MATHEMATIK 1 LINEARE FUNKTION

Größe: px
Ab Seite anzeigen:

Download "MATHEMATIK 1 LINEARE FUNKTION"

Transkript

1 PS - ATHEATIK P. Rendulić 007 LINEARE FUNKTION ATHEATIK LINEARE FUNKTION. Geradenleichun Eine Geradenleichun ist die atheatische Gleichun die eine Gerade i kartesischen Koordinatensste eindeuti beschreibt. O ist der Koordinatenursrun. Die horizontale Koordinatenachse bezeichnet an als -Achse. Die vertikale Koordinatenachse bezeichnet an als - Achse. Die nebenstehende Abbildun zeit eine Gerade die durch Punkte A und B eht. In der Geoetrie nach Euklid kann durch zwei unterschiedliche Punkte ier enau eine Gerade konstruiert werden. A O B. Zur -Achse arallele Geraden Geraden die arallel zur -Achse verlaufen ehorchen der alleeinen Gleichun c wobei c eine reale Zahl ist. Für c 0 ilt die Gleichun 0. Diese Gleichun beschreibt eine Gerade die auf der -Achse liet. Für c > 0 liet die Gerade rechts von der -Achse Beisiel: ). Für c < 0 liet die Gerade links von der -Achse Beisiel: ). - 0 O. Zur -Achse arallele Geraden Geraden die arallel zur -Achse verlaufen ehorchen der alleeinen Gleichun c wobei c eine reale Zahl ist. Für c 0 ilt die Gleichun 0. Diese Gleichun beschreibt eine Gerade die auf der -Achse liet. Für c > 0 liet die Gerade über der - Achse Beisiel: ). Für c < 0 liet die Gerade unter der - Achse Beisiel: ). 0 O -

2 PS - ATHEATIK P. Rendulić 007 LINEARE FUNKTION. Alleeine Geradenleichun I alleeinen Fall kann eine Gerade durch die lineare Funktion beschrieben werden: + und sind die Paraeter der Gerade. an bezeichnet sie folenderaßen: ist die Steiun der Gerade. Sie entsricht der senkrechten Kathete des Steiunsdreiecks dessen waaerechte Kathete ist. Wird die waaerechte Kathete u das -fache verrößert auf den Wert ) so verrößert sich auch die senkrechte Kathete u das -fache auf den Wert ). O ist die Verschiebun der Geraden entlan der -Achse relativ zu Koordinatenursrun O. wird auch als Achsenabschnitt bezeichnet. Ein Punkt R der auf der Gerade liet und dessen -Koordinate beträt besitzt als - Koordinate den Wert + siehe Fiur). und sind daher die Koordinaten aller Punkte welche die Geradenleichun erfüllen. Diese Punkte lieen soit auf der Geraden. 5 R).. Beisiel Die Steiun der Gerade beträt und der Achsenabschnitt. I Beisiel liet der Punkt R 5) auf der Geraden denn die Geradenleichun ist wahr: Einfluss der Paraeter der Gerade auf den Grahen > O 0<< 0 <0 >0 0 O <0 Einfluss der Steiun Einfluss des Achsenabschnitts Für > 0 steit die Gerade diaonal von links unten nach rechts oben). Für 0 ist die Gerade arallel zur -Achse. Für < 0 fällt die Gerade diaonal von links oben nach rechts unten).

3 PS - ATHEATIK P. Rendulić 007 LINEARE FUNKTION Für > 0 schneidet die Gerade die -Achse i ositiven Bereich. Für 0 ist die Gerade eine Ursrunserade sie eht durch den Koordinatenursrun). Für < 0 schneidet die Gerade die -Achse i neativen Bereich..6 Bestiun der Steiun einer Gerade -Punktethode) Die Steiun einer Geraden kann durch Bildun des Differenzquotienten bestit werden. Dazu wählt an beliebie verschiedene Punkte R ) und S ) der Geraden und berechnet den Quotienten I nebenstehenden Beisiel wurden die Punkte R - -) und S ) ewählt. Die Steiun der Gerade beträt deentsrechend ) 075 ) R ) O S) Anerkun: Für eine senkrechte Gerade arallel zur -Achse) tendiert die Steiun een Unendlich..7 Parallele Geraden Zwei Geraden und sind arallel zueinander wenn sie in eine beliebien kartesischen Koordinatensste die leiche Steiun besitzen..8 Schnittunkt von Geraden Zwei beliebie Geraden und die nicht arallel zueinander sind besitzen einen eeinsaen Schnittunkt..8. Bestiun der Koordinaten des Schnittunkts Die Koordinaten und des Schnittunkts können leicht bestit werden. Die Geraden und werden durch die folenden Funktionen beschrieben: a + a + Da der Schnittunkt ein Punkt beider Geraden ist können beide Funktionen leich esetzt werden. Es ilt für : O )

4 PS - ATHEATIK P. Rendulić 007 LINEARE FUNKTION + + ) Deentsrechend ist die -Koordinate des Schnittunkts bekannt. Die -Koordinate kann bestit werden inde in die Geradenleichun von einesetzt wird: + + ) + + Die Koordinaten des Schnittunkts sind daher: I ezeiten Beisiel werden die Geraden un durch diese Funktionen beschrieben: + a a Daher besitzt der Schnittunkt die Koordinaten: ) ) ) ) ) 8 ) Dies sind in der Tat die Koordinaten die aus der Grahik bestit werden können.

