur Teil 1 - Integralrechnung

III. Integralrechnung 7. Übungen für die Klausur Teil 1 - Integralrechnung III. Integralrechnung 7. Übungen für die Klausur Teil - Integralrechnung Beachten Sie auch die Materialien aus dem Unterricht. Hier finden Sie viele Übungen, die Sie entweder noch nicht gemacht haben oder

Mehr

Kursarbeit Nr.1 LK Mathematik NAME :

Kursarbeit Nr.1 LK Mathematik NAME : Kursarbeit Nr.1 LK Mathematik 7. 10. 2004 1. Bestimmen Sie eine Stammfunktion F zur angegebenen Funktion f! a) f :R R, f x =1 1 x 100 b) f :R R, f x =sin 2 x 5 x c) f :R R, f x = x 5 x 3 2 2 x 2 2. Berechnen

Mehr

mathphys-online Umkehrfunktionen Aufgabe 1 1 Gegeben ist die Funktion f mit f( x) 2 x 1 und x [ 0.5 ; 4 [.

mathphys-online Umkehrfunktionen Aufgabe 1 1 Gegeben ist die Funktion f mit f( x) 2 x 1 und x [ 0.5 ; 4 [. Umkehrfunktionen Aufgabe Gegeben ist ie Funktion f mit f( ) un [ 0. ; [. a) Bestimmen Sie ie Wertemenge un tragen Sie en Graphen von f in as Koorinatensystem ein. Kennzeichnen Sie Definitionsmenge (grün)

Mehr

mathphys-online Aufgaben zur Differentialrechnung - Lösung Tangentenaufgaben Aufgabe 1 Definition des Feldindex in Vektoren und Matrizen: ORIGIN 1

mathphys-online Aufgaben zur Differentialrechnung - Lösung Tangentenaufgaben Aufgabe 1 Definition des Feldindex in Vektoren und Matrizen: ORIGIN 1 Aufgaben zur Differentialrechnung - Lösung Tangentenaufgaben Definition es Felinex in Vektoren un Matrizen: ORIGIN Aufgabe Gegeben ist ie Funktion f mit em Funktionsterm f( x) = x x, wobei x IR. a) Bestimmen

Mehr

a) b) Abb. 1: Buchstaben

a) b) Abb. 1: Buchstaben Hans Walser, [20171019] Magische Quarate ungeraer Seitenlänge nregung: uler (1782) 1 Worum geht es? Zu einer gegebenen ungeraen Zahl u wir ein magisches Quarat mit er Seitenlänge u konstruiert. 2 as Vorgehen

Mehr

= 1 und der Ladung Q aufgefasst. Die elektrische Feldstärke beträgt 1, N/C, so dass die Entladung durch einen Blitz unmittelbar bevorsteht.

= 1 und der Ladung Q aufgefasst. Die elektrische Feldstärke beträgt 1, N/C, so dass die Entladung durch einen Blitz unmittelbar bevorsteht. Aufgaben Konensator 57. Zwei kreisförmige Metallplatten mit em Raius 0 cm, ie parallel im Abstan von 0 cm angeornet sin, bilen einen Plattenkonensator. In er Mitte zwischen en Platten hängt an einem ünnen

Mehr

Physik 11 Das Ampersche Durchflutungsgesetz. 1. Das Magnetfeld eines stromdurchflossenen Drahtes

Physik 11 Das Ampersche Durchflutungsgesetz. 1. Das Magnetfeld eines stromdurchflossenen Drahtes 1. Das Magnetfel eines stromurchflossenen Drahtes I 1. Das Magnetfel eines stromurchflossenen Drahtes I 1. Das Magnetfel eines stromurchflossenen Drahtes I Die Fellinien es Feles eines stromurchflossenen,

Mehr

2.1 Seilparadoxon (Wie eng kann ein Päckchen geschnürt werden?) Handhabung:

2.1 Seilparadoxon (Wie eng kann ein Päckchen geschnürt werden?) Handhabung: 2.1 Seilparadoxon (Wie eng kann ein Päckchen geschnürt werden?) Handhabung: Mathematik: Arbeitsweisen: Experiment durchführen Punkte im Koordinatensystem einzeichnen Schaubild 1 zeichnen Tabellenwert errechnen

