Abstand Punkt/Gerade

Größe: px
Ab Seite anzeigen:

Download "Abstand Punkt/Gerade"

Transkript

1 Abstan unkt/gerae. Geeben sin er unkt un ie Gerae : x = +λ. Gesucht ist er Abstan von zu. 2. ür ein λ ilt: +λ O,.h. (+λ O = x O Hieraus lässt sich λ berechnen, allemein: λ = ( O λ einesetzt in ie Geraenleichun eribt en ußpunkt, enauer O un schließlich ilt: = O O. Empfehlun: In Klausuren sollte von er (sich zu merkenen Beziehun (+λ O = auseanen weren, um zunächst λ zu bestimmen. Um en Abstan mit em GTR zu ermitteln, kann as Minimum er unktion (λ = +λ O bestimmt weren. Empfehlenswert ist, ie Vektoren un O zusammenzufassen. Der Betra wir wie üblich mit einer Wurzel aus einer Quaratsumme ebilet. 3. Berechne en ußpunkt un en Abstan: a ( 2 : x = ( 3 b ( : x = ( 3 + λ + λ( 2 ( 3

2 Abstan unkt/gerae Berechne en ußpunkt un en Abstan: a ( 2 : x = ( 3 b ( : x = ( 3 + λ + λ( 2 ( 3 Lösunen: a (3 9, λ = 9, = 7 b (4 8, λ = 8, = 9 2

3 Abstan unkt/gerae Laufener unkt A Geeben sin er unkt A( 3 6 un ie Gerae 2 : x = +t 4, t R 2 2 Gesucht ist er Abstan von A zu. Die Berechnun ist recht einpräsam, wenn ie Geraenleichun als laufener unkt eschrieben wir: 2 2+t O = +t 4, t R, zusammenefasst: O = +4t, t R t A A ür as t, as zum ußpunkt ehört, ilt: A = ( O OA = führt zu A,.h. (3+t+( 4+4t4+( 4+2t2 = mit t =. t = in ie Geraenleichun einesetzt eribt en ußpunkt (3 3 4, = A = 2 = 4,472 Berechne en ußpunkt un en Abstan: 2 4 a A( 7 : x = +t b A(2 2 4 : x = +t

4 Abstan unkt/gerae Berechne en ußpunkt un en Abstan: 2 4 a A( 7 : x = +t b A(2 2 4 : x = +t Lösunen: a (6 3, t = 2, = 6 = 7,483 b (2 2, t =, = = 2,236 4

5 Abstan unkt/gerae LK. Berüne: = ( O = ( O = ( O = Q O 2. Berüne: λ+ = O... Q λ = ( O Q λ = 3. Berechne en ußpunkt un en Abstan: a ( 2 : x = ( 2 2 b (8 : x = + λ( 2 ( 3 + λ( 2 Lösunen: 3. a (4 2 4, λ = 2, = 6 b (3 2, λ = 2, = 4

6 Zum Lotfußpunkt Geeben sin er unkt un ie Gerae : x = +λ. λ = Q führt zum Lotfußpunkt. Q Q O = + Dies kann mit wenien Umformunen verifiziert weren. Hierurch wir auch er λ-term verstänlich. Q O = + O = +( Q }{{} Q (siehe Skalarproukt Q 6

7 Achsenabschnittsform er Ebene z x y x 3 + y + z 4 = Die Gleichun er Ebene mit en Achsenabschnitten a, b un c lautet: x a + y b + z c = oer a b x = c Dies kann unmittelbar mit einer Betrachtun er Achsen-Schnittpunkte bestätit weren. ür ie Schnittstelle x er Ebene mit er x-achse ilt z.b. y = un z =, also x = a. Alternativ kann mit en Achsen-Schnittpunkten ie Koorinatenform bcx+acy +abz abc = ermittelt weren. Diese iviiert urch abc eribt ie Achsenabschnittsform. 7

8 z S c b y x a Auf. Eine (punktförmie Kuel rollt eine schräe Ebene E von S herab. Wo trifft ie Kuel in er xy-ebene auf? Die Kuel rollt auf einer Linie S, ie senkrecht zur Spureraen von E verläuft. ür en ußpunkt ilt [ a +λ a b ] a b = c S = λ = a2 a 2 +b 2 = O = ab b a 2 +b 2 a Da λ nicht von c abhänt, ist auch O. ür weitere raestellunen siehe Abituraufaben GK Bayern 2. 8

9 Eränzun (er Graient ist kein verpflichtener Inhalt Die Ebene schließt mit er xy-ebene en Winkel ein. α = arctan c O = arctan c a 2 +b 2 ab ür z = c c a x c b y ilt ann: α = arctan c a 2 +b 2 ab = arctan ( fx f y. Wir erhalten: Die Steiun er Geraen es stärksten Ansties ist er Betra es Graienten. 9

(0 4) 4 :( 2) Bestimmung von Geradengleichungen Aufgabe 1

(0 4) 4 :( 2) Bestimmung von Geradengleichungen Aufgabe 1 Bestimmun von Geradenleichunen Auabe Geeben ist die Geradenleichun (x) = -x +. Gesucht sind die Schnittpunkte mit den Koordinatenachsen. Lösun: Mit der y-achse (x=0): S y (0 ) Mit der x-achse (y=0): x

