1. Lineare Funktionen
|
|
|
- Nora Wagner
- vor 9 Jahren
- Abrufe
Transkript
1 Grundwissen zu den Geraden. Lineare Funktionen Geraden sind die Graphen linearer Funktionen. Dazu müssen wir zuerst den Beriff Funktion und dann den Beriff linear klären.. Funktion Eine Funktion ist eine Zuordnunsvorschrift, die jedem -Wert enau einen -Wert zuordnet. Diese Zuordnunsvorschrift wird in einer Funktionsleichun aneeben, z.b. = 2 2. Die Werte, die man für und einsetzen kann werden in der Grundmene aneeben. Weil zum immer das dazuehört (Zuordnun) brauchen wir für beide Werte eine Grundmene. Diese wird z.b. in der Form G = Q Q ( Q Kreuz Q ) aneeben. Das heißt, dass wir für alle Werte von Q einsetzen können (das ist das erste Q) und für ebenfalls (das zweite Q nach dem Kreuz). Nun wird für alle Werte von Q einesetzt. Wenn das Erebnis (also der -Wert) auch in Q liet, so ist das Paar, das aus - und -Wert besteht ein Element der Funktion. Die anze Funktion besteht aus allen Elementen, die man so ewinnt. Das sind meistens unendlich viele. Beispiel: Sei die Funktion = 4 + eeben und G = Q Q. Dann setzen wir alle Zahlen von Q für das ein: = 0, = 4 ( 0,) + = 3. 3 ehört zu der Mene der rationalen Zahlen, also ehört ( 0, 3) zur Funktion. = 7 = = ehört zu der Mene der rationalen Zahlen, also ehört (7 33) zur Funktion. Damit haben wir schon zwei Elemente, die zur Funktion ehören und wir können sie als Punkte in ein Koordinatensstem einzeichnen. Theoretisch müssten wir jetzt alle Werte für Q einsetzen, das sind aber unendlich viele, also brauchen wir etwas, das uns das alles vereinfacht. Dazu betrachten wir die Funktionsleichun..2 lineare Funktion Das erste, was wir betrachten ist das. Wenn es in erster Potenz steht (also ein einfaches und kein 2, 3, ), dann heißt die Funktion linear und ihr Graph ist eine Gerade. Um eine Gerade zu zeichnen benötien wir nur zwei Punkte und zeichnen dann mit dem Lineal eine Gerade durch diese beiden. Das ist viel einfacher als unendlich viele Punkte auszurechnen und die Gerade Punkt für Punkt zu erhalten..3 Erstellun einer Geraden: Eine Gerade ist aneeben durch die Geradenleichun = 2. Das erste Q aus der Grundmene ibt an, dass wir in alle rationalen Zahlen einsetzen, also alle Brüche. Setzen wir z.b. = 0, ein, so erhalten wir = 2 0, = und erhalten den Punkt (0, ). Setzen wir = 2 ein so bekommen wir den Punkt ( 2 4). Wenn wir alle Zahlen aus Q einsetzen und alle Punkte in ein Koordinatensstem einzeichnen, so eribt sich eine Gerade (siehe rechts). =4 (0, ) - =2.4 -Wert zum voreebenen -Wert zeichnerisch bestimmen (und umekehrt): (-2-4) Wollen wir den nun den Punkt auf der Geraden mit der - - Koordinate = 2 herausfinden, so starten wir beim -Wert 2 auf der -Achse. Dann ehen wir so lane parallel zur Achse, bis wir den Graphen treffen. Danach ehen wir so lane parallel zur -Achse, bis wir die -Achse treffen. Dieser Punkt an der -Achse ibt die -Koordinate an (vl. Zeichnun rechts: Start: (2 0), parallel zur -Achse nach oben bis Gerade etroffen, Ende (0 4): hier lesen wir den -Wert von der Achse ab). Wollen wir den -Wert zum voreebenen -Wert bestimmen ehen wir den We nur anders herum. Daniel Inselmann, RS Könisbrunn, Fassun: 4..20
2 . -Wert zum voreebenen -Wert rechnerisch bestimmen: Die rechnerische Lösun ist in diesem Fall viel einfacher: Man setzt den -Wert einfach in die Funktionsleichun ein und rechnet den -Wert aus. Beispiel: Sei = 2 voreeben und der -Wert bei =, soll berechnet werden. Dann setzen wir ein: = 2, = Wert zum voreebenen -Wert rechnerisch bestimmen: Hier verfährt man ähnlich: Man setzt den -Wert in die Funktionsleichun ein und löst nach auf. Beispiel: Sei = 2 voreeben und der -Wert bei =,4 soll berechnet werden. Dann setzten wir ein:,4 = 2 : 2 2,7 = 2. Geradenleichunen 2. Besondere Geraden der Form = m Geraden der Form = m verlaufen immer durch den Ursprun (0 0). Für m kann jede Zahl aus Q einesetzt werden. Für die Geraden : = 3; h: = 2 ; s: = 7 ; t: = 3 können wir z.b. leich saen, dass sie alle