5 PS - ATHEATIK P. Rendulić 007 LINEARE FUNKTION 5.8. Praktische Anwendun: Wahl des richtien Telefonabonneents Ein obilanbieter hat die folenden zwei Abonneents i Anebot: Abonneent Abonneent Grundebühr keine 5 / onat Preis ro in. 0 / inute 007 / inute Während wievielen inuten uss an ro onat indestens telefonieren dait das Abonneent it Grundebühr ünstier wird als das Abonneent ohne Grundebühr? Das Proble kann leicht elöst werden inde an erkennt dass der Preis ro inute für die beiden Abonneents durch die folenden linearen Funktionen beschrieben werden kann: steht für die a onatsende zu zahlende Geldsue entsricht der Zeitdauer in inuten während derer telefoniert wurde. Für ein ewisse Zeitdauer kosten beide Abonneents leich viel. U diese zu bestien werden die Preise und leich esetzt und die resultierende Gleichun wird nach elöst: ) inuten 005 it de Abonneent it Grundebühr telefoniert an ünstier wenn an onatlich ehr als 00 inuten telefoniert. Darunter ist das Abonneent ohne Grundebühr ünstier. Die nebenstehende Grahik zeit den Preisverlauf der beiden Abonneents. Für 00 inuten schneiden sich beide Geraden. Preis in Euro) it Grundebühr 8 6 ohne Grundebühr Zeitdauer in inuten)

6 PS - ATHEATIK P. Rendulić 007 LINEARE FUNKTION 6.9 Aufaben.9. Geraden zeichnen Zeichne die eebenen Geraden in ein eeinetes Koordinatensste!

7 PS - ATHEATIK P. Rendulić 007 LINEARE FUNKTION 7.9. Bestiun der Steiun Die folende Grahik zeit den linearen Zusaenhan zwischen hsikalischen Größen. Bestie die Steiun der Geraden! Kühlschränke Bei Kühlschrankkauf bieten sich die folenden odelle an: Kühlschrank Enerieklasse Preis in ) Stroverbrauch in kwh / Jahr) odell 50l) A 95 0 odell 50l) A odell 50l) A Stroreis: 05 / kwh Berechne nach wie vielen Jahren sich der Kauf des teureren jedoch strosarenden Geräts in Bezu zu den billieren Geräten aortisiert hat!

MATHEMATIK 1 LINEARE FUNKTION

MATHEMATIK 1 LINEARE FUNKTION PS - ATHEATIK P. Rendulić 009 LINEARE FUNKTION ATHEATIK LINEARE FUNKTION. Geradenleichun Eine Geradenleichun ist die atheatische Gleichun die eine Gerade i kartesischen Koordinatensste eindeuti beschreibt.

Mehr

1. Lineare Funktionen

1. Lineare Funktionen Grundwissen zu den Geraden. Lineare Funktionen Geraden sind die Graphen linearer Funktionen. Dazu müssen wir zuerst den Beriff Funktion und dann den Beriff linear klären.. Funktion Eine Funktion ist eine

Mehr

(0 4) 4 :( 2) Bestimmung von Geradengleichungen Aufgabe 1

(0 4) 4 :( 2) Bestimmung von Geradengleichungen Aufgabe 1 Bestimmun von Geradenleichunen Auabe Geeben ist die Geradenleichun (x) = -x +. Gesucht sind die Schnittpunkte mit den Koordinatenachsen. Lösun: Mit der y-achse (x=0): S y (0 ) Mit der x-achse (y=0): x

Mehr

Affine (lineare) Funktionen und Funktionenscharen

Affine (lineare) Funktionen und Funktionenscharen Aine (lineare) Funktionen Funktionenscharen 1. Erkläre olende Berie: a) Ursprunserade b) Steiun bzw. Steiunsdreieck c) steiende u. allende erade d) eradenbüschel, Parallelenschar e) y-achsenabschnitt )

Mehr

Reiner Winter. Analysis. Aufgaben mit Musterlösungen

Reiner Winter. Analysis. Aufgaben mit Musterlösungen Reiner Winter Analysis Aufaben mit Musterlösunen. Aufabe: Geeben sei die Funktion ƒ(x) 5 x5 4 x mit x IR +... Untersuchen Sie die Funktion ƒ(x) auf Symmetrie, Nullstellen, Extrempunkte und Wendepunkte.

Mehr

Aufgabe 11: Windanlage

Aufgabe 11: Windanlage Zentrale schritliche Abiturprüunen im Fach Mathematik Auabe 11: Windanlae Das Foto zeit einen Darrieus-Windenerie-Konverter. Der Wind setzt die drei Blätter um die vertikale Achse in Drehun; die Blätter

Mehr

Lineare Funktionen. Lineare Funktionen. a) Bestimmen Sie die Funktionsgleichung der linearen Funktion g, die durch die Punkte verläuft.