Mehr

Serie 6 - Funktionen II + Differentialrechnung

Serie 6 - Funktionen II + Differentialrechnung Analysis D-BAUG Dr. Meike Akvel HS 05 Serie 6 - Funktionen II + Differentialrechnung. a) Sei Lösung 3, falls < 0, f : R R, f) c +, falls 0, + 8, falls >. Bestimmen Sie c R un R, so ass f überall stetig

Mehr

Vordiplom Mechanik/Physik WS 2000/2001

Vordiplom Mechanik/Physik WS 2000/2001 Aufgabe 1 a) Ein allgemeines Kräftesystem besteht aus folgenen Kräften: F 1 =30 N α 1 =90 Angriffspunkt: (x,y)=(0,0) F =0 N α =110 Angriffspunkt: (x,y)=(1,1) F 3 =0 N α 3 =70 Angriffspunkt: (x,y)=(,0)

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 9 1. Semester ARBEITSBLATT 9 MULTIPLZIEREN MIT MEHRGLIEDRIGEN TERMEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 9 1. Semester ARBEITSBLATT 9 MULTIPLZIEREN MIT MEHRGLIEDRIGEN TERMEN Mathematik: Mag. Schmi Wolfgang Areitslatt 9 1. Semester ARBEITSBLATT 9 MULTIPLZIEREN MIT MEHRGLIEDRIGEN TERMEN Ein neues Prolem ergit sich, wenn wir mehrere mehrglierige Terme 3x+ 1 4 x = miteinaner multiplizieren

Mehr

St.Gallische Kantonsschulen Aufnahmeprüfung 2009 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe Punkte

St.Gallische Kantonsschulen Aufnahmeprüfung 2009 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe Punkte St.Gallische Kantonsschulen Aufnahmeprüfung 2009 Gymnasium Mathematik 1 ohne Taschenrechner Dauer: 90 Minuten Kandidatennummer: Summe: Geburtsdatum: Note: Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 Punkte Löse

Mehr

PFEIFER-Verbundankernadeln

PFEIFER-Verbundankernadeln PFEIFER-erbunankernaeln Artikel Nr. 05.382 Artikel Nr. 05.383 Artikel Nr. 05.384 erbinungstechnik Sanwichankersystem Unter Berücksichtigung er neuen Winnorm DIN 1055-4 NEU! PFEIFER-erbunankernaeln aus

Mehr

Zufallsvariable und Wahrscheinlichkeiten mit GeoGebra

Zufallsvariable und Wahrscheinlichkeiten mit GeoGebra Zufallsvariable und Wahrscheinlichkeiten mit GeoGebra 1. Münzwurf Wir wollen das 100-malige Werfen einer idealen Münze simulieren. Gehe dazu wie folgt vor: a) Gib in die Zelle A1 des Tabellen-Fensters

Mehr

2. Goldener Schnitt. Der Goldene Schnitt ist das wohl berühmteste Zahlenverhältnis.

2. Goldener Schnitt. Der Goldene Schnitt ist das wohl berühmteste Zahlenverhältnis. 8 2. Golener Schnitt Die Geometrie birgt zwei grosse Schätze: er eine ist er Satz von Pythagoras, er anere ist er Golene Schnitt. Den ersten können wir mit einem Scheffel Gol vergleichen, en zweiten ürfen

Mehr

Diagnose-Bogen Mathematik Erich Kästner Schule Seite 1 von 7

Diagnose-Bogen Mathematik Erich Kästner Schule Seite 1 von 7 Diagnose-Bogen Mathematik Erich Kästner Schule Seite 1 von 7 Im Mathematikunterricht der Oberstufe muss man auf mathematisches Handwerkszeug aus der Sekundarstufe I zurückgreifen. Wir wollen deshalb deine

Mehr

mathphys-online Trigonometrische Funktionen - Aufgaben 2 Aufgabe 1: Abschlussprüfung 1999 / AI 2 Gegeben ist die Funktion f( x) π sin = und x IR.

mathphys-online Trigonometrische Funktionen - Aufgaben 2 Aufgabe 1: Abschlussprüfung 1999 / AI 2 Gegeben ist die Funktion f( x) π sin = und x IR. - Aufgaben Aufgabe : Abschlussprüfung 999 / AI Gegeben ist ie Funktion f( x) sin ( x ) = un x IR. a) Ermitteln Sie alle Nullstellen un Extrempunkte er Funktion f. b) Zeichnen Sie en Graphen er Funktion