durch den Ursprun ehen. 4 Der einzie Unterschied ist ob die Geraden steil oder flach sind, bzw. durch wel- che Quadranten des Koordinatensstems sie ehen. Dafür ilt: Ist m > 0, also positiv, dann verläuft die Gerade durch den I. und III. Quadranten, ist m < 0, also neativ, dann durch den II. und IV. Beispiel: die Gerade muss also durch den I. und III. verlaufen und die Gerade t durch II und IV (siehe rechts) Von m bekommt man aber noch mehr Informationen. Neben dem Vorzeichen ist III IV auch der Wert von m wichti, denn er ibt an, wie steil oder wie flach die Gerade ist. Deshalb nennt man m auch Steiun. Betrachten wir die Geraden und h im Koordinatensstem (siehe Zeichnun unten): C Wir sehen dass steiler ist als h. Da 2 < 3 ist können wir saen, je 7 rößer der Betra, desto steiler die Gerade. Um enauere Informationen zu erhalten, zeichnen wir ein rechtwinklies Dreieck ABC ein und betrachten das Verhältnis der Strecken BC und. AB Bilden wir den Quotienten BC, so erhalten wir die Steiun A B AB m. Im Beispiel links ist BC = 3 und AB =. Der Quotient ist also h 3 = 3 und das ist das m der Geraden mit = 3. Die Frae ist nun, wie man solche Dreiecke einzeichnet. An der leichen Gerade ist unten links ein weiteres Dreieck DEF einezeichnet. Der Unterschied zu oben besteht darin, dass die Strecke [EF] nach links eht ([AB] nach rechts) und [FD] nach unten ([BC] nach oben). F E Deshalb bekommen die Strecken neative Vorzeichen: D BC =, AB 0, = 3. Eal, wie man das Dreieck an der Geraden anträt, der Quotient ist immer m. II t I 2.2 Allemeine Geraden der Form = m + t Wir betrachten nun den allemeinen Fall von Geraden. Zur bereits bekannten Steiun m kommt der -Achsenabsschnitt t hinzu. Darunter verstehen wir den -Wert des Schnittpunktes des Graphen mit der -Achse. Schließlich verlaufen nicht alle Geraden durch den Nullpunkt. Sehen wir uns dazu ein Beispiel an: Die Geraden : = + und h: = seien eeben. Die Steiunen beider Geraden sind leich, nur das t ist unterschiedlich. Da es sich hier um den -Achsenabschnitt handelt, müssen die Graphen durch den Punkt 2 2 (0 ) bzw. den Punkt (0 ) ehen. In einer Skizze sieht das so aus: Daniel Inselmann, RS Könisbrunn, Fassun:
3 h Wie oben anenommen, lassen sich die -Achsenabschnitte direkt an der Zeichnun ablesen. So schneidet die -Achse beim -Wert und h die Achse beim -Wert -. Beide Geraden haben die leiche Steiun und sind parallel. Da wir bereits wissen, wie Steiunen anzutraen sind, ist es nun auch nicht wirklich schwieri eine Gerade der Form = m + t zu zeichnen. Dazu sehen wir uns zuerst den -Achsenabschnitt t an. Den Punkt (0 t) traen wir dann auf der -Achse an. Von diesem Punkt aus (nicht vom Ursprun!) traen wir die Steiun an und erreichen einen zweiten Punkt. Da eine Gerade durch zwei Punkte eindeuti bestimmt ist, verbinden wir diese beiden Punkte und erhalten die ewünschte Gerade. Dies sehen wir uns nochmal an einem Beispiel an: Geeben sei die Gerade : = 3 4 m +. t Wir beinnen mit dem -Achsenabschnitt t = + und traen den Punkt (0 ) an, wir wandern also vom Nullpunkt aus Läneneinheit nach oben. Wäre das Vorzeichen neativ, also, dann würden wir nach unten wandern. Von dem erhaltenen Punkt ehen wir nochmal, wie ehabt, 3 Einheiten nach oben (Zähler der Steiun) und 4 Einheiten nach links. Wir erhalten unseren zweiten Punkt, verbinden die beiden Punkte und haben die Gerade. 4 LE nach links (Nenner der Steiun mit Vorzeichen) 3 LE nach oben (Zähler der Steiun) LE nach oben (-Achsenabschnitt) Die Form = m + t nennt man auch Normalform der Geradenleichun. Manchmal sind die Geraden in abweichender Form aneeben. So stehen z.b. und nicht etrennt, Es wird ein Vielfaches von aneeben, usw. Durch äquivalentes Umformen erreichen wir aber stets unsere Normalform, mit der man vernünfti arbeiten kann. Dazu ein Beispiel: eeben ist die Gerade = 0 Bestimmun der Normalform: = = 4 : ( 4) 0, = Daniel Inselmann, RS Könisbrunn, Fassun:
4 2.3 Die Punkt-Steiuns-Form (allemeine Geraden) Eine recht schnelle Form, Geraden aufzustellen (sei es durch die Anabe zweier Punkte oder einer Steiun und zwei Punkte) ist die soenannte Punkt-Steiuns-Form (PSF). Die Formel ist relativ einfach: = m p + p Dabei entspricht m natürlich der Steiun, p und p sind die Koordinaten eines Punktes, der auf der Geraden liet. Kommen wir zu zwei Beispielen: () Wir sollen die Geradenleichun aufstellen für die Gerade, die durch den Punkt A( 4) verläuft und die Steiun m = 2 dazu setzen wir nur ein in = m p + p und rechnen die Klammer aus: = 2 ( ) + 4 = = + 3, 2 (2) Wir sollen die Geradenleichun aufstellen für die Gerade, die durch die beiden Punkte A( 4) und B(3 2) verläuft. dazu bestimmen wir zuerst m und verfahren dann wie bei (): m = = 2 2 = = ( 3) + 2 (man kann auch den Punkt A einsetzen!) = = + 3. Laen von Geraden Da wir nicht immer die Zeit (oder Lust) haben die Geraden zu zeichnen, um zu bestimmen, wie sie lieen, verwenden wir rechnerische Verfahren, um schnell zu bestimmen, ob Geraden nun parallel oder senkrecht lieen, oder ob sie sich in einem Punkt schneiden. 3. Parallele Geraden Um zu bestimmen, ob Geraden parallel lieen, ibt es ein einfaches Verfahren. Dazu betrachten wir ausschließlich die Steiun der beiden Geraden. Ist sie leich, so sind die Geraden leich steil und somit automatisch parallel. Sehen wir uns hierzu ein Beispiel an: Geeben sind: : = + 2 und h: = 0,. Da = 0, ist, die Steiunen der beiden Geraden also leich 2 2 sind, muss elten: h. Sehen wir uns das mal in der Zeichnun an: Wir sehen, dass dies stimmt! Halten wir also fest: Zwei Geraden sind parallel, enau dann, wenn ihre Steiunen leich sind. der in mathematischer Kurzschreibweise (mit den Geraden und h): h m = m h (Erklärun: Der Pfeil dazwischen bedeutet, dass man das von links nach rechts und von rechts nach links lesen kann. Also:. von links nach. rechts: wenn parallel zu h ist, so sind ihre beiden Steiunen leich 2. von rechts nach links: wenn die Steiunen der Geraden und h leich sind, so sind sie parallel.) Daniel Inselmann, RS Könisbrunn, Fassun:
5 3.2 Senkrechte (=orthoonale) Geraden Geraden stehen senkrecht aufeinander, wenn das Produkt ihrer Steiunen eribt. Das lässt sich für zwei beliebie Geraden und h ebenso schnell ausdrücken: h m m h = Es ilt also von links nach rechts: wenn senkrecht auf h steht, dann ist das Produkt der beiden Steiunen -. Von rechts nach links ilt: ist das Produkt der Steiunen zweier verschiedenen Geraden leich, so stehen sie senkrecht aufeinander. Daniel Inselmann, RS Könisbrunn, Fassun: 4..20
(0 4) 4 :( 2) Bestimmung von Geradengleichungen Aufgabe 1
Bestimmun von Geradenleichunen Auabe Geeben ist die Geradenleichun (x) = -x +. Gesucht sind die Schnittpunkte mit den Koordinatenachsen. Lösun: Mit der y-achse (x=0): S y (0 ) Mit der x-achse (y=0): x
Affine (lineare) Funktionen und Funktionenscharen
Aine (lineare) Funktionen Funktionenscharen 1. Erkläre olende Berie: a) Ursprunserade b) Steiun bzw. Steiunsdreieck c) steiende u. allende erade d) eradenbüschel, Parallelenschar e) y-achsenabschnitt )
Lösungen zum Arbeitsblatt: y = mx + b Alles klar???
I. Zeichnen von Funktionen a) Wertetabelle x -4-3 - -1 0 1 3 4 y =,5x -10-7,5-5 -,5 0,5 5 7,5 10 y = - x,7 1,3 0,7 0-0,7-1,3 - -,7 3 y = x 1,5-9,5-7,5-5,5-3,5-1,5 0,5,5 4,5 6,5 y = - 1 x + 4 3,5 3,5 1,5
MATHEMATIK 1 LINEARE FUNKTION
PS - ATHEATIK P. Rendulić 007 LINEARE FUNKTION ATHEATIK LINEARE FUNKTION. Geradenleichun Eine Geradenleichun ist die atheatische Gleichun die eine Gerade i kartesischen Koordinatensste eindeuti beschreibt.
MATHEMATIK 1 LINEARE FUNKTION
PS - ATHEATIK P. Rendulić 009 LINEARE FUNKTION ATHEATIK LINEARE FUNKTION. Geradenleichun Eine Geradenleichun ist die atheatische Gleichun die eine Gerade i kartesischen Koordinatensste eindeuti beschreibt.
Reiner Winter. Analysis. Aufgaben mit Musterlösungen
Reiner Winter Analysis Aufaben mit Musterlösunen. Aufabe: Geeben sei die Funktion ƒ(x) 5 x5 4 x mit x IR +... Untersuchen Sie die Funktion ƒ(x) auf Symmetrie, Nullstellen, Extrempunkte und Wendepunkte.