Lineare Funktionen. Lineare Funktionen. a) Bestimmen Sie die Funktionsgleichung der linearen Funktion g, die durch die Punkte verläuft. Schuljahr 07-08 AHR Schuljahr 07-08 AHR a) Bestimmen Sie die Funktionsleichun der linearen Funktion f, deren Graph durch den Punkt P / ) verläuft und die Steiun m, 7hat Die Funktion f hat die allemeine

Mehr

Bestimmung der Molaren Masse nach Dumas (MOL) Gruppe 8 Simone Lingitz, Sebastian Jakob

Bestimmung der Molaren Masse nach Dumas (MOL) Gruppe 8 Simone Lingitz, Sebastian Jakob Bestiun der Molaren Masse nach Duas (MO Gruppe 8 Sione initz, Sebastian Jakob 1. Grundlaen In diese ersuch wird nach de erfahren von Duas die Molare Masse von hlorofor bestit. Dazu wird anenoen, daß hlorofor

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 12 WINKELBERECHNUNGEN. a) WINKEL ZWISCHEN ZWEI GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 12 WINKELBERECHNUNGEN. a) WINKEL ZWISCHEN ZWEI GERADEN ARBEITSBLATT 12 WINKELBERECHNUNGEN a) WINKEL ZWISCHEN ZWEI GERADEN Diese Formel haben wir a bereits kennenelernt: Satz: Der Winkel zwischen zwei Vektoren a und b, berechnet sich nach der Formel: a b cos

Mehr

Download. Hausaufgaben: Lineare Funktionen und Gleichungen. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben: Lineare Funktionen und Gleichungen. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: Download Otto Mar Hausaufgaben: Lineare Funktionen und Gleichungen Üben in drei Differenzierungsstufen Downloadauszug aus dem Originaltitel: Hausaufgaben: Lineare Funktionen und Gleichungen Üben in drei

Mehr

2. Klausur Physik Leistungskurs Klasse Dauer: 90 min

2. Klausur Physik Leistungskurs Klasse Dauer: 90 min . Klusur Physik Leistunskurs Klsse 11 8. 1. 1 Duer: 9 in 1. Wird ein Dch neu einedeckt, können die Dchzieel it eine Krn uf ds Dch befördert werden. Dzu brint der Motor eine bestite Krft uf. Wie roß ist

Mehr

6. Analytische Geometrie : Geraden in der Ebene

6. Analytische Geometrie : Geraden in der Ebene M 6. Analtische Geometrie : Geraden in der Ebene 6.. Vektorielle Geradengleichung Eine Gerade ist durch einen Punkt A und einen Richtungsvektor r eindeutig bestimmt. Durch die Einführung eines Parameters

Mehr

Lineare Funktionen. Das rechtwinklige (kartesische) Koordinatensystem. Funktionen

Lineare Funktionen. Das rechtwinklige (kartesische) Koordinatensystem. Funktionen Das rechtwinklige (kartesische) Koordinatensystem Funktionen Funktion: Eine Funktion ist eine eindeutige Zuordnung. Jedem x D wird genau eine reelle Zahl zugeordnet. Schreibweise: Funktion: f: x f (x)

Mehr

19 Aufstellen von Funktionstermen

19 Aufstellen von Funktionstermen 9 Austellen von Funktionstermen 9 Austellen von Funktionstermen Kert man die Kurvendiskussion um, so ordert man jetzt, dass aus voreebenen Eienscaten eines Funktionsraen die entsrecende Funktion eunden

Mehr

Lineare Funktion Eigenschaften von linearen Funktionen Übungen Bearbeite zu jeder der gegebenen Funktionen die Fragen:

Lineare Funktion Eigenschaften von linearen Funktionen Übungen Bearbeite zu jeder der gegebenen Funktionen die Fragen: Lineare Funktion Eigenschaften von linearen Funktionen Übungen - 3 2.0 Bearbeite zu jeder der gegebenen Funktionen die Fragen: steigt oder fällt der Graph der Funktion? schneidet der Graph die y-achse

Mehr

K l a u s u r N r. 2 Gk Ph 11

K l a u s u r N r. 2 Gk Ph 11 2.12.2008 K l a u u r N r. 2 Gk Ph 11 Aufabe 1 Ein Fahrzeu durchfährt eine überhöhte Kurve, die eenüber der Horizontalen einen Winkel von 34 hat. Da Fahrzeu wird dabei mit der Kraft F e = 18000 N enkrecht

Mehr

Zeichnen Sie die Geraden mit den Gleichungen: a) y = 4 x + 1; b) 2y + 3x = 7; c) f(x) = 1 x 3 ; d) x -2 x + 3

Zeichnen Sie die Geraden mit den Gleichungen: a) y = 4 x + 1; b) 2y + 3x = 7; c) f(x) = 1 x 3 ; d) x -2 x + 3 Zusättzlliiche Übungen zu lliinearren Funkttiionen Aufgabe Zeichnen Sie die Geraden mit den Gleichungen: a) y = x + ; b) y + x = ; c) f(x) = x ; d) x - x + e) + =. Was fällt bei der Gerade e) auf? Aufgabe

Mehr

Funktionen gra sch darstellen

Funktionen gra sch darstellen Arbeitsblätter zum Ausdrucken von sofatutor.com Funktionen gra sch darstellen = 2 + 8 Erkläre, wie du den Graphen der Funktion zeichnest. 2 Bestimme, ob der Weg des Meteoriten zu einer Funktion gehört.

Mehr

Über die Bedeutung der zwei Zahlen m und x 1 für das Aussehen des Graphen wird an anderer Stelle informiert.

Über die Bedeutung der zwei Zahlen m und x 1 für das Aussehen des Graphen wird an anderer Stelle informiert. Lineare Funktionen - Term - Grundwissen Woran erkennt man, ob ein Funktionsterm zu einer Linearen Funktion gehört? oder Wie kann der Funktionsterm einer Linearen Funktion aussehen? Der Funktionsterm einer

Mehr

a) b) c) d) e) f) g) h) i) j) k) l) s) t) u) v) w) x) y) z)

a) b) c) d) e) f) g) h) i) j) k) l) s) t) u) v) w) x) y) z) Aufabe 1: a) b) c) d) e) f) ) h) i) j) k) l) m) n) o) p) q) r) s) t) u) v) w) x) y) z) a) Welche der Fiuren a) z) ist achsensymmetrisch? Trae die Symmetrieachsen ein. b) Gib an, welche der Fiuren a) z)

Mehr

Geradenspiegelung: Diese Abbildung haben wir schon untersucht. Punktspiegelung: Die beiden Spiegelungsachsen schneiden sich senkrecht.