Mehr

Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 6 Hausübungen (Abgabe: )

Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 6 Hausübungen (Abgabe: ) Prof. C. Greiner, Dr. H. van Hees Wintersemester 212/213 Übunen zur Theoretischen Physik 1 Lösunen zu Blatt 6 Hausübunen (Ababe: 14.12.212) (H14) Arbeit eines Kraftfeles (2 Punkte) r = (6m/s 2 t 2m/s,3m/s

Mehr

Lösung zur Klausur Technische Mechanik III Universität Siegen, Fachbereich Maschinenbau,

Lösung zur Klausur Technische Mechanik III Universität Siegen, Fachbereich Maschinenbau, Lösun zur Klausur Technische Mechanik III Universität Sieen, Fachbereich Maschinenbau, 9.02.2008 Aufabe 1 (10 Punkte) y m 2 u M R MR v 0 h r x A l B s C Ein römischer Katapultwaen (Masse ) rollt beladen

Mehr

K l a u s u r G k P h 11

K l a u s u r G k P h 11 K l a u s u r G k P h Aufabe a) Aus welcher Höhe muß ein Körper frei fallen, damit er mit der Geschwin- dikeit auf den Boden aufschlät? v 8 km h b) Wie lane dauert der freie Fall des Körpers? Aufabe 2

Mehr

mathphys-online Aufgaben zur Differentialrechnung - Lösung Tangentenaufgaben Aufgabe 1 Definition des Feldindex in Vektoren und Matrizen: ORIGIN 1

mathphys-online Aufgaben zur Differentialrechnung - Lösung Tangentenaufgaben Aufgabe 1 Definition des Feldindex in Vektoren und Matrizen: ORIGIN 1 Aufgaben zur Differentialrechnung - Lösung Tangentenaufgaben Definition es Felinex in Vektoren un Matrizen: ORIGIN Aufgabe Gegeben ist ie Funktion f mit em Funktionsterm f( x) = x x, wobei x IR. a) Bestimmen

Mehr

1. Nach-Klausur - LK Physik Sporenberg - Q1/

1. Nach-Klausur - LK Physik Sporenberg - Q1/ . Nach-Klausur - LK Physik Sporenber - / 0.04.03.Aufabe: Geeben ist eine flache Rechteckspule mit n 00 indunen, der Höhe h 0 cm, der Breite b 3,0 cm und den Anschlüssen und (siehe Skizze). Diese Spule

Mehr

Affine (lineare) Funktionen und Funktionenscharen

Affine (lineare) Funktionen und Funktionenscharen Aine (lineare) Funktionen Funktionenscharen 1. Erkläre olende Berie: a) Ursprunserade b) Steiun bzw. Steiunsdreieck c) steiende u. allende erade d) eradenbüschel, Parallelenschar e) y-achsenabschnitt )

Mehr

f x durch die Funktionsgleichung

f x durch die Funktionsgleichung 1. Aufgabe In einem ebenen Geläne soll für eine neue Bahntrasse auf einer Strecke von km er zugehörige Bahnamm neu errichtet weren. Dabei sollen ie folgenen, in er Abbilung angeeuteten Beingungen eingehalten

Mehr

1. Tangente, Ableitung, Dierential

1. Tangente, Ableitung, Dierential 1. Tangente, Ableitung, Dierential Variablen un Funktionen 1.1. Verallgemeinern Sie ie folgenen Gruppen von Gleichungen mithilfe von Variablen. (1) 5 + 3 = 3 + 5, 1 2 = 2 + 1. (2) 3 2 + 5 2 = (3 + 5) 2,

Mehr

Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK

Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK 1. In einem kartesischen Koordinatensystem sind der Punkt C(4 4, die Ebene E 1 : x 1 x +x 3 + = und die Gerade g: x = ( + λ( 1 gegeben. a Zeigen Sie,

Mehr

Projektionskurve Abiturprüfung LK Bayern 2003

Projektionskurve Abiturprüfung LK Bayern 2003 Projektionskurve Abiturprüfung LK Bayern 03 In einem kartesischen Koordinatensystem des R 3 ist die Ebene H: x 1 + x 2 + x 3 8 = 0 sowie die Schar von Geraden ( a 2 ) ( ) 3a g a : x = 0 a 2 + λ 3a 8, λ

Mehr

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9.