Seite 1 von 6 Standardaufgaben Grundwissen M5 Beispiele 1. Fasse alle Primzahlen und alle Quadratzahlen A.1 Menge IN der natürlichen Zahlen
Seite 1 von 6 Standardaufaben Grundwissen M5 Beispiele 1. Fasse alle Primzahlen und alle Quadratzahlen A.1 Mene IN der natürlichen Zahlen 5 ist eine natürliche Zahl: der folenden Mene in jeweils einer
A.5 Menge der ganzen Zahlen = { ; 3; 2; 1; 0; 1; 2; 3; }
Dietrich-Bonhoeffer-Gymnasium Oberasbach Standardaufaben. Fasse alle Primzahlen und alle Quadratzahlen der folenden Mene in jeweils einer eienen Mene zusammen: {; 79; 56; ; ; 96; 7; 65; 8; 95; 97; }. Schreibe
Aufgabe 11: Windanlage
Zentrale schritliche Abiturprüunen im Fach Mathematik Auabe 11: Windanlae Das Foto zeit einen Darrieus-Windenerie-Konverter. Der Wind setzt die drei Blätter um die vertikale Achse in Drehun; die Blätter
Lineare Gleichungen mit 2 Variablen
Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen sind sehr eng verwandt mit linearen Funktionen. Die Funktionsgleichung einer linearen Funktion f(x) = m x+q m: Steigung, q: y Achsenabschnitt
Seite 5 Aufgaben Achsensymmetrie und Geradenspiegelung (Lösungen sind verkleinert gezeichnet) 1 a) Vorgehen gemäss Theorie:
Lösunen Geometrie-Dossier Konruenzabbildunen Seite 5 Aufaben Achsensymmetrie und Geradenspieelun (Lösunen sind verkleinert ezeichnet) 1 a) Vorehen emäss Theorie: 1. Lotstrecken auf die Symmetrieachse s
Download. Hausaufgaben: Lineare Funktionen und Gleichungen. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:
Download Otto Mar Hausaufgaben: Lineare Funktionen und Gleichungen Üben in drei Differenzierungsstufen Downloadauszug aus dem Originaltitel: Hausaufgaben: Lineare Funktionen und Gleichungen Üben in drei
Download. Mathe an Stationen Umgang mit Geodreieck. Einführung Geodreieck. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:
Download Marco Bettner, Erik Dines Mathe an Stationen Uman mit Geodreieck Einführun Geodreieck Downloadauszu aus dem Oriinaltitel: Mathe an Stationen Uman mit Geodreieck Einführun Geodreieck Dieser Download
Relationen / Lineare Funktionen
Relationen / Lineare Funktionen Relationen Werden Elemente aus einer Menge X durch eine Zuordnungsvorschrift anderen Elementen aus einer Menge Y zugeordnet, so wird durch diese Zuordnungsvorschrift eine
a) b) c) d) e) f) g) h) i) j) k) l) s) t) u) v) w) x) y) z)
Aufabe 1: a) b) c) d) e) f) ) h) i) j) k) l) m) n) o) p) q) r) s) t) u) v) w) x) y) z) a) Welche der Fiuren a) z) ist achsensymmetrisch? Trae die Symmetrieachsen ein. b) Gib an, welche der Fiuren a) z)
1. Funktionen. 1.3 Steigung von Funktionsgraphen
Klasse 8 Algebra.3 Steigung von Funktionsgraphen. Funktionen y Ist jedem Element einer Menge A genau ein E- lement einer Menge B zugeordnet, so nennt man die Zuordnung eindeutig. 3 5 6 8 Dies ist eine
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 12 WINKELBERECHNUNGEN. a) WINKEL ZWISCHEN ZWEI GERADEN
ARBEITSBLATT 12 WINKELBERECHNUNGEN a) WINKEL ZWISCHEN ZWEI GERADEN Diese Formel haben wir a bereits kennenelernt: Satz: Der Winkel zwischen zwei Vektoren a und b, berechnet sich nach der Formel: a b cos
Lineare Funktionen. Lineare Funktionen. a) Bestimmen Sie die Funktionsgleichung der linearen Funktion g, die durch die Punkte verläuft.
Schuljahr 07-08 AHR Schuljahr 07-08 AHR a) Bestimmen Sie die Funktionsleichun der linearen Funktion f, deren Graph durch den Punkt P / ) verläuft und die Steiun m, 7hat Die Funktion f hat die allemeine
1 Zahlen. 1.1 Kürzen ( ) ( ) ( ) 1.2 Addieren und Subtrahieren. 1.3 Multiplizieren und Dividieren Beispiele: Grundwissen Mathematik 8
Zahlen x+ a+b Bruchterme sind z.b.: ; ; x a. Kürzen In Faktoren zerlegen: x x Gemeinsame Faktoren kürzen: 4a x + 5 ( x+ ) x x x x ( x+ ). Addieren und Subtrahieren Bsp.:,5 + D QI \{0; } x x Hauptnenner
Was ist eine Funktion?
Lerndomino zum Thema Funktionsbegriff Kopiereen Sie die Seite (damit Sie einen Kontrollbogen haben), schneiden Sie aus der Kopie die "Dominosteine" zeilenweise aus, mischen Sie die "Dominosteine" und verteilen
Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV.
LINEARE FUNKTIONEN heißt Anstieg oder Steigung heißt y-achsenabschnitt Graphen linearer Funktionen sind stets Geraden Konstante Funktionen Spezialfall Graphen sind waagerechte Geraden (parallel zur x-achse)
6. Analytische Geometrie : Geraden in der Ebene
M 6. Analtische Geometrie : Geraden in der Ebene 6.. Vektorielle Geradengleichung Eine Gerade ist durch einen Punkt A und einen Richtungsvektor r eindeutig bestimmt. Durch die Einführung eines Parameters
5. Tutorium zur Analysis I für M, LaG und Ph
Fachbereich Mathematik Prof. Dr. K.-H. Neeb Dipl.-Math. Rafaël Dahmen, Dipl.-Math. Stefan Waner 5. Tutorium zur Analysis I für M, LaG und Ph Aufaben und Lösunen Sommersemester 2007 18.5.2007 Definition:
Gleichung von Winkelhalbierenden
Gleichn von Winkelhalbierenden Lösnsmethoden z den Afaben:. Welche Gleichnen haben die Winkelhalbierenden zweier eebener Geraden.. Wie teilt eine Winkelhalbierende die Geenseite des Dreiecks? Interessante
Geradenspiegelung: Diese Abbildung haben wir schon untersucht. Punktspiegelung: Die beiden Spiegelungsachsen schneiden sich senkrecht.
17 25 Die 5 Typen on Isometrien Geradenspieelun: Diese Abbildun haben wir schon untersucht unktspieelun: Die beiden Spieelunsachsen schneiden sich senkrecht Rotation (Drehun): Die beiden Spieelunsachsen
Pflichtteil... 2. Wahlteil Analysis 1... 6. Wahlteil Analysis 2... 9. Wahlteil Analysis 3... 13. Wahlteil Analytische Geometrie 1...