Geradenspiegelung: Diese Abbildung haben wir schon untersucht. Punktspiegelung: Die beiden Spiegelungsachsen schneiden sich senkrecht. 17 25 Die 5 Typen on Isometrien Geradenspieelun: Diese Abbildun haben wir schon untersucht unktspieelun: Die beiden Spieelunsachsen schneiden sich senkrecht Rotation (Drehun): Die beiden Spieelunsachsen

Mehr

Auswertung des Versuchs P1-31,40,41 : Geometrische Optik

Auswertung des Versuchs P1-31,40,41 : Geometrische Optik Auswertun des Versuchs P1-31,40,41 : Geometrische Optik Marc Ganzhorn Tobias Großmann Aufabe 1.1: Brennweite einer dünnen Sammellinse Mit Hilfe eines Maßstabes und eines Schirmes haben wir die Brennweite

Mehr

Manipulation am Funktionsgrahen

Manipulation am Funktionsgrahen Lösun: Manipulation am Funktionsrahen 1 a) Zeichnen Sie den Graphen der Funktion x) = x 3 x b) Skizzieren Sie die Graphen der olenden Funktionen in das Koordinatensystem von a): i x) = x 3 x+ ii x) = x

Mehr

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente:

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente: Inhalt: Punkte im Koordinatensstem Funktionen und ihre Schaubilder Punktprobe und Koordinaten berechnen Proportionale Funktionen 5 Steigung und Steigungsdreieck 6 Die Funktion = m + b 7 Funktionsgleichungen

Mehr

Einstieg in die Koordinatengeometrie - lineare Funktionen -

Einstieg in die Koordinatengeometrie - lineare Funktionen - Einstie in die Koordinateneoetrie - lineare Funktionen - Was ist eine Funktion? Definition: Funktion Eine Zuordnun f: D}, D eißt Funktion, wenn sie jede Eleent xd enau eine reelle Zal y zuordnet. f(x)=y

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Funktionen an der Berufsschule: Übungsaufgaben

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Funktionen an der Berufsschule: Übungsaufgaben Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lineare Funktionen an der Berufsschule: Übungsaufgaben Das komplette Material finden Sie hier: School-Scout.de SCHOOL-SCOUT Übungsaufgaben:

Mehr

Zusammengesetzte Übungsaufgaben lineare Funktionen

Zusammengesetzte Übungsaufgaben lineare Funktionen Zusammengesetzte Übungsaufgaben lineare Funktionen Nr Aufgabe Lösung 1 Gegeben ist die Funktion g mit g ( x ) = 3 x + 9 a) Geben Sie die Steigung und den y- Achsenabschnitt an. (Begründung) c) Bestimmen

Mehr

Download. Mathe an Stationen Umgang mit Geodreieck. Einführung Geodreieck. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Download. Mathe an Stationen Umgang mit Geodreieck. Einführung Geodreieck. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel: Download Marco Bettner, Erik Dines Mathe an Stationen Uman mit Geodreieck Einführun Geodreieck Downloadauszu aus dem Oriinaltitel: Mathe an Stationen Uman mit Geodreieck Einführun Geodreieck Dieser Download

Mehr

Klasse 9: Lösungen. Der Term ist ein Quotient. Der Dividend ist eine Differenz mit dem Minuenden

Klasse 9: Lösungen. Der Term ist ein Quotient. Der Dividend ist eine Differenz mit dem Minuenden . Beschreibe den Ter : unter Verwendung der atheatischen Fachbegriffe. Berechne den Terwert nachvollziehbar ohne Taschenrechner und erkläre dabei, was an unter Erweitern und Kürzen eines Bruches versteht.

Mehr

Dichte besitzt Messing bei einer Temperatur von 35 C? (1 cm³ Messing vergrößert seinen Rauminhalt beim Erwärmen um 1 K um 0, cm³).

Dichte besitzt Messing bei einer Temperatur von 35 C? (1 cm³ Messing vergrößert seinen Rauminhalt beim Erwärmen um 1 K um 0, cm³). Aufaben Länen- und oluenausdehnun 0. Mit eine tahlaßband, das für eine Teperatur von 0 eeicht ist, wird bei einer Teperatur von 5 die Läne der eite eines Gartens eessen. Welche Aussae ist richti? a) Die

Mehr

Schmuckstücke. Ein Goldschmied fertigt Schmuckstücke nach kreisrunden Designvorlagen.