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9. Koordinatengeometrie Aufgabe 1 Gegeben sind der Punkt P (-1; 9) sowie die Geraden g: 3x y + 6 = 0 und h: x + 4y 8 = 0. a) Die Geraden g und h schneiden einander im Punkt S. Berechnen Sie die exakten Koordinaten

Mehr

Aufgabe 11: Windanlage

Aufgabe 11: Windanlage Zentrale schritliche Abiturprüunen im Fach Mathematik Auabe 11: Windanlae Das Foto zeit einen Darrieus-Windenerie-Konverter. Der Wind setzt die drei Blätter um die vertikale Achse in Drehun; die Blätter

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

v A B A α h 1 h c) Wie lautet der Geschwindigkeitsvektor beim Auftreffen der Kugel im Punkt B?

v A B A α h 1 h c) Wie lautet der Geschwindigkeitsvektor beim Auftreffen der Kugel im Punkt B? Institut für Mechanik Prof. Dr.-In. habil. P. Betsch Prof. Dr.-In. habil. Th. Seeli Prüfun in Dynamik 3. Auust 4 Aufabe ca. 0 % der Gesamtpunkte) H m v 0 y 0000 00000 00000 000 000 00 000 0 v A 000 00

Mehr

Der Konstruktionsbericht

Der Konstruktionsbericht Der Konstruktionsbericht Philipp Gressly Freimann 11. November 2016 Inhaltsverzeichnis 1 Einleitun 1 2 Grundkonstruktionen (G1, G2, G3) 2 2.1 G1: Punkte wählen (leistift)...................... 3 2.2 G2:

Mehr

s t =. v s t h = gt, t = v t = a v t t =

s t =. v s t h = gt, t = v t = a v t t = Michael Buhlmann Phsik > Mechanik > urf und urfparabel Innerhalb der Mechanik als Teilebiet der Phsik wird unter bestimmten Voraussetzunen earbeitet: Die Beweun eines Körpers im Raums wird zur Beweun eines

Mehr

f x n ) 2 1 Gleichung (*) f' x 1 f'' x 1

f x n ) 2 1 Gleichung (*) f' x 1 f'' x 1 Das Newtonsche Näherungsverfahren, Teil Theorie - Konvergenzkriterium f x n Allgemeine Lösung: x n = x n f' x f' x n n 0 Nach er Fachliteratur (Bronstein/Semenjajew) arf man hier von einer Cauchy-Folge

Mehr

1. Probeklausur. φ = 2x 2 y(z 1).

1. Probeklausur. φ = 2x 2 y(z 1). Übungen zur T: Theoretische Mechanik, SoSe04 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45. Probeklausur Dr. Reinke Sven Isermann [email protected] Übung.: Gegeben sei ie Funktion φ = x y z. a Berechnen

Mehr

Musterlösung Serie 6

Musterlösung Serie 6 D-ITET Analysis III WS 3/4 Prof. Dr. H. Knörrer Musterlösung Serie 6. a) Mithilfe er Kettenregel berechnen wir u x = w ξ ξ x + w η η x u y = w ξ ξ y + w η η y u xx = w ξξ ξx 2 + 2w ξη ξ x η x + w ηη ηx

Mehr

MATHEMATIK K1. Aufgabe F Punkte (max) Punkte. Gesamtpunktzahl /30 Notenpunkte

MATHEMATIK K1. Aufgabe F Punkte (max) Punkte. Gesamtpunktzahl /30 Notenpunkte MATHEMATIK K1.06.015 Aufgabe 1 5 6 7 8 9 10 F Punkte (max 11 1 1 Punkte Gesamtpunktzahl /0 Notenpunkte Für vorbildliche Darstellung wird ein Extrapunkt vergeben. (1 Bestimmen sie die ersten beiden Ableitungen

Mehr

Klausur zur Höheren Mathematik 1/2

Klausur zur Höheren Mathematik 1/2 Stroppel/Sänig 4.. Klausur zur Höheren Mathematik / für Ingenieurstuiengänge Bitte beachten Sie ie folgenen Hinweise: Bearbeitungszeit: 8 Minuten Erlaubte Hilfsmittel: Vier Seiten DIN A4 eigenhänig hanbeschrieben.

Mehr

1. Lineare Funktionen

1. Lineare Funktionen Grundwissen zu den Geraden. Lineare Funktionen Geraden sind die Graphen linearer Funktionen. Dazu müssen wir zuerst den Beriff Funktion und dann den Beriff linear klären.. Funktion Eine Funktion ist eine

Mehr

Mathematik Name: Nr.5 K2 Punkte: /30 Note: Schnitt:

Mathematik Name: Nr.5 K2 Punkte: /30 Note: Schnitt: Pflichtteil (etwa min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen abgegeben sein, ehe der GTR und die Formalsammlung verwendet werden dürfen.) Aufgabe 1: [P] Bestimmen

Mehr

Klausur zur Vorlesung Lineare Algebra B im SS 2002 an der Universität Hannover

Klausur zur Vorlesung Lineare Algebra B im SS 2002 an der Universität Hannover Dozent: Prof. Dr. Wolfgang Ebeling Übungsleiter: Dr. Detlef Wille Klausur zur Vorlesung Lineare Algebra B im SS an der Universität Hannover Joachim Selke 9. Februar Lineare Algebra B SS Klausur zur Vorlesung

Mehr

Lineare Funktionen. Lineare Funktionen. a) Bestimmen Sie die Funktionsgleichung der linearen Funktion g, die durch die Punkte verläuft.