Mehr

Angewandte Mathematik 9. Mai 2014 Korrekturheft Teil A

Angewandte Mathematik 9. Mai 2014 Korrekturheft Teil A Standardisierte kompetenzorientierte schriftliche Reife- und Diplomprüfung Angewandte Mathematik 9. Mai 2014 Korrekturheft Teil A Aufgabe 1 a) x Masse der Rosinen oder Mandeln in Kilogramm (kg) y Masse

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: [email protected] Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fa:

Mehr

Aufgabe 1 G: Fläche und Umfang von geradlinig begrenzten Figuren

Aufgabe 1 G: Fläche und Umfang von geradlinig begrenzten Figuren Schüler/in Aufgabe 1 G: Fläche und Umfang von geradlinig begrenzten Figuren LERNZIELE: Flächeninhalt mit Rasterzählmethode bestimmen Flächeninhalt und Umfang mit Formeln berechnen Flächeninhalt durch Zerlegen

Mehr

Grundkenntnisse. Begriffe, Fachtermini (PRV) Gib die Winkelart von an.

Grundkenntnisse. Begriffe, Fachtermini (PRV) Gib die Winkelart von an. Begriffe, Fachtermini (PRV) / Sätze / Formeln (PRV) / Regeln / Funktionen und Darstellung (PRV) / Relative Häufigkeit und Wahrscheinlichkeit (PRV) / Tabellenkalkulation (PRV) TÜ-Nr. 501D Begriffe, Fachtermini

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 4. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 4. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: [email protected] Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fax:

Mehr

Zentrale Abschlussprüfung 10 zur Erlangung des Mittleren Schulabschlusses mit der Berechtigung für die Gymnasiale Oberstufe (an Gesamtschulen) 2012

Zentrale Abschlussprüfung 10 zur Erlangung des Mittleren Schulabschlusses mit der Berechtigung für die Gymnasiale Oberstufe (an Gesamtschulen) 2012 Die Senatorin für Bildung, Wissenschaft und Gesundheit Freie Hansestadt Bremen Zentrale Abschlussprüfung 10 zur Erlangung des Mittleren Schulabschlusses mit der Berechtigung für die Gymnasiale Oberstufe

Mehr

Physik-Praktikum 13.1 Daniel Bilic W4 Optisches Gitter / Linienspektren

Physik-Praktikum 13.1 Daniel Bilic W4 Optisches Gitter / Linienspektren Physik-Praktikum 3. Daniel Bilic 5.2.06 W4 Optisches Gitter / Linienspektren. Versuchsaufbau: Der Versuch war wie gefolgt aufgebaut. Wir stellten eine Spektrallampe auf eine Schien, ie er Schiene entlang

Mehr

BM Mathematik T1 Grundlagenprüfung_16 Seite: 1/7

BM Mathematik T1 Grundlagenprüfung_16 Seite: 1/7 BM Mathematik T Grundlagenprüfung_6 Seite: /7 Abschlussprüfung BM Mathematik Grundlagen TAL Teil Prüfungsdauer 75 Minuten, ohne Hilfsmittel Die Lösungen werden nur bewertet, wenn der Lösungsweg klar ersichtlich

Mehr

Abschlussprüfung Berufliche Oberschule 2013 Mathematik 12 Nichttechnik - A II - Lösung

Abschlussprüfung Berufliche Oberschule 2013 Mathematik 12 Nichttechnik - A II - Lösung Abschlussprüfung Berufliche Oberschule 03 Mathematik Nichttechnik - A II - Lösung Teilaufgabe.0 Der Graph G f einer ganzrationalen Funktion f mit er Definionsmenge D f = IR berührt ie bei x = un schneiet

Mehr

Unterrichtsplanung zur Einführung des Binomialkoeffizienten und der Binomialverteilung

Unterrichtsplanung zur Einführung des Binomialkoeffizienten und der Binomialverteilung Unterrichtsplanung zur Einführung des Binomialkoeffizienten und der Binomialverteilung Einleitung: Im Folgenden soll ein Unterrichtskonzept zur Einführung der Begriffe Binomialkoeffizient und Binomialverteilung