Schmuckstücke. Ein Goldschmied fertigt Schmuckstücke nach kreisrunden Designvorlagen. Schmuckstücke Aufabennummer: B_278 Technoloieeinsatz: mölich erforderlich T Ein Goldschmied fertit Schmuckstücke nach kreisrunden Desinvorlaen. a) Die kreisrunde Desinvorlae für einen Ohrrin wird durch

Mehr

TK II Mathematik 2. Feststellungsprüfung Nachprüfung Arbeitszeit: 120 Minuten

TK II Mathematik 2. Feststellungsprüfung Nachprüfung Arbeitszeit: 120 Minuten . Feststellungsprüfung Nachprüfung 19.0.005 1. Untersuchen Sie die Funktion p ( ) = + 16 auf Monotonie und geben Sie auf Grund dieses Ergebnisses die Lage des Scheitels an. (10. Der Graph einer ganz rationalen

Mehr

Ergänzungsübungen zur Vorlesung Technische Mechanik 3

Ergänzungsübungen zur Vorlesung Technische Mechanik 3 Eränzunsübunen zur Vorlesun Aufabe 1: Eine Welle bestehe aus zwei identischen Kreiskeeln der Läne L und der Masse K und eine Zylinder der Höhe H it der Masse Z. Bestien Sie das Massenträheitsoent I A.

Mehr

1. Nach-Klausur - LK Physik Sporenberg - Q1/

1. Nach-Klausur - LK Physik Sporenberg - Q1/ . Nach-Klausur - LK Physik Sporenber - / 0.04.03.Aufabe: Geeben ist eine flache Rechteckspule mit n 00 indunen, der Höhe h 0 cm, der Breite b 3,0 cm und den Anschlüssen und (siehe Skizze). Diese Spule

Mehr

MATHE KLASSE 11. Funktionen Extremwerte lineare Funktionen WOLFGANG STILLER

MATHE KLASSE 11. Funktionen Extremwerte lineare Funktionen WOLFGANG STILLER MATHE KLASSE Funktionen Etremwerte lineare Funktionen FUNKTION Def.: Funktionen sind eindeutige Zuordnungen. (Mathe eine Menge X [Definitionsbereich] wird einer Menge Y [Wertebereich] zugeordnet. Jedem

Mehr

Dr. Jürgen Senger MATHEMATIK. Grundlagen für Ökonomen

Dr. Jürgen Senger MATHEMATIK. Grundlagen für Ökonomen Dr. Jürgen Senger MATHEMATIK Grundlagen für Ökonomen ÜBUNG.. LÖSUNGEN. Es handelt sich um lineare Funktionen (Geraden), die sich in der Steigung und im Ordinatenschnittpunkt unterscheiden. Der Linearfaktor

Mehr

Übungsaufgaben zu linearen Gleichungen und Funktionen117

Übungsaufgaben zu linearen Gleichungen und Funktionen117 Übungsaufgaben zu linearen Gleichungen und Funktionen117 Anmerkung: Die Funktionsgraphen sollen den Zusammenhang nur noch einmal veranschaulichen. Sie sind zur Lösung der Aufgabe nicht erforderlich. Die

Mehr

A2.2 Lineare Funktionen

A2.2 Lineare Funktionen A2.2 Lineare Funktionen Funktionen Beispiel: Ein estiter Strotarif erechnet den Stropreis P aus der Zähleriete M und de Areitspreis aus Kosten K je kwh und Anzahl N der verrauchten Einheiten: P = K N +

Mehr

Lineare Funktion. Wolfgang Kippels 21. März 2011

Lineare Funktion. Wolfgang Kippels 21. März 2011 Lineare Funktion Wolfgang Kippels. März 0 Inhaltsverzeichnis Grundlegende Zusammenhänge. Aufbau der Linearen Funktion......................... Nullstellenbestimmung............................. Schnittpunktbestimmung............................

Mehr

Teil II: Aufgaben zur Differential- und Integralrechnung Ohne Lösungsweg

Teil II: Aufgaben zur Differential- und Integralrechnung Ohne Lösungsweg Staatliche Studienakademie Leipzi Brückenkurs Mathematik Studienrichtun Informatik 1. - 15. September 11 Teil II: Aufaben zur Differential- und Interalrechnun Ohne Lösunswe 1. Aufabe: Bilden Sie die ersten

Mehr

7.1.2 Lineare Funktionen Schnittpunkte mit den Achsen - Lösungen

7.1.2 Lineare Funktionen Schnittpunkte mit den Achsen - Lösungen 7.. Lineare Funktionen Schnittpunkte mit den Achsen - Lösungen. Bestimme von den nachfolgenden Funktionsgleichungen zunächst die Schnittpunkte mit den Achsen; stelle sie danach im Koordinatensystem dar.

Mehr

Gleichung von Winkelhalbierenden

Gleichung von Winkelhalbierenden Gleichn von Winkelhalbierenden Lösnsmethoden z den Afaben:. Welche Gleichnen haben die Winkelhalbierenden zweier eebener Geraden.. Wie teilt eine Winkelhalbierende die Geenseite des Dreiecks? Interessante

Mehr

Mathematik - 1. Semester. folgenden Zahlenpaare die gegebene Gleichung erfüllen:

Mathematik - 1. Semester. folgenden Zahlenpaare die gegebene Gleichung erfüllen: Mathematik -. Semester Wi. Ein Beispiel Lineare Funktionen Gegeben sei die Gleichung y x + 3. Anhand einer Wertetabelle sehen wir; daß die folgenden Zahlenpaare die gegebene Gleichung erfüllen: x 0 6 8

Mehr

Geometrie-Dossier Symmetrie in der Ebene

Geometrie-Dossier Symmetrie in der Ebene Geometrie-oier Symmetrie in der Ebene Name: Inhalt: Symmetrieeienchaft und bbildun: eriffe chenymmetrie und Geradenpieelun rehymmetrie und rehun Punktymmetrie und Punktpieelun Verwendun: iee Geometriedoier

Mehr

s t =. v s t h = gt, t = v t = a v t t =

s t =. v s t h = gt, t = v t = a v t t = Michael Buhlmann Phsik > Mechanik > urf und urfparabel Innerhalb der Mechanik als Teilebiet der Phsik wird unter bestimmten Voraussetzunen earbeitet: Die Beweun eines Körpers im Raums wird zur Beweun eines

Mehr

Lineare Funktion. Wolfgang Kippels 3. November Inhaltsverzeichnis

Lineare Funktion. Wolfgang Kippels 3. November Inhaltsverzeichnis Lineare Funktion Wolfgang Kippels. November 0 Inhaltsverzeichnis Grundlegende Zusammenhänge. Aufbau der Linearen Funktion......................... Nullstellenbestimmung............................. Schnittpunktbestimmung............................