Pflichtteil... Wahlteil Analsis 1... 6 Wahlteil Analsis... 9 Wahlteil Analsis 3... 13 Wahlteil Analtische Geometrie 1... 16 Wahlteil Analtische Geometrie... 3 Lösungen: 006 Pflichtteil Lösungen zur Prüfung
Funktionen gra sch darstellen
Arbeitsblätter zum Ausdrucken von sofatutor.com Funktionen gra sch darstellen = 2 + 8 Erkläre, wie du den Graphen der Funktion zeichnest. 2 Bestimme, ob der Weg des Meteoriten zu einer Funktion gehört.
Auswertung des Versuchs P1-31,40,41 : Geometrische Optik
Auswertun des Versuchs P1-31,40,41 : Geometrische Optik Marc Ganzhorn Tobias Großmann Aufabe 1.1: Brennweite einer dünnen Sammellinse Mit Hilfe eines Maßstabes und eines Schirmes haben wir die Brennweite
Lineare Funktion. Wolfgang Kippels 21. März 2011
Lineare Funktion Wolfgang Kippels. März 0 Inhaltsverzeichnis Grundlegende Zusammenhänge. Aufbau der Linearen Funktion......................... Nullstellenbestimmung............................. Schnittpunktbestimmung............................
Lineare Funktion Eigenschaften von linearen Funktionen Übungen Bearbeite zu jeder der gegebenen Funktionen die Fragen:
Lineare Funktion Eigenschaften von linearen Funktionen Übungen - 3 2.0 Bearbeite zu jeder der gegebenen Funktionen die Fragen: steigt oder fällt der Graph der Funktion? schneidet der Graph die y-achse
b) Vorgehen genau wie oben, in diesem Fall hat es einfach 5 Eckpunkte, die man abbilden muss.
Lösunen Geometrie-Dossier Symmetrie in der Ebene Seite 5 Aufaben Achsensymmetrie und Geradenspieelun (Lösunen sind verkleinert ezeichnet) 1 a) Vorehen emäss Theorie: 1. Lotstrecken auf die Symmetrieachse
Achtung: Die Aufgabenkarten werden nacheinander ausgegeben! 1
Achtung: Die Aufgabenkarten werden nacheinander ausgegeben! 1 Aufgabe 1 Zeichne in Geogebra ein beliebiges Dreieck und konstruiere den Umkreismittelpunkt U, den Schwerpunkt S und den Höhenschnittpunkt
Die Quadratische Gleichung (Gleichung 2. Grades)
- 1 - VB 003 Die Quadratische Gleichung (Gleichung. Grades) Inhaltsverzeichnis Die Quadratische Gleichung (Gleichung. Grades)... 1 Inhaltsverzeichnis... 1 1. Die Quadratische Gleichung (Gleichung. Grades)....
Lineare Funktion. Wolfgang Kippels 3. November Inhaltsverzeichnis
Lineare Funktion Wolfgang Kippels. November 0 Inhaltsverzeichnis Grundlegende Zusammenhänge. Aufbau der Linearen Funktion......................... Nullstellenbestimmung............................. Schnittpunktbestimmung............................
Lineare Funktionen. Die generelle Form der Funktion lautet dabei:
Lineare Funktionen Das Thema lineare Funktionen begleitet euch in der Regel von der 7. Klasse an und wird stufenweise erlernt. Meist beginnt es mit einfachem Zeichnen oder Ablesen einer linearen Funktion
Lineare Funktionen. y = m x + n
Lineare Funktionen Das Thema lineare Funktionen begleitet euch in der Regel von der 7. Klasse an und wird stufenweise erlernt. Meist beginnt es mit einfachem Zeichnen oder Ablesen einer linearen Funktion
PARABELN. 10. Klasse
PARABELN 0. Klasse Jens Möller Owingen Tel. 0755-9 [email protected] INHALTSVERZEICHNIS NORMALPARABEL PARABELN MIT FORMFAKTOR VERSCHIEBUNG IN Y-RICHTUNG VERSCHIEBUNG IN X-RICHTUNG 5 ALLGEMEINE
Übungsaufgaben zu linearen Gleichungen und Funktionen117
Übungsaufgaben zu linearen Gleichungen und Funktionen117 Anmerkung: Die Funktionsgraphen sollen den Zusammenhang nur noch einmal veranschaulichen. Sie sind zur Lösung der Aufgabe nicht erforderlich. Die
M 1.14 Lineare Funktionen
SZ Förderkonzept M. Seite M. Verständnisaufgaben ) Kg Äpfel kosten 0,8. a) Erstelle eine Wertetabelle und zeichne den dazugehörigen Graph in das Koordinatensstem! kg 7 8 9 0 0,8 b) Begründe mit eigenen
einzeichnen von Steigungsdreiecken bestimmt werden oder durch die rechnerische Form. Hier wird die rechnerische Form gezeigt:
Lösungen Mathematik Dossier Funktionen b) Steigungen: Können entweder durch einzeichnen von Steigungsdreiecken bestimmt werden oder durch die rechnerische Form. Hier wird die rechnerische Form gezeigt:
MATHEMATIK G10. (1) Bestimme die Gleichung der Geraden durch die beiden Punkte
(c) A( 1 1 ) geht. 1 MATHEMATIK G10 GERADEN (1) Bestimme die Gleichung der Geraden durch die beiden Punkte P und Q: a) P ( 5), Q(4 7) b) P (3 11), Q(3, 1) c) P (3 5), Q( 1 7) d) P ( 0), Q(0 3) e) P (3
MATHE KLASSE 11. Funktionen Extremwerte lineare Funktionen WOLFGANG STILLER
MATHE KLASSE Funktionen Etremwerte lineare Funktionen FUNKTION Def.: Funktionen sind eindeutige Zuordnungen. (Mathe eine Menge X [Definitionsbereich] wird einer Menge Y [Wertebereich] zugeordnet. Jedem
m und schneidet die y-achse im Punkt P(0/3).