Lineare Funktionen. Lineare Funktionen. a) Bestimmen Sie die Funktionsgleichung der linearen Funktion g, die durch die Punkte verläuft. Schuljahr 07-08 AHR Schuljahr 07-08 AHR a) Bestimmen Sie die Funktionsleichun der linearen Funktion f, deren Graph durch den Punkt P / ) verläuft und die Steiun m, 7hat Die Funktion f hat die allemeine

Mehr

Übungen zum Ferienkurs Theoretische Mechanik

Übungen zum Ferienkurs Theoretische Mechanik Übungen zum Ferienkurs Theoretische Mechanik Lagrange un Hamilton Mechanik Übungen, ie mit einem Stern markiert sin, weren als besoners wichtig erachtet. 2.1 3D Faenpenel Betrachten Sie ein Faenpenel er

Mehr

Abitur 2010 Mathematik LK Geometrie V

Abitur 2010 Mathematik LK Geometrie V Seite http://www.abiturloesung.de/ Seite Abitur Mathematik LK Geometrie V Gegeben sind in einem kartesischen Koordinatensystem des R der Punkt A( ) und die Menge der Punkte B k ( k) mit k R. Die Punkte

Mehr

Mittlere-Reife-Prüfung 2007 Mathematik I Aufgabe B2

Mittlere-Reife-Prüfung 2007 Mathematik I Aufgabe B2 Seite http://www.realschulrep.de/ Seite 2 Mittlere-Reife-Prüfung 2007 Mathematik I Aufgabe B2 Aufgabe B2. Der Punkt A 2 2 ist gemeinsamer Eckpunkt von Rauten A B n C n D n. Die Eckpunkte B n 3 liegen auf

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 12 WINKELBERECHNUNGEN. a) WINKEL ZWISCHEN ZWEI GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 12 WINKELBERECHNUNGEN. a) WINKEL ZWISCHEN ZWEI GERADEN ARBEITSBLATT 12 WINKELBERECHNUNGEN a) WINKEL ZWISCHEN ZWEI GERADEN Diese Formel haben wir a bereits kennenelernt: Satz: Der Winkel zwischen zwei Vektoren a und b, berechnet sich nach der Formel: a b cos

Mehr

1.1 Bestimmen Sie diejenigen Werte von a, für die f a mehr als eine Nullstelle hat. (3 P)

1.1 Bestimmen Sie diejenigen Werte von a, für die f a mehr als eine Nullstelle hat. (3 P) Schriftliche Abiturprüfung 215 HMF 1 - Analysis (Pool 1) Für jeden Wert von a (a R,a ) ist eine Funktion f a durch f a (x) = a x 6 x 4 (x R) gegeben. 1.1 Bestimmen Sie diejenigen Werte von a, für die f

Mehr

Mathematik I Pflichtteil - Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte:

Mathematik I Pflichtteil - Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte: Prüfungsdauer: Abschlussprüfung 2006 150 Minuten an den Realschulen in Bayern R4/R6 Mathematik I Pflichtteil - Nachtermin Aufgabe P 1 Name: Vorname: Klasse: Platzziffer: Punkte: P 1.0 Gegeben sind der

Mehr

Übungsklausur Lineare Algebra I - Wintersemester 2008/09

Übungsklausur Lineare Algebra I - Wintersemester 2008/09 1 Übungsklausur Lineare Algebra I - Wintersemester 008/09 Teil 1: Multiple Choice (1 Punkte Für ie ganze Klausur bezeichne K einen beliebigen Körper. 1. Welche er folgenen Aussagen sin ann un nur ann erfüllt,

Mehr

Übungen zur Physikvorlesung für Wirtschaftsingenieure WS2003

Übungen zur Physikvorlesung für Wirtschaftsingenieure WS2003 Übunen zur Physikvrlesun für Wirtschaftsinenieure WS2003 Lösunsvrschläe zum Übunsblatt 2 1. Ein June verma einen Schlaball unter einem Abwurfwinkel vn 30 52m weit zu werfen. Welche Weite könnte er bei

Mehr

Bayern Teil 1. Aufgabe 1. Abitur Mathematik: Musterlösung. Der Term unter der Wurzel darf nicht negativ werden. Es muss also gelten:

Bayern Teil 1. Aufgabe 1. Abitur Mathematik: Musterlösung. Der Term unter der Wurzel darf nicht negativ werden. Es muss also gelten: Abitur Mathematik: Bayern 2013 Teil 1 Aufgabe 1 a) 1. SCHRITT: DEFINITIONSMENGE BESTIMMEN Der Term unter der Wurzel darf nicht negativ werden. Es muss also gelten: 3x + 9 0 x 3 2. SCHRITT: NULLSTELLEN

Mehr

Fit in Mathe. Februar Klassenstufe 10 Nichtlineare Gleichungssysteme

Fit in Mathe. Februar Klassenstufe 10 Nichtlineare Gleichungssysteme Thema Musterlösungen Februar Klassenstufe 0 Nichtlineare Gleichungssysteme Gegeben sind eine Gerade mit y= x 5 und eine Parabel mit y=x 3 x. Bestimme die Schnittpunkte falls vorhanden! In den Schnittpunkten

Mehr

Übungsblatt 3 (Vektorgeometrie)

Übungsblatt 3 (Vektorgeometrie) Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Mathematik- und Naturwissenschaft Übungsblatt (Vektorgeometrie Roger Burkhardt 08 Mathematik. Aufgabe Gegeben seien die Vektoren