Mehr

Thema 1: Geraden zeichnen Punkte berechnen. Ein Lese- und Übungsheft. 7 Seiten Einführung und Theorie. 22 Seiten Aufgaben mit Lösungen

Thema 1: Geraden zeichnen Punkte berechnen. Ein Lese- und Übungsheft. 7 Seiten Einführung und Theorie. 22 Seiten Aufgaben mit Lösungen Geradengleichungen Thema : Geraden zeichnen Punkte berechnen Ein Lese- und Übungsheft 7 Seiten Einführung und Theorie Seiten Aufgaben mit Lösungen Datei Nr. 000 Stand. Februar 09 INTERNETBIBLIOTHEK FÜR

Mehr

Lineare Funktionen Arbeitsblatt 1

Lineare Funktionen Arbeitsblatt 1 Lineare Funktionen Arbeitsblatt 1 Eine Funktion mit der Gleichung y = m x + b heißt lineare Funktion. Ihr Graph ist eine Gerade mit der Steigung m. Die Gerade schneidet die y-achse im Punkt P(0 b). Man

Mehr

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente:

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente: Inhalt:. Punkte im Koordinatensstem....................................... Funktionen und ihre Schaubilder..................................... Punktprobe und Koordinaten berechnen...............................

Mehr

Technische Mechanik III

Technische Mechanik III epetitoriu Technische echanik III Version 3., 09.0.00 Dr.-In. L. Pannin Institut für Dynaik und Schwinunen Gottfried Wilhel Leibniz Universität Hannover Dieses epetitoriu soll helfen, klassische Aufabentypen

Mehr

1.6 Homomorphismen von Gruppen

1.6 Homomorphismen von Gruppen 16 Homomorphismen von Gruppen 161 Definition Es seien (G, ) und (G, ) zwei Gruppen Eine Abbildun : G G heißt (Gruppen-) Homomorphismus, falls für alle ab, Gilt: (a b) (a) (b) Die obie Gleichun wird Homomorphie-Eienschaft

Mehr

Aufgabensammlung zum Üben Blatt 1

Aufgabensammlung zum Üben Blatt 1 Aufgabensammlung zum Üben Blatt 1 Seite 1 Lineare Funktionen ohne Parameter: 1. Die Gerade g ist durch die Punkte A ( 3 4 ) und B( 2 1 ) festgelegt, die Gerade h durch die Punkte C ( 5 3 ) und D ( -2-2

Mehr

Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV.

Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV. LINEARE FUNKTIONEN heißt Anstieg oder Steigung heißt y-achsenabschnitt Graphen linearer Funktionen sind stets Geraden Konstante Funktionen Spezialfall Graphen sind waagerechte Geraden (parallel zur x-achse)

Mehr

5. Tutorium zur Analysis I für M, LaG und Ph

5. Tutorium zur Analysis I für M, LaG und Ph Fachbereich Mathematik Prof. Dr. K.-H. Neeb Dipl.-Math. Rafaël Dahmen, Dipl.-Math. Stefan Waner 5. Tutorium zur Analysis I für M, LaG und Ph Aufaben und Lösunen Sommersemester 2007 18.5.2007 Definition:

Mehr

Lineare Funktionen. Beispiele: y = 3x 1 y = 2x y = x 3 3. Im Koordinatensystem dargestellt erhalten wir folgende Geraden:

Lineare Funktionen. Beispiele: y = 3x 1 y = 2x y = x 3 3. Im Koordinatensystem dargestellt erhalten wir folgende Geraden: Lineare Funktionen Eine Funktion der Form x mx + b hat als Funktionsgleichung eine Gleichung der Form y = mx + b. Der Graph der Funktion ist eine Gerade mit der Steigung m und dem y-achsenabschnitt b.

Mehr

b) Vorgehen genau wie oben, in diesem Fall hat es einfach 5 Eckpunkte, die man abbilden muss.

b) Vorgehen genau wie oben, in diesem Fall hat es einfach 5 Eckpunkte, die man abbilden muss. Lösunen Geometrie-Dossier Symmetrie in der Ebene Seite 5 Aufaben Achsensymmetrie und Geradenspieelun (Lösunen sind verkleinert ezeichnet) 1 a) Vorehen emäss Theorie: 1. Lotstrecken auf die Symmetrieachse

Mehr

5.3. Abstrakte Anwendungsaufgaben

5.3. Abstrakte Anwendungsaufgaben Aufgabe.. Abstrakte Anwendungsaufgaben In den Raum zwischen der x-achse und dem Graphen von f(x) = x x + soll ein Rechteck möglichst großer Fläche gelegt werden, dessen Ecken auf dem Graphen liegen. Wie

Mehr

2. Klausur zur Theoretischen Physik II

2. Klausur zur Theoretischen Physik II PD Dr. Burkhard Dünwe SS 2006 Dipl.-Phys. Ulf D. Schiller 2. Klausur zur Theoretischen Physik II 22. Juli 2006 Name:............................................................ Matrikelnummer:...................................................