Aufgabe (Pflichtbereich 999) Eine Parabel hat die Gleichung y x 6x, 75. Bestimme rechnerisch die Koordinaten ihres Scheitelpunktes. Berechne die Entfernung des Scheitelpunktes vom Ursprung des Koordinatensystems.
Ich kenne die Begriffe Zuordnung und Funktion. Ich kann an Beispielen erklären, ob und warum eine Zuordnung eine Funktion ist oder nicht.
Mathematik 8a Vorbereitung zu Arbeit Nr. 4 - Lineare Funktionen am..07 Checkliste Was ich alles können soll Ich kenne die Begriffe Zuordnung und Funktion. Ich kann an Beispielen erklären, ob und warum
1.1 Direkte Proportionalität
Beziehungen zwischen Größen. Direkte Proportionalität Bei einer direkten Proportionalität wird dem doppelten, dreifachen,...wert der einen Größe x der doppelte, dreifache,... Wert der anderen Größe y zugeordnet.
Demo für
Aufgabensammlung Mit ausführlichen Lösungen Geradengleichungen und lineare Funktionen Zeichnen von Geraden in vorgefertigte Koordinatensysteme Aufstellen von Geradengleichungen Schnitt von Geraden Die
Die lineare Funktion; Steigung einer Strecke
linft.nb Die lineare Funktion; Steigung einer Strecke. Steigung und Gefälle einer Strasse Einleitung: -Wie würden Sie die Steilheit einer Strasse "messen"? Wie kann man die Steilheit einer Strasse, einer
Bin ich in Mathe fit für die Oberstufe? Lösungen der Checkliste der Kompetenzen der Sekundarstufe I
Gymnasium St. Wolfhelm Bin ich in Mathe fit für die Oberstufe? Lösungen der Checkliste der Kompetenzen der Sekundarstufe I Mit ihrer Hilfe kannst du selbstständig kontrollieren, ob du die abgefragten Kompetenzen
Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag,
Lineare Funktionen Aufgabe 1: Welche der folgenden Abbildungen stellen eine Funktion dar? Welche Abbildungen stellen eine lineare Funktion dar? Ermittle für die linearen Funktionen eine Funktionsgleichung.
Lineare Funktionen. Das rechtwinklige (kartesische) Koordinatensystem. Funktionen
Das rechtwinklige (kartesische) Koordinatensystem Funktionen Funktion: Eine Funktion ist eine eindeutige Zuordnung. Jedem x D wird genau eine reelle Zahl zugeordnet. Schreibweise: Funktion: f: x f (x)
Manipulation am Funktionsgrahen
Lösun: Manipulation am Funktionsrahen 1 a) Zeichnen Sie den Graphen der Funktion x) = x 3 x b) Skizzieren Sie die Graphen der olenden Funktionen in das Koordinatensystem von a): i x) = x 3 x+ ii x) = x
Über die Bedeutung der zwei Zahlen m und x 1 für das Aussehen des Graphen wird an anderer Stelle informiert.
Lineare Funktionen - Term - Grundwissen Woran erkennt man, ob ein Funktionsterm zu einer Linearen Funktion gehört? oder Wie kann der Funktionsterm einer Linearen Funktion aussehen? Der Funktionsterm einer
Lineare Funktionen und Funktionenscharen
. Erkläre folgende Begriffe: a) Ursprungsgerade b) Steigung bzw. Steigungsdreieck c) Steigende u. fallende Gerade d) Geradenbüschel, Parallelenschar e) y- Achsenabschnitt f) Lineare Funktion g) Normalform
DOWNLOAD. Vertretungsstunden Mathematik Klasse: Lineare Funktionen. Marco Bettner/Erik Dinges. Downloadauszug aus dem Originaltitel:
DOWNLOAD Marco Bettner/Erik Dinges Vertretungsstunden Mathematik 8 8. Klasse: auszug aus dem Originaltitel: Gehört der Punkt zum Funktionsgraph?. Betrachte die Funktion y = x +. Gehört der Punkt P(/5)
Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente:
Inhalt: Punkte im Koordinatensstem Funktionen und ihre Schaubilder Punktprobe und Koordinaten berechnen Proportionale Funktionen 5 Steigung und Steigungsdreieck 6 Die Funktion = m + b 7 Funktionsgleichungen
Lernkontrolle Relationen, Funktionen, lineare Funktionen
Lernkontrolle Relationen, Funktionen, lineare Funktionen A 1) Im folgenden Diagramm bedeuten A, B, C, D jeweils die Kinder einer Familie; die Pfeile drücken die Relation "hat als Schwester" aus. a) Wie
13 Übungen Reihen- und Parallelschaltungen
13 Übunen Reihen- und Parallelschaltunen Fertie bei allen Aufaben eine Schaltunsskizze an und zeichne die esuchten Größen ein! Auf Geeben Gesucht 13.1 Reihenschaltun = 2 kω, = 5 kω, U = Schaltun skizzieren
Grundwissen 8 - Lösungen
Grundwissen 8 - Lösungen Bereich 1: Proportionalität 1) Die in den Tabellen dargestellten Größen sind in beiden Fällen proportional. Entscheide, welche Art von Proportionalität jeweils vorliegt und vervollständige
Analytische Geometrie
nalytisce Geometrie. Vektoren Mitte einer Strecke B M B Verbindunsvektor B B B Mittelwert der zwei Ortsvektoren ( 6 ) B( 5 ) m B ( a + b) M( ( ) ( + 5) ( + 6) M( ) Spitze nfan: B b a ( 6 ) B( 5 ) 6 B Scwerpunkt
Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.
Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m
Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente:
Inhalt:. Punkte im Koordinatensstem....................................... Funktionen und ihre Schaubilder..................................... Punktprobe und Koordinaten berechnen...............................
6 Bestimmung linearer Funktionen
1 Bestimmung linearer Funktionen Um die Funktionsvorschrift einer linearen Funktion zu bestimmen, muss man ihre Steigung ermitteln. Dazu sind entweder Punkte gegeben oder man wählt zwei Punkte P 1 ( 1
3.9.1 Kartesisches Koordinatensystem
Seite 1 Kapitel 3 Mathematik Kapitel 3.9 Algebra Grafische Darstellungen und Lösungen 3.9.1 Kartesisches Koordinatensstem Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn
Zusammenfassung und Wiederholung zu Geraden im IR ²
Seite 1 von 5 Definition einer Geraden Wir zeichnen mithilfe einer Wertetabelle den Graphen der linearen Funktion f mit f 0,5 1. Fülle hierzu die Wertetabelle fertig aus: 4 3 1 0 1 3 4 f f4 0,54 1 3...,5...
Download. Mathe an Stationen Handlungsorientierte Materialien für die Klassen 3 und 4. Mathe an Stationen SPEZIAL Geometrie 3-4.
Download Carolin Donat Mathe an Stationen SPEZIAL Geometrie 3-4 Das Geodreieck zielt üben Anforderunen des ch Geometrie erfüllen wichtie Inhalte und leiten zuleich Ihre eiten trotz unterschiedlicher Lern
Skript Lineare Gleichungen und Lineare Gleichungssysteme
Skript Lineare Gleichungen und Lineare Gleichungssysteme Emir Kujović 2016 Lernen, ohne zu denken ist verlorene Mühe. Denken, ohne etwas gelernt zu haben, ist gefährlich. Dies ist denen gewidmet, die beides
Aufstellen von Funktionstermen
Aufstellen von Funktionstermen Bisher haben wir uns mit der Untersuchung von Funktionstermen beschäftigt, um Eigenschaften des Graphen zu ermitteln. Nun wollen wir die Betrachtungsweise ändern. Wir gehen
Check-1. (1/8) erstellt: (WUL); zuletzt geändert: (WUL)
Check-1 (1/8) erstellt: 01.06.2017 (WUL); zuletzt geändert: 06.06.2017 (WUL) Nullstellen Nullstellen Die Punkte einer Funktion die die x-achse durchstoßen oder berühren nennt man Nullstellen. Sie haben
Coaching für den Wettbewerb
1. Bayreuther Ta der Mathematik 08. Juli 006 Klassenstufen 7-8 Aufabe 1: Die Zwilline Peter und Michael besuchen dieselbe Klasse. Beide verlassen morens leichzeiti das Haus und benutzen denselben We zur
Lineare Funktionen. Die lineare Funktion
1 Die lineare Funktion Für alle m, t, aus der Zahlenmenge Q heißt die Funktion f: x m x + t lineare Funktion. Die Definitionsmenge ist Q (oder je nach Zusammenhang ein Teil davon). Der Graph der linearen
8.1 Proportionalität. 8.2 Funktionen Proportionale Zuordnungen Funktion. P = x y ist der Vorrat von 6000g.
Gmnasium bei St. Anna, Augsburg Seite Grundwissen 8. Klasse 8. Proportionalität 8.. Proportionale Zuordnungen Gehört bei einer Zuordnung zweier Größen zu einem Vielfachen der einen Größe das gleiche Vielfache
5.3. Abstrakte Anwendungsaufgaben
Aufgabe.. Abstrakte Anwendungsaufgaben In den Raum zwischen der x-achse und dem Graphen von f(x) = x x + soll ein Rechteck möglichst großer Fläche gelegt werden, dessen Ecken auf dem Graphen liegen. Wie
Grundwissensblatt 8. Klasse. IV. Lineare Gleichungen mit zwei Variablen 1. Eigenschaften von linearen Gleichungen mit zwei Variablen
Grundwissensblatt 8. Klasse IV. Lineare Gleichungen mit zwei Variablen. Eigenschaften von linearen Gleichungen mit zwei Variablen Alle linearen Gleichungen der Form a + by = c (oder auch y = m + t) erfüllen:
Aufgabe 2 Schnittpunkte bestimmen [8]
Mathematik 8b 2016/2017 Arbeit 3 HJ 1 NS Datum: 13.01.2017 Name: a Teil 1 ohne GTR: Schreibe alle Ergebnisse auf das Blatt, mache deine Nebenrechnungen aber ruhig im Heft. Gib das Blatt sobald du mit der
Mathematik - 1. Semester. folgenden Zahlenpaare die gegebene Gleichung erfüllen:
Mathematik -. Semester Wi. Ein Beispiel Lineare Funktionen Gegeben sei die Gleichung y x + 3. Anhand einer Wertetabelle sehen wir; daß die folgenden Zahlenpaare die gegebene Gleichung erfüllen: x 0 6 8
1. Klassenarbeit Lösungsvorschlag
EI 10c M 2009-10 MATHEMATIK 1 1. Klassenarbeit Lösungsvorschlag Vergleiche deine Lösungen mit diesem Lösungsvorschlag. Helft euch gegenseitig bei Fragen oder fragt mich direkt! AUFGABE 1 Die Gerade g geht
A Vektorrechnung. B Geraden und Ebenen