Mehr

Physik-eA-2010 Klausur des 4.Semesters 15. Februar Untersuchungen eines Americiumpräparats - Am241

Physik-eA-2010 Klausur des 4.Semesters 15. Februar Untersuchungen eines Americiumpräparats - Am241 Physik-eA-200 lausur es 4Semesters 5 Februar 200 Untersuchungen eines Americiumpräparats - Am24 I I Spektrum eines Americiumpräparates treten ua ie Energien E, =5,387 MeV, E, 2 =5,442 MeV un E, 3 =5,484

Mehr

Übungen zum Ferienkurs Theoretische Mechanik

Übungen zum Ferienkurs Theoretische Mechanik Übungen zum Ferienkurs Theoretische Mechanik Lagrange un Hamilton Mechanik Übungen, ie mit einem Stern markiert sin, weren als besoners wichtig erachtet. 2.1 3D Faenpenel Betrachten Sie ein Faenpenel er

Mehr

Kantonale Prüfungen Mathematik I Prüfung für den Übertritt aus der 9. Klasse

Kantonale Prüfungen Mathematik I Prüfung für den Übertritt aus der 9. Klasse Kantonale Prüfungen 01 für die Zulassung zum gymnasialen Unterricht im 9. Schuljahr Mathematik I Serie H9 Gymnasien des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 9. Klasse Bitte beachten:

Mehr

Mathe an Stationen. Mathe an Stationen 10 Inklusion. Ähnlichkeit, Strahlensätze und Co. Bernard Ksiazek. Klasse. Downloadauszug aus dem Originaltitel:

Mathe an Stationen. Mathe an Stationen 10 Inklusion. Ähnlichkeit, Strahlensätze und Co. Bernard Ksiazek. Klasse. Downloadauszug aus dem Originaltitel: Bernar Ksiazek Mathe an Stationen 10 Inklusion Ähnlichkeit, Strahlensätze un Co. Sekunarstufe ufe I Bernar Ksiazek Downloaauszug aus em Originaltitel: Mathe an Stationen Klasse Materialien zur Einbinung

Mehr

Maturitätsprüfung 2012 Mathematik Teil 1

Maturitätsprüfung 2012 Mathematik Teil 1 Maturitätsprüfung 2012 Mathematik Teil 1 Klasse: 4NP Lehrer: Fi Dauer: 90 Min. Die im Unterricht verwendete Formelsammlung ist als einziges Hilfsmittel zugelassen. Alle Lösungen müssen ordentlich und nachvollziehbar

Mehr

Die Figur wird verzerrt. Das Dreieck hat gebogene Seiten. Die Figur schrumpft zu einer Linie, sie wird auf einem Bogen abgebildet.

Die Figur wird verzerrt. Das Dreieck hat gebogene Seiten. Die Figur schrumpft zu einer Linie, sie wird auf einem Bogen abgebildet. 1 6 301 Bisher hast du zum Vergrössern eine Figur bei X abgetastet und bei Y die Bildfigur (Vergrösserung) gezeichnet. X Y Z P Q A Was passiert, wenn du die Bildfigur nicht bei Y, sondern im Gelenk P zeichnest?

Mehr

3.5 RL-Kreise und Impedanz

3.5 RL-Kreise und Impedanz 66 KAPITEL 3. ELEKTRISCHE SCHALTUNGEN 3.5 RL-Kreise un Impeanz Neues Element: Spule Spannung an einer Spule: V = L Q Selbstinuktivität (Einheit: Henry) [L] = 1 V s A Ursache für as Verhalten einer Spule:

Mehr

Erprobungsarbeit Mathematik

Erprobungsarbeit Mathematik Sächsisches Staatsministerium Geltungsbereich: für Klassen 8 für Kultus an Erprobungsschulen Schuljahr 2000/2001 Erprobungsarbeit Mathematik Realschulbildungsgang Allgemeine Arbeitshinweise Die Erprobungsarbeit

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus.

Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus. bschlussprüfung 013 an en Realschulen in ayern athematik II usterlösung Lösung iese Lösung wure erstellt von ornelia anzenbacher. ie ist keine offizielle Lösung es ayerischen taatsministeriums für Unterricht

Mehr

Cluster 1: Kabelverlauf

Cluster 1: Kabelverlauf Teil B Seite 1 / 6 Doris Schönorfer Cluster 1: Kabelverlauf zum Menü Hinweis: Cluster 1 bezieht sich auf Höhere Technische Lehranstalten (HTL) für ie Ausbilungsrichtungen Bautechnik, Holztechnik & Innenraumgestaltung

Mehr

(1) Bestimme die Lösungsmenge der folgenden Bruchungleichung in Z: c) Löse die Ungleichung durch Fallunterscheidung mit der Hand Schritt für Schritt!

(1) Bestimme die Lösungsmenge der folgenden Bruchungleichung in Z: c) Löse die Ungleichung durch Fallunterscheidung mit der Hand Schritt für Schritt! 1. Semesterschularbeit 10.12.1999 (50 Minuten) (1) Bestimme die Lösungsmenge der folgenden Bruchungleichung in Z: 1 1 x 4 2 a) Schreibe mit Hilfe deines TI-89/92 die Lösungsmenge an. b) Rechne mit der

Mehr

Maturitätsprüfung 2012 Klassen 4GI, 4S, 4Wa, 4L Mathematik, Teil 1 Lehrkräfte Bs, Fh, Td Name: Dauer 90 Minuten

Maturitätsprüfung 2012 Klassen 4GI, 4S, 4Wa, 4L Mathematik, Teil 1 Lehrkräfte Bs, Fh, Td Name: Dauer 90 Minuten Maturitätsprüfung 2012 Klassen 4GI, 4S, 4Wa, 4L Mathematik, Teil 1 Lehrkräfte Bs, Fh, Td Name: Dauer 90 Minuten Die im Unterricht verwendete Formelsammlung ist als einziges Hilfsmittel zugelassen. Alle

Mehr

MATHEMATIK K1 EINSTIEGSARBEIT (OHNE GTR)

MATHEMATIK K1 EINSTIEGSARBEIT (OHNE GTR) MATHEMATIK K EINSTIEGSARBEIT (OHNE GTR Einige Stichworte: Bruchrechnen: bei Addition und Subtraktion beide Brüche auf den Hauptnenner bringen Man teilt durch einen Bruch, indem man mit dessen Kehrwert

Mehr

Aufgabe 1 E: Fläche und Umfang von geradlinig begrenzten Figuren

Aufgabe 1 E: Fläche und Umfang von geradlinig begrenzten Figuren Schüler/in Aufgabe 1 E: Fläche und Umfang von geradlinig begrenzten Figuren LERNZIELE: Flächeninhalt mit Rasterzählmethode bestimmen Flächeninhalt und Umfang mit Formeln berechnen Flächeninhalt durch Zerlegen

Mehr

5.3. Abstrakte Anwendungsaufgaben

5.3. Abstrakte Anwendungsaufgaben Aufgabe.. Abstrakte Anwendungsaufgaben In den Raum zwischen der x-achse und dem Graphen von f(x) = x x + soll ein Rechteck möglichst großer Fläche gelegt werden, dessen Ecken auf dem Graphen liegen. Wie

Mehr

Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird,

Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird, Determinanten Wir entwickeln eine Lösungsformel für Gleichungssysteme mit zwei Variablen. ax + cy = e b bx + y = f a } abx bcy = be + abx + ay = af ya bc = af be Man schreibt y = af be a bc = a e b f analog

Mehr

Berechnung der Länge einer Quadratseite a:

Berechnung der Länge einer Quadratseite a: 2006 Pflichtbereich erechnung der Länge einer Quadratseite a: Zur erechnung der Quadratseite a benötigt man die ilfslinie ür die Quadratseite a gilt dann: a = + 57 erechnung der Strecke : Im reieck kann

Mehr

Trage die Ergebnisse in die nachfolgende Tabelle ein. A 3. Größe der Fläche A 1

Trage die Ergebnisse in die nachfolgende Tabelle ein. A 3. Größe der Fläche A 1 Aufgabe: Bestimme die Flächeninhalte A 1, A 2 und A 3. Trage die Ergebnisse in die nachfolgende Tabelle ein. A 1 A 2 A 3 des Winkels Fläche A 1 Fläche A 2 Fläche A 3 1. Dreieck (Ausgangsdreieck) Vergleiche