Mehr

Üben. Lineare Funktionen. Lösung. Lineare Funktionen

Üben. Lineare Funktionen. Lösung. Lineare Funktionen Zeichne die drei Graphen jeweils in dasselbe Koordinatensstem und beschreibe, worin sich die Graphen jeweils gleichen und worin sie sich unterscheiden. a) b) f : x x f : x x f f f : x : x : x x x x 0,

Mehr

HTBLA VÖCKLABRUCK STET

HTBLA VÖCKLABRUCK STET HTBLA VÖCKLABRUCK STET Relationen und Funktionen 2 INHALTSVERZEICHNIS 1. RELATIONEN... 3 2. FUNKTIONEN... 4 2.1. LINEARE FUNKTION... 6 Relationen und Funktionen 3 1. RELATIONEN Def.: Eine Relation zwischen

Mehr

Rechnen mit dem Mischungskreuz und der Mischungsgleichung

Rechnen mit dem Mischungskreuz und der Mischungsgleichung Rechnen it de ischunskreuz und der ischunsleichun C1B 1. Basisaufaben 1.1 Welche Voluina einer 0,15-NaCl-sun und einer 0,5-NaCl-sun üssen eischt werden, u 50 einer 0,4-sun herzustellen? 1. us 0,7 Ca(NO

Mehr

6 Bestimmung linearer Funktionen

6 Bestimmung linearer Funktionen 1 Bestimmung linearer Funktionen Um die Funktionsvorschrift einer linearen Funktion zu bestimmen, muss man ihre Steigung ermitteln. Dazu sind entweder Punkte gegeben oder man wählt zwei Punkte P 1 ( 1

Mehr

Graph der linearen Funktion

Graph der linearen Funktion Graph der linearen Funktion Im unten stehenden Diagramm sind die Grafen der Funktionen f und g gezeichnet (a) Stelle die Gleichungen von f und g auf und berechne die Nullstellen der beiden Funktionen (b)

Mehr

Philipp-Melanchthon-Gymnasium Bautzen Lk Mathematik Kl. 11. Schwerpunkt: Aufgaben ohne HM Abitur Sachsen

Philipp-Melanchthon-Gymnasium Bautzen Lk Mathematik Kl. 11. Schwerpunkt: Aufgaben ohne HM Abitur Sachsen Übungen zur Analytischen Abitur 00 Die Punkte A( 0), B( 0) und C(5 0) sind Eckpunkte eines Rechtecks ABCD. Der Punkt S ist die Spitze einer geraden Pyramide mit dem Rechteck ABCD als Grundfläche und der

Mehr

Lineare Funktionen und Funktionenscharen

Lineare Funktionen und Funktionenscharen . Erkläre folgende Begriffe: a) Ursprungsgerade b) Steigung bzw. Steigungsdreieck c) Steigende u. fallende Gerade d) Geradenbüschel, Parallelenschar e) y- Achsenabschnitt f) Lineare Funktion g) Normalform

Mehr

Kreise Winkel Drehung

Kreise Winkel Drehung Kreise Winkel Drehun.) Der Kreis: ufabe: Zeichne in ein Koordinatensystem folende Punkte ein: M(4/) ; (/) ; (6/8) ; D(/8) ; E(6/) 9 8 D Durchmesser (d) 7 6 M Sehne (s) 4 Radius (r) E - 4 6 7 8 9 a.) Zeichne

Mehr

Download. Mathe an Stationen Umgang mit Zirkel. Grundkonstruktionen Zirkel. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Download. Mathe an Stationen Umgang mit Zirkel. Grundkonstruktionen Zirkel. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel: Download Marco ettner, Erik Dines Mathe an Stationen Uman mit Zirkel Zirkel Downloadauszu aus dem Oriinaltitel: Mathe an Stationen Uman mit Zirkel Zirkel Dieser Download ist ein uszu aus dem Oriinaltitel

Mehr

Abstand Punkt/Gerade

Abstand Punkt/Gerade Abstan unkt/gerae. Geeben sin er unkt un ie Gerae : x = +λ. Gesucht ist er Abstan von zu. 2. ür ein λ ilt: +λ O,.h. (+λ O = x O Hieraus lässt sich λ berechnen, allemein: λ = ( O λ einesetzt in ie Geraenleichun

Mehr

Ein Exkurs in analytischer Geometrie des Raumes anhand Euklidischer Lehrsätze

Ein Exkurs in analytischer Geometrie des Raumes anhand Euklidischer Lehrsätze Ein Exkurs in analytischer Geometrie des Raumes anhand Euklidischer Lehrsätze Im Koordinatenkreuz mit 3 Koordinatenachsen gilt: Ein Punkt P hat die Koordinaten P: (x; y; z). Die Größe OP ist die Entfernung

Mehr

5 Die Gerade g 1 hat die Gleichung 6: y = 1 }

5 Die Gerade g 1 hat die Gleichung 6: y = 1 } Geraden Schülerbuchseite 199 01 5 Die Gerade g 1 hat die Gleichung 6: = 1 }. Die Gerade g hat die Gleichung : = 1 }. Die Gerade g hat die Gleichung 1: =. Die Gerade g hat die Gleichung : =. Die Gerade

Mehr

Übungen zu Kurvenscharen

Übungen zu Kurvenscharen Übungen zu Kurvenscharen. Gegeben ist die Geradenschar g t : = (t ) ( t) + 9 (t 9) mit D(g t ) = R, t R. a) Zeichnen Sie die Graphen der Funktionen g und g in ein Koordinatensstem. b) Geben Sie die Schnittpunkte

Mehr

O01. Linsen und Linsensysteme

O01. Linsen und Linsensysteme O0 Linsen und Linsensysteme In optischen Systemen spielen Linsen eine zentrale Rolle. In diesem Versuch werden Verahren zur Bestimmun der Brennweite und der Hauptebenen von Linsen und Linsensystemen vorestellt..