Mehr

Protokoll M1 - Dichtebestimmung

Protokoll M1 - Dichtebestimmung Protokoll M1 - Dichtebestimmun Martin Braunschwei 15.04.2004 Andreas Bück 1 Aufabenstellun 1. Die Dichte eines Probekörpers (Kuel) ist aus seiner Masse und den eometrischen Abmessunen zu bestimmen. Die

Mehr

Klausur zur Höheren Mathematik 1/2

Klausur zur Höheren Mathematik 1/2 Stroppel/Sänig 4. 0. 0 Klausur zur Höheren Mathematik / für Ingenieurstuiengänge Bitte beachten Sie ie folgenen Hinweise: Bearbeitungszeit: 40 Minuten Erlaubte Hilfsmittel: Vier Seiten DIN A4 eigenhänig

Mehr

10. Vorlesung Wintersemester

10. Vorlesung Wintersemester 10. Vorlesung Wintersemester 1 Existenz von Potentialen Für einimensionale Bewegungen unter er Einwirkung einer Kraft, ie nur vom Ort abhängt, existiert immer ein Potential, a man immer eine Stammfunktion

Mehr

Lösungen für Klausur A

Lösungen für Klausur A Lösungen für Klausur A Aufgabe Skizze es Zelts im Querschnitt: h. (a) Aus sin folgt cos un aher h tan, also h. (b) Aus 9 4 4 folgt urch Wurzelziehen. Einsetzen von m in ie Beziehung aus (a) liefert h 6

Mehr

Merkhilfe Vektorrechnung

Merkhilfe Vektorrechnung Merkhilfe Vektorrechnung 1. Was ist ein Vektor? 2. Verbindungsvektor AB =? 3. Punkte A und B, Gerade g Punkte A, B und C, Ebene E 4. Mitte M der Strecke AB OM =? a 1 a = a 2, b 1 b = b 2 a 3 b 3 5. Betrag

Mehr

Mathematikaufgaben > Analysis > Kurven (Polarkoordinaten)

Mathematikaufgaben > Analysis > Kurven (Polarkoordinaten) Michael Buhlmann Mathematikaufgaben > Analysis > Kurven Polarkoorinaten Aufgabe: Gegeben sei für reelle Winkel φ ie Kurve K als Karioie Herzkurve in Polarkoorinaten: im x-y-koorinatensystem. r, φ a Skizziere

Mehr

Abstände und Zwischenwinkel

Abstände und Zwischenwinkel Abstände und Zwischenwinkel Die folgenden Grundaufgaben wurden von Oliver Riesen, KS Zug, erstellt und von Stefan Gubser, KS Zug, überarbeitet. Aufgabe 1: Bestimme den Abstand der beiden Punkte P( 3 /

Mehr

Aufgaben zur Vektorrechnung

Aufgaben zur Vektorrechnung ) Liegt der Punkt P(; -; 2) auf der Geraden 4 g: x = 5+t 2? 6 2 Aufgaben zur Vektorrechnung 2) a) Wie groß ist der Abstand der Punkte A(4; 2; -4) und B(;-2;-4) zueinander? b) Gesucht wir der Mittelpunkt

Mehr

1 lineare Gleichungssysteme

1 lineare Gleichungssysteme Hinweise und Lösungen: http://mathemathemathe.de/lineare-algebra-grundlagen 1 lineare Gleichungssysteme Übung 1.1: Löse das lineare Gleichungssystem: I 3x + 3y + 7z = 13 II 1x 2y + 2, 5z = 1, 5 III 4x

Mehr

Binnendifferenzierung in der Kursstufe Beispiel 6: gestufte Hilfestellung / verschiedene Lösungswege Abstand Punkt Gerade

Binnendifferenzierung in der Kursstufe Beispiel 6: gestufte Hilfestellung / verschiedene Lösungswege Abstand Punkt Gerade Binnenifferenziern in er Krsstfe Beispiel 6: estfte ilfestelln / verschieene Lösnswee Abstan Pnkt Gerae Thema er Unterrichtseinheit: Abstan Pnkt/Gerae Methoe: Abestfte ilfestelln / Afaben zr Wahl / (Marktplatz

Mehr

Mathematik 1 für Naturwissenschaften

Mathematik 1 für Naturwissenschaften Hans Walser Mathematik für Naturwissenschaften Moul 0 Einführung Lernumgebung Teil 2 Hans Walser: Moul 0, Einführung. Lernumgebung Teil 2 ii Inhalt Where is the flaw?... 2 Intervalle... 3 Frage er Grenzen...2

Mehr

1 aus allen 3 Zeilen folgt t = 1, also liegt A auf g. Orsvektor und Richtungsvektor der Geraden werden übernommen, den zweiten Spannvektor bekommt

1 aus allen 3 Zeilen folgt t = 1, also liegt A auf g. Orsvektor und Richtungsvektor der Geraden werden übernommen, den zweiten Spannvektor bekommt Lösungsskizzen Klassische Aufgaben Lösung zu Abi - PTV Punktprobe: = + t aus allen Zeilen folgt t =, also liegt A auf g. Richtungsvektor von g: u = ; Normalenvektor von E: n = Da die n und u Vielfache