Mehr

Elektro- und Informationstechnik SS Mathematik I - Übungsblatt 05 Lösungsvorschläge

Elektro- und Informationstechnik SS Mathematik I - Übungsblatt 05 Lösungsvorschläge - Übungsblatt 05 Lösungsvorschläge Aufgabe 1 Gegeben sind die beiden Spaltenvektoren im x-y-koordinatensystem a=[1, 2] T und b=[ 3, 1] T. a) Skizzieren Sie a und b im x-y-koordinatensystem. Dabei auf vollständige

Mehr

Download. Mathe an Stationen. Mathe an Stationen. Das 4x4-Geobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges

Download. Mathe an Stationen. Mathe an Stationen. Das 4x4-Geobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges Download Marco Bettner, Erik Dinges Mathe an Stationen Das 4x4-Geobrett in der Sekundarstufe I Downloadauszug aus dem Originaltitel: Sekundarstufe I Marco Bettner Erik Dinges Mathe an Stationen Umgang

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 007 Prüfungsfach: Mathematik (technische Ausbildungsrichtung) Prüfungstag: Donnerstag,. Juni 007 Prüfungsdauer: 09:00 :00 Uhr Hilfsmittel: Elektronischer,

Mehr

täglich einmal Scilab!

täglich einmal Scilab! Mathematik 1 - Übungsblatt 7 täglich einmal Scilab! Aufgabe 1 (Definitionsformel für Determinanten) Determinanten quadratischer Matrizen sind skalare Größen (=einfache Zahlen im Gegensatz zu vektoriellen

Mehr

Passerelle Mathematik Frühling 2005 bis Herbst 2006

Passerelle Mathematik Frühling 2005 bis Herbst 2006 Passerelle Mathematik Frühling 2005 bis Herbst 2006 www.mathenachhilfe.ch [email protected] 079 703 72 08 Inhaltsverzeichnis 1 Algebra 3 1.1 Termumformungen..................................... 3

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2009 im Fach Mathematik. Nachschreiber 15. Juni 2009

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2009 im Fach Mathematik. Nachschreiber 15. Juni 2009 Senatsverwaltung für Bildung, Wissenschaft und Forschung Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2009 im Fach Mathematik Nachschreiber 15. Juni 2009 Arbeitsbeginn: 10.00 Uhr Bearbeitungszeit:

Mehr

Mathematik 1 (ohne Taschenrechner)

Mathematik 1 (ohne Taschenrechner) Kanton St.Gallen Bildungsdepartement Gymnasium Aufnahmeprüfung 2018 Mathematik 1 (ohne Taschenrechner) Dauer: 90 Minuten Kandidatennummer: Geburtsdatum: Korrigiert von: Punktzahl/Note: Aufgabe 1 2 3 4

Mehr

2005 Nachtermin Nichttechnik 12 Testen korrigiert! Analysis

2005 Nachtermin Nichttechnik 12 Testen korrigiert! Analysis Analysis 1 4 1 3 2 1.0 Gegeben ist die reelle Funktion f : xa x + x x ; D f = IR. 4 3 Der Graph der Funktion f heißt G. In den folgenden Teilaufgaben kann auf zwei Nachkommastellen gerundet werden. f 1.1

Mehr

Das elektrische Feld als Energiespeicher

Das elektrische Feld als Energiespeicher Laungsquantelung Das elektrische Fel als Energiespeicher 79. Das elektrische Fel als Energiespeicher a) Welche Beobachtung legt nahe, ass in einem elektrischen Fel Energie gespeichert ist? b) Zeigen Sie,

Mehr

Abstand Punkt/Gerade

Abstand Punkt/Gerade Abstan unkt/gerae. Geeben sin er unkt un ie Gerae : x = +λ. Gesucht ist er Abstan von zu. 2. ür ein λ ilt: +λ O,.h. (+λ O = x O Hieraus lässt sich λ berechnen, allemein: λ = ( O λ einesetzt in ie Geraenleichun

Mehr

Lösungen Umfang und Flächeninhalt

Lösungen Umfang und Flächeninhalt Lösungen Umfang und Flächeninhalt Aufgabe U a b 00 30 b zusammenfassen 00 60 b 60 40 b : b 0m Die andere Seite des Grundstücks besitzt eine Länge von 0 Meter. Aufgabe U a b U 40 60 U 00m Anzahl der Pfosten