A Vektorrechnung Seite 1 Lineare Gleichungssysteme... 4 2 Gauß-Algorithmus... 6 3 Vektoren... 10 4 Vektorberechnungen und Vektorlängen... 12 5 Linearkombination und Einheitsvektor... 16 6 Lineare Abhängigkeit
Geometrie Strecke, Gerade, Halbgerade
Für einige Aufgaben wird ein beschriftetes Gitternetz folgender Größe benötigt: Rechtsachse (x- Achse): 8 LE Hochachse (y- Achse): 8 LE 1 LE 1 cm 1. Zeichne ohne Gitternetz: a) Die Gerade g ist senkrecht
Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg
Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz wwwmathe-aufgabencom September 6 Abituraufgaben (Haupttermin) Aufgabe
Abstand Punkt/Gerade
Abstan unkt/gerae. Geeben sin er unkt un ie Gerae : x = +λ. Gesucht ist er Abstan von zu. 2. ür ein λ ilt: +λ O,.h. (+λ O = x O Hieraus lässt sich λ berechnen, allemein: λ = ( O λ einesetzt in ie Geraenleichun
11 Üben X Affine Funktionen 1.01
Üben X Aine Funktionen.0 Zeichne die Graphen zu olgenden Funktionsgleichungen! + + d c b a Augabenkarte von MUED Lösung X Aine Funktionen.0 + + d c b a Üben X Aine Funktionen.0 Bestimme die Funktionsgleichung
HTBLA VÖCKLABRUCK STET
HTBLA VÖCKLABRUCK STET Relationen und Funktionen 2 INHALTSVERZEICHNIS 1. RELATIONEN... 3 2. FUNKTIONEN... 4 2.1. LINEARE FUNKTION... 6 Relationen und Funktionen 3 1. RELATIONEN Def.: Eine Relation zwischen
Geradengleichungen. Anna Heynkes. 21.9.2005, Aachen
Geradengleichungen Anna Heynkes 21.9.2005, Aachen Wegen des Überspringens einer Jahrgangsstufe habe ich den Mathematik- Unterricht verpasst, in dem die Geradengleichungen behandelt wurden. Deshalb musste
Repetitionsaufgaben: Lineare Funktionen
Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl
2 QUADRATISCHE FUNKTION
P - MATHEMATIK P. Rendulić 007 QUADRATICHE FUNKTION 8 QUADRATICHE FUNKTION. Definition Eine quadratische Funktion f ist eine Funktion, die als Funktionsterm ein Polnom vom. Grad esitzt. Darunter versteht
7.1.2 Lineare Funktionen Schnittpunkte mit den Achsen - Lösungen
7.. Lineare Funktionen Schnittpunkte mit den Achsen - Lösungen. Bestimme von den nachfolgenden Funktionsgleichungen zunächst die Schnittpunkte mit den Achsen; stelle sie danach im Koordinatensystem dar.
Kapitel 3 Mathematik. Kapitel 3.9 Algebra Grafische Darstellungen und Lösungen REPETITIONEN
Seite Kapitel Mathematik Kapitel.9 Algebra Grafische Darstellungen und Lösungen REPETITIONEN Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut, 877 Nidfurn Telefon 55 54 87 Telefa 55
Grundwissen 9. Sabine Woellert
Grundwissen 9 1. Quadratische Funktion... 2 1.1 Definition... 2 1.2 Eigenschaften der Normalparabel ( ):... 2 1.3 Veränderung der Normalparabel... 2 1.4 Normalform, Scheitelform... 4 1.5 Berechnung der
Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 6 Hausübungen (Abgabe: )
Prof. C. Greiner, Dr. H. van Hees Wintersemester 212/213 Übunen zur Theoretischen Physik 1 Lösunen zu Blatt 6 Hausübunen (Ababe: 14.12.212) (H14) Arbeit eines Kraftfeles (2 Punkte) r = (6m/s 2 t 2m/s,3m/s
Abschlussprüfung 2011 an den Realschulen in Bayern
Prüfungsdauer: 50 Minuten Abschlussprüfung 0 an den Realschulen in Bayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A Nachtermin A Eierbecher S Die nebenstehende Skizze zeigt den
Zusammengesetzte Übungsaufgaben lineare Funktionen
Zusammengesetzte Übungsaufgaben lineare Funktionen Nr Aufgabe Lösung 1 Gegeben ist die Funktion g mit g ( x ) = 3 x + 9 a) Geben Sie die Steigung und den y- Achsenabschnitt an. (Begründung) c) Bestimmen
QUADRATISCHE UND KUBISCHE FUNKTION
QUADRATISCHE UND KUBISCHE FUNKTION Quadratische Funktion 1. Bedeutung der Parameter Als quadratische Funktionen werde alle Funktionen bezeichnet, die die Form y = a*x² + b*x + c aufweisen, also alle, bei
Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene
Rechnen mit 1. im Koordinatensystem 1.1. Freie in der Ebene 1) Definition Ein Vektor... Zwei sind gleich, wenn... 2) Das ebene Koordinatensystem Wir legen den Koordinatenursprung fest, ferner zwei zueinander
e-funktionen f(x) = e x2
e-funktionen f(x) = e x. Smmetrie: Der Graph ist achsensmmetrisch, da f( x) = f(x).. Nullstellen: Bed.: f(x) = 0 Es sind keine Nullstellen vorhanden, da e x stets positiv ist. 3. Extrema: notw. Bed.: f
Proportionale Funktion
Hilfe 1 Proportionale Funktion Seite 1 Graphen proportionaler Funktionen verlaufen immer durch den Nullpunkt. Beispiele für Funktionsgleichungen: f(x) = 3x oder f(x) = 2x oder f(x) = 1 2 x Tipp: Gleichungen