Mehr

Mathematik LK 11 M2, 3. KA Differentialrechnung Lösung

Mathematik LK 11 M2, 3. KA Differentialrechnung Lösung Mathematik LK M,. KA Differentialrechnung Lösung 9.05.07 Aufgae : Gegeen ist ie Funktion f (x)=ax +x+c, a,, c R,a 0 Führe eine vollstänige Funktionsuntersuchung gemäß er Liste aus em Unterricht urch. Keine

Mehr

Reiner Winter. Analysis. Aufgaben mit Musterlösungen

Reiner Winter. Analysis. Aufgaben mit Musterlösungen Reiner Winter Analysis Aufaben mit Musterlösunen. Aufabe: Geeben sei die Funktion ƒ(x) 5 x5 4 x mit x IR +... Untersuchen Sie die Funktion ƒ(x) auf Symmetrie, Nullstellen, Extrempunkte und Wendepunkte.

Mehr

1.1 Bestimmen Sie diejenigen Werte von a, für die f a mehr als eine Nullstelle hat. (3 P)

1.1 Bestimmen Sie diejenigen Werte von a, für die f a mehr als eine Nullstelle hat. (3 P) Schriftliche Abiturprüfung 215 HMF 1 - Analysis (Pool 1) Für jeden Wert von a (a R,a ) ist eine Funktion f a durch f a (x) = a x 6 x 4 (x R) gegeben. 1.1 Bestimmen Sie diejenigen Werte von a, für die f

Mehr

I. Dokumenteninformationen

I. Dokumenteninformationen Seite 0 von 7 I. Dokumenteninformationen U-Werte eneiter Verlasunen Autoren Headline Subline Stichwörter 9815 Zeichen (esamt inkl. Leerzeichen), 3 Bilder Bilder Zeichen Titel/Rubrik Ausabe Seite 1 von

Mehr

Analysis 2. f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt:

Analysis 2.  f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt: Analysis 2 www.schulmathe.npage.de Aufgaben 1. Gegeben ist die Funktion f durch f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt: f (x) = 6(x

Mehr

2. Kinematik. v = a = dx v = dt. 2.1 Ortskurven. x(t) v > 0. Kurve: Beschreibung der Bewegung von Massenpunkten. v = 0.

2. Kinematik. v = a = dx v = dt. 2.1 Ortskurven. x(t) v > 0. Kurve: Beschreibung der Bewegung von Massenpunkten. v = 0. . Kinemaik Beschreibun er Beweun on Massenpunken Kure: () > Definiion : : Zei [s] (,y,) : Posiion [m] s : urückeleer We [m] ( ) : Geschwinikei [m/s] a : Beschleuniun [m/s ] is Seiun er Kure: Allemein :

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 4. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 4. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: [email protected] Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fax:

Mehr

Oktaeder. Bernhard Möller. 22. Dezember 2010

Oktaeder. Bernhard Möller. 22. Dezember 2010 Oktaeder Bernhard Möller. Dezember 00 Ein Oktaeder ist ein regelmäßiges Polyeder, dessen Oberfläche aus acht kongruenten, gleichseitigen Dreiecken besteht. Jedes Oktaeder kann einem Würfel so einbeschrieben

Mehr

7.1 Definitionen und Ableitungen der elementaren Funktionen. f(x + x) f(x)

7.1 Definitionen und Ableitungen der elementaren Funktionen. f(x + x) f(x) Kapitel 7 Differentialrechnung 71 Definitionen un Ableitungen er elementaren Funktionen Die Funktion f) sei efiniert für a

Mehr

K2 KLAUSUR Pflichtteil

K2 KLAUSUR Pflichtteil K2 KLAUSUR 10.02.2012 MATHEMATIK Pflichtteil: Aufgabe 1 2 3 4 5 6 7 8 Punkte (max) 2 2 3 4 5 3 4 3 Punkte Wahlteil Analysis Aufgabe a b c Punkte (max) 9 5 4 Punkte Wahlteil Geometrie Aufgabe a b c Punkte

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: [email protected] Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fax:

Mehr

5. Geraden und Ebenen im Raum 5.1. Lineare Abhängigkeit und Unabhängigkeit von Vektoren

5. Geraden und Ebenen im Raum 5.1. Lineare Abhängigkeit und Unabhängigkeit von Vektoren 5 Geraden und Ebenen im Raum 5 Lineare Abhängigkeit und Unabhängigkeit von Vektoren Definition: Die Vektoren a,a,,a n heißen linear abhängig, wenn mindestens einer dieser Vektoren als Linearkombination

Mehr

7.1.2 Lineare Funktionen Schnittpunkte mit den Achsen - Lösungen

7.1.2 Lineare Funktionen Schnittpunkte mit den Achsen - Lösungen 7.. Lineare Funktionen Schnittpunkte mit den Achsen - Lösungen. Bestimme von den nachfolgenden Funktionsgleichungen zunächst die Schnittpunkte mit den Achsen; stelle sie danach im Koordinatensystem dar.