Mehr

Repetition Mathematik 6. Klasse (Zahlenbuch 6)

Repetition Mathematik 6. Klasse (Zahlenbuch 6) Repetition Mathematik 6. Klasse (Zahlenbuch 6) Grundoperationen / Runden / Primzahlen / ggt / kgv / Klammern 1. Berechne schriftlich: 2'097 + 18 6 16'009 786 481 274 69 d.) 40'092 : 78 2. Die Summe von

Mehr

Montag, 12. Juni 2017

Montag, 12. Juni 2017 Senatsverwaltung für Bildung, Jugend und Familie Vergleichende Arbeit 2017 im Fach Mathematik - zum Erwerb der Berufsbildungsreife bzw. des Hauptschulabschlusses - zum Erwerb des der Berufsbildungsreife

Mehr

Station 1 Das Galtonbrett, Realmodelle

Station 1 Das Galtonbrett, Realmodelle Station 1 Das Galtonbrett, Realmodelle Zeit zur Bearbeitung: 10 Minuten 1.1 Versuch:. Münzwurf mit dem Galtonbrett Betrachtet wird folgendes Zufallsexperiment: Fünf identische Münzen werden zehn-mal geworfen.

Mehr

Weitere Formatierungsmöglichkeiten

Weitere Formatierungsmöglichkeiten Stanar-Tabstopp 326 Weitere Formatierungsmöglichkeiten Im vorangegangenen Kapitel haben Sie verschieene Formatierungsmöglichkeiten kennen gelernt, welche Ihnen erlauben, ie Zeichen zu veränern, Absätze

Mehr

Lernzirkel: Grenzprozesse

Lernzirkel: Grenzprozesse Lernzirkel: Grenzprozesse Mit diesem Lernzirkel kannst du verschiedene Grenzprozesse kennenlernen und dein Verständnis solcher Prozesse vertiefen. Bei jeder Station bearbeitest du ein anderes Thema. Dieses

Mehr

Beispiellösungen zu Blatt 6

Beispiellösungen zu Blatt 6 µathematischer κorresponenz- zirkel Mathematisches Institut Georg-August-Universität Göttingen Aufgabe 1 Beispiellösungen zu Blatt 6 Gibt es eine Quaratzahl, eren Quersumme 6 ist? Hinweis: Die Quersumme

Mehr

Mathematik. Matur-Aufgaben Stefan Dahinden. 26. Juni 2007

Mathematik. Matur-Aufgaben Stefan Dahinden. 26. Juni 2007 Mathematik Matur-Aufgaben 2006 Stefan Dahinden 26. Juni 2007 Rotationskörper Lassen Sie die Kurve mit der Gleichung y = 9 x für 0 x 9 um die x- Achse rotieren und berechnen Sie das exakte Volumen des entstehenden

Mehr

1. Das Koordinatensystem

1. Das Koordinatensystem Liebe Schülerin! Lieber Schüler! In den folgenden Unterrichtseinheiten wirst du die Unterrichtssoftware GeoGebra kennen lernen. Mit ihrer Hilfe kannst du verschiedenste mathematische Objekte zeichnen und

Mehr

Mathematik I Prüfung für den Übertritt aus der 8. Klasse

Mathematik I Prüfung für den Übertritt aus der 8. Klasse Aufnahmeprüfung 015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 8. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

Berufsmaturitätsprüfung Mathematik

Berufsmaturitätsprüfung Mathematik Berufsmaturitätsprüfung 2006 - Mathematik Bedingungen o Die Prüfungsdauer beträgt 240 Minuten (ohne Pause) o Grundsätzlich müssen alle Aufgaben von Hand gelöst werden. Der Taschenrechner darf nur für arithmetische

Mehr

0 1 0 b Die inverse Funktion muss die Translation um b sein und hat daher die homogene Matrix b b 1

0 1 0 b Die inverse Funktion muss die Translation um b sein und hat daher die homogene Matrix b b 1 Homogene Koorinaten Aufgabe. In homogener Darstellung ist ie Translation f R 4 R 4 um einen Vektor b R 3 eine lineare Funktion un kann aher urch eine Matri Vektor Multiplikation realisiert weren. Wie sieht