Mehr

( ) (L3) ( ) ( ) Gymnasium Neutraubling: Grundwissen Mathematik 9. Jahrgangsstufe. Reelle Zahlen. a ist diejenige nicht negative Zahl, die quadriert a

( ) (L3) ( ) ( ) Gymnasium Neutraubling: Grundwissen Mathematik 9. Jahrgangsstufe. Reelle Zahlen. a ist diejenige nicht negative Zahl, die quadriert a Gymnasium Neutaublin: Gundissen Mathematik. Jahansstufe Wissen und Können Reelle Zahlen Iationale Zahlen sind Zahlen, die nicht als Buch (ationale Zahl) dastellba sind. Eine iationale Zahl hat eine unendliche

Mehr

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz wwwmathe-aufgabencom September 6 Abituraufgaben (Haupttermin) Aufgabe

Mehr

Definitionen des Flächeninhaltsbegriffs werden immer mehr verfeinert, durch den Messprozess festgelegt.

Definitionen des Flächeninhaltsbegriffs werden immer mehr verfeinert, durch den Messprozess festgelegt. Flächeninhalt 1 Flächeninhalt 2 Kapitel 6: Der Flächeninhalt Flächeninhalt einer Fiur soll etwas über deren Größe aussaen Flächeninhaltsberiff intuitiv irendwie klar, ab der Grundschule durch Ausleen von

Mehr

Lineare Gleichungssysteme mit 2 Variablen

Lineare Gleichungssysteme mit 2 Variablen Lineare Gleichungssysteme mit 2 Variablen Lineare Gleichungssysteme mit 2 Variablen Einzelne lineare Gleichungen mit zwei Variablen Bis jetzt haben wir nur lineare Gleichungen mit einer Unbekannten (x)

Mehr

Lösungen zu Übungsblatt 3

Lösungen zu Übungsblatt 3 PN1 Einführun in die Physik 1 für Chemiker und Bioloen Prof. J. Lipfert WS 2017/18 Übunsblatt 3 Lösunen zu Übunsblatt 3 Aufabe 1 Paris-Geschütz. a) Unter welchem Abschusswinkel θ hat das Geschütz seine

Mehr

2) Welche Zahl muss man mit 7 multiplizieren, damit man 56 erhält? Schreib eine Gleichung an! Wie heißt die Zahl?

2) Welche Zahl muss man mit 7 multiplizieren, damit man 56 erhält? Schreib eine Gleichung an! Wie heißt die Zahl? 1) Welche Gleichun ehört zum Text? Multipliziert man eine Zahl z mit 3 und zählt 15 dazu, so erhält man 27. a) z : 3 + 15 = 27 b) z. 3 + 15 = 27 c) z. 15 + 3 = 27 d) z. 3 = 27-15 2) Welche Zahl muss man

Mehr

0,6 m. 0,4m. Gegeben seien die obigen drei auf den Balken wirkenden Kräfte mit:

0,6 m. 0,4m. Gegeben seien die obigen drei auf den Balken wirkenden Kräfte mit: Kurs: Statik Thema: Resultierende bestimmen Aufgabe 1) Wo liegt bei der Berechnung der Resultierenden der Unterschied zwischen Kräften mit einem gemeinsamen Angriffspunkt und Kräften mit unterschiedlichen

Mehr

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9.

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9. Koordinatengeometrie Aufgabe 1 Gegeben sind der Punkt P (-1; 9) sowie die Geraden g: 3x y + 6 = 0 und h: x + 4y 8 = 0. a) Die Geraden g und h schneiden einander im Punkt S. Berechnen Sie die exakten Koordinaten

Mehr

Mathematik Lineare Gleichungssysteme Grundwissen und Übungen

Mathematik Lineare Gleichungssysteme Grundwissen und Übungen Mathematik Lineare Gleichungsssteme Grundwissen und Übungen Stefan Gärtner 00-00 Gr Mathematik Lineare Gleichungsssteme Seite Lineare Gleichung: a + b c ( a,b R) ist eine lineare Gleichung mit zwei Variablen

Mehr

Abitur 2011 G8 Musterabitur Mathematik Geometrie VI

Abitur 2011 G8 Musterabitur Mathematik Geometrie VI Seite http://www.abiturloesung.de/ Seite Abitur G8 Musterabitur Mathematik Geometrie VI In einem kartesischen Koordinatensystem ist ein Würfel W der Kantenlänge gegeben. Die Eckpunkte G ( ) und D ( ) legen

Mehr

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient. Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m

Mehr

Coaching für den Wettbewerb

Coaching für den Wettbewerb 1. Bayreuther Ta der Mathematik 08. Juli 006 Klassenstufen 7-8 Aufabe 1: Die Zwilline Peter und Michael besuchen dieselbe Klasse. Beide verlassen morens leichzeiti das Haus und benutzen denselben We zur

Mehr