Mehr

Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird,

Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird, Determinanten Wir entwickeln eine Lösungsformel für Gleichungssysteme mit zwei Variablen. ax + cy = e b bx + y = f a } abx bcy = be + abx + ay = af ya bc = af be Man schreibt y = af be a bc = a e b f analog

Mehr

1.1. Geradengleichung aus Steigung und y-achsenabschnitt

1.1. Geradengleichung aus Steigung und y-achsenabschnitt Version vom 4. Januar 2007 Gleichungen von Geraden in der Ebene 1999 Peter Senn * 1.1. Geradengleichung aus Steigung und y-achsenabschnitt In dieser Form lautet die Gleichung der Geraden wie folgt: g:

Mehr

K2 MATHEMATIK KLAUSUR 4. Aufgabe PT Ana Geo Sto Gesamtpunktzahl Punkte (max) Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR 4. Aufgabe PT Ana Geo Sto Gesamtpunktzahl Punkte (max) Punkte Notenpunkte K MATHEMATIK KLAUSUR 4 17.03.017 Aufgabe PT Ana Geo Sto Gesamtpunktzahl Punkte (max 0 0 10 10 60 Punkte Notenpunkte PT 1 3 4 5 6 7 * Summe P. (max 3 3 4 4 0 Punkte WT Ana A.1a b c A 1. Summe P. (max 6

Mehr

Vektorprodukt. 1-E1 Ma 1 Lubov Vassilevskaya

Vektorprodukt. 1-E1 Ma 1 Lubov Vassilevskaya Vektorprodukt 1-E1 Ma 1 Lubov Vassilevskaya Vektorprodukt Unter dem Vektorprodukt zweier Vektoren a und b versteht man den im Raum durch die folgenden Bedingungen charakterisierten Vektor: c = a b 1. c

Mehr

Analysis Aufstellen ganzrationaler Funktionen (Steckbriefaufgaben)

Analysis Aufstellen ganzrationaler Funktionen (Steckbriefaufgaben) Analysis (Steckbriefaufgaben) Alexaner Schwarz August 18 1 Aufgabe 1: Bestimme jeweils en Funktionsterm. a) Der Graph einer ganzrationalen Funktion ritten Graes hat einen Tiefpunkt bei T(/) un einen Wenepunkt

Mehr

Abiturprüfung Mathematik 8 Baden-Württemberg (ohne CAS) Wahlteil Aufgaben Analytische Geometrie II, Aufgabe II. Die Punkte A(//), B(//), C(//), F(//), G(//) und H(//) sind die Ecken eines dreiseitigen

Mehr

Infos: Buffons Nadel 05/2013

Infos:  Buffons Nadel 05/2013 Mathematik- Unterrichts- Einheiten- Datei e. V. Klasse 7; LK 05/013 Buffons Nael Infos: www.mue.e Im 18. Jahrhunert beteiligten sich eine Reihe von Aeligen an er Weiterentwicklung er Naturwissenschaften

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: [email protected] Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fa:

Mehr

2.3.1 Rechtshändiges und linkshändiges Koordinatensystem

2.3.1 Rechtshändiges und linkshändiges Koordinatensystem 2.3. Rechtshändiges und linkshändiges Koordinatensstem Die Koordinatenachsen im dreidimensionalen Raum lassen sich auf wei verschieden Arten anordnen: Linkshändig und Rechtshändig (s. Abbildung 2.9). Um

Mehr

a) Im Berührungspunkt müssen die y-werte und die Steigungen übereinstimmen:

a) Im Berührungspunkt müssen die y-werte und die Steigungen übereinstimmen: . ANALYSIS Gegeben ist die kubische Parabel f: y = x 3 6x + 8x + a) Die Gerade g: y = k x + berührt die Parabel an der Stelle x = x 0 > 0. Bestimmen Sie den Parameter k. b) Berechnen Sie den Inhalt der

Mehr

Algebra 2.

Algebra 2. Algebra 2 www.schulmathe.npage.de Aufgaben 1. In einem kartesischen Koordinatensystem sind die Punkte A(10 0 0), B(0 4 0) und C(0 0 6) sowie die Ebenenschar E t : 3y + tz 3t = 0 (t R) gegeben. Die Punkte

Mehr

Algebra 4.

Algebra 4. Algebra 4 www.schulmathe.npage.de Aufgaben In einem kartesischen ( Koordinatensystem ) sind die Punkte A( ), B( ), C(5 ), D( 4 0) und S gegeben. a) Die Punkte A, B und C liegen in einer Ebene E. Stellen

Mehr

Manipulation am Funktionsgrahen

Manipulation am Funktionsgrahen Lösun: Manipulation am Funktionsrahen 1 a) Zeichnen Sie den Graphen der Funktion x) = x 3 x b) Skizzieren Sie die Graphen der olenden Funktionen in das Koordinatensystem von a): i x) = x 3 x+ ii x) = x

Mehr

Energiemethoden, Prof. Popov, WiSe 11/12, 4. Woche Lösungshinweise Seite 1 Lagrangesche-Gleichungen 1. Art. 3m 2 r. Somit sind.