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife Mathematik (nichttechnische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife Mathematik (nichttechnische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 2006 Prüfungsfach: Mathematik (nichttechnische Ausbildungsrichtung) Prüfungstag: Donnerstag, 22. Juni 2006 Prüfungsdauer: 09:00 12:00 Uhr Hilfsmittel:

Mehr

Zentrale Abschlussprüfung 10 zur Erlangung der Erweiterten Berufsbildungsreife. Mathematik (A)

Zentrale Abschlussprüfung 10 zur Erlangung der Erweiterten Berufsbildungsreife. Mathematik (A) Die Senatorin für Bildung, Wissenschaft und Gesundheit Freie Hansestadt Bremen Zentrale Abschlussprüfung 10 zur Erlangung der Erweiterten Berufsbildungsreife 2012 Mathematik (A) Teil 1 Taschenrechner und

Mehr

Erprobungsarbeit Mathematik

Erprobungsarbeit Mathematik Sächsisches Staatsministerium Geltungsbereich: für Klassen 8 für Kultus an Erprobungsschulen Schuljahr 2001/2002 Erprobungsarbeit Mathematik Realschulbildungsgang Allgemeine Arbeitshinweise Die Erprobungsarbeit

Mehr

Staatsexamensklausur für die Lehrämter L 1 (Wahlfach) / L 2 / L 5 Herbst 2007 Mathematik

Staatsexamensklausur für die Lehrämter L 1 (Wahlfach) / L 2 / L 5 Herbst 2007 Mathematik Staatsexamensklausur für die Lehrämter L 1 (Wahlfach) / L 2 / L 5 Herbst 2007 Mathematik Zugelassenes Hilfsmittel: Einfacher nicht programmierbarer Taschenrechner (ohne Lösemodule sowie sonstige Computeralgebrakomponenten

Mehr

Einführung in die theoretische Physik 1

Einführung in die theoretische Physik 1 Mathey Einführung in ie theor. Physik 1 Einführung in ie theoretische Physik 1 Prof. Dr. L. Mathey Dienstag 15:45 16:45 un Donnerstag 1:45 12: Beginn: 23.1.12 Jungius 9, Hörs 2 1 Mathey Einführung in ie

Mehr

Ergänzungsprüfung zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung)

Ergänzungsprüfung zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung) Ergänzungsprüung zum Erwerb der Fachhochschulreie 0 Prüungsach: Mathematik (technische Ausbildungsrichtung) Prüungstag: Donnerstag,. Juni 0 Prüungsdauer: 9:00 :00 Uhr Hilsmittel: Elektronischer, nicht

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak 4. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 9 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu en Hausaufgaben: Aufgabe H. a)

Mehr

Fachwörterliste Mathematik für Berufsintegrationsklassen

Fachwörterliste Mathematik für Berufsintegrationsklassen Fachwörterliste Mathematik für Berufsintegrationsklassen Lerngebiet 2.4: Grundkenntnisse der Geometrie München, Februar 2019 ISB Berufssprache Deutsch Erarbeitet im Auftrag des Bayerischen Staatsministeriums

Mehr

Illustrierende Aufgaben zum LehrplanPLUS

Illustrierende Aufgaben zum LehrplanPLUS Zimmergrundriss Jahrgangsstufe 5 Fach Zeitrahmen Benötigtes Material Mathematik Eine Unterrichtsstunde (Expertengruppen: ca. 10 min; gemischte Gruppen: ca. 30 min) Die Zeit für die Gemischten Gruppen kann

Mehr

Natürliche Häufigkeiten zur intuitiven Einführung der bedingten Wahrscheinlichkeiten Eine Idee für den Mathematikunterricht der gymnasialen Oberstufe

Natürliche Häufigkeiten zur intuitiven Einführung der bedingten Wahrscheinlichkeiten Eine Idee für den Mathematikunterricht der gymnasialen Oberstufe Natürliche Häufigkeiten zur intuitiven Einführung der bedingten Wahrscheinlichkeiten Eine Idee für den Mathematikunterricht der gymnasialen Oberstufe Axel Müller 7. Oktober 2017 1 Der Begriff der bedingten

Mehr