Energiemethoden, Prof. Popov, WiSe 11/12, 4. Woche Lösungshinweise Seite 1 Lagrangesche-Gleichungen 1. Art. 3m 2 r. Somit sind. Eneriemethoen, Prof. Popov, WiSe 11/1, 4. Woche Lösunshinweise Seite 1 Tutorium Aufabe 47 Auf einer schiefen Ebene Neiunswinkel α befinet sich ein Sstem aus einem Klotz Masse m 1 un einem Vollzliner Masse

Mehr

Physik 11 Das Ampersche Durchflutungsgesetz. 1. Das Magnetfeld eines stromdurchflossenen Drahtes

Physik 11 Das Ampersche Durchflutungsgesetz. 1. Das Magnetfeld eines stromdurchflossenen Drahtes 1. Das Magnetfel eines stromurchflossenen Drahtes I 1. Das Magnetfel eines stromurchflossenen Drahtes I 1. Das Magnetfel eines stromurchflossenen Drahtes I Die Fellinien es Feles eines stromurchflossenen,

Mehr

Übungsblatt

Übungsblatt Übungsblatt 6..7 ) Zeigen Sie die Gültigkeit der folgenden Sätze durch Verwendung abstrakter Vektoren (ohne Bezug auf konkrete Komponenten), deren Addition bzw. Subtraktion und Multiplikation mit Skalaren:

Mehr

Hauptprüfung Fachhochschulreife Baden-Württemberg

Hauptprüfung Fachhochschulreife Baden-Württemberg Hauptprüfung Fachhochschulreife 05 Baden-Württemberg Aufgabe 4 Analytische Geometrie Hilfsmittel: grafikfähiger Taschenrechner Berufskolleg Alexander Schwarz www.mathe-aufgaben.com Juni 05 Ein Papierflieger

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Funktionen an der Berufsschule: Übungsaufgaben

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Funktionen an der Berufsschule: Übungsaufgaben Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lineare Funktionen an der Berufsschule: Übungsaufgaben Das komplette Material finden Sie hier: School-Scout.de SCHOOL-SCOUT Übungsaufgaben:

Mehr

Mathematik - 1. Semester. folgenden Zahlenpaare die gegebene Gleichung erfüllen:

Mathematik - 1. Semester. folgenden Zahlenpaare die gegebene Gleichung erfüllen: Mathematik -. Semester Wi. Ein Beispiel Lineare Funktionen Gegeben sei die Gleichung y x + 3. Anhand einer Wertetabelle sehen wir; daß die folgenden Zahlenpaare die gegebene Gleichung erfüllen: x 0 6 8

Mehr

Implizite Differentiation

Implizite Differentiation Implizite Differentiation -E -E Implizite Darstellung Eine Funktion ist in impliziter Form gegeben, wenn ie Funktionsgleichung nach keiner er beien Variablen x un y aufgelöst ist. Beispielsweise x y =

Mehr

Aufgaben zum Wochenende (2)

Aufgaben zum Wochenende (2) Aufgaben zum Wochenene () Alle Koorinatensysteme seien kartesisch.. Berechnen Sie zu a =(, 3, ) un b =(,, ), c =(, 3, ) : a 3, 4 a b, b ( a c), a 4 b ( ) c. Rechnen Sie möglichst praktisch.. Lösen Sie

Mehr

Abitur Mathematik Bayern G Musterlösung. Bayern Aufgabe 1. Abitur Mathematik: Musterlösung. Geometrie II. a) ZEICHNUNG

Abitur Mathematik Bayern G Musterlösung. Bayern Aufgabe 1. Abitur Mathematik: Musterlösung. Geometrie II. a) ZEICHNUNG Abitur Mathematik: Musterlösung Bayern 212 Aufgabe 1 a) ZEICHNUNG LAGE DER GRUNDFLÄCHE ABC Man kann anhand der gleichen x 1 -Koordinate 1 bei allen drei Punkten erkennen, dass die Grundfläche ABC parallel

Mehr

Cluster 1: Kabelverlauf

Cluster 1: Kabelverlauf Teil B Seite 1 / 6 Doris Schönorfer Cluster 1: Kabelverlauf zum Menü Hinweis: Cluster 1 bezieht sich auf Höhere Technische Lehranstalten (HTL) für ie Ausbilungsrichtungen Bautechnik, Holztechnik & Innenraumgestaltung

Mehr

Serie 3. z = f(x, y) = 9 (x 2) 2 (y 3) 2 z 2 = 9 (x 2) 2 (y 3) 2, z 0 9 = (x 2) 2 + (y 3) 2 + z 2, z 0.

Serie 3. z = f(x, y) = 9 (x 2) 2 (y 3) 2 z 2 = 9 (x 2) 2 (y 3) 2, z 0 9 = (x 2) 2 + (y 3) 2 + z 2, z 0. Analysis D-BAUG Dr Cornelia Busch FS 2016 Serie 3 1 a) Zeigen Sie, dass der Graph von f(x, y) = 9 (x 2) 2 (y 3) 2 eine Halbkugel beschreibt und bestimmen Sie ihren Radius und ihr Zentrum z = f(x, y) =

Mehr