MATHEMATIK 1 LINEARE FUNKTION
|
|
|
- Alfred Wagner
- vor 9 Jahren
- Abrufe
Transkript
1 PS - ATHEATIK P. Rendulić 007 LINEARE FUNKTION ATHEATIK LINEARE FUNKTION. Geradenleichun Eine Geradenleichun ist die atheatische Gleichun die eine Gerade i kartesischen Koordinatensste eindeuti beschreibt. O ist der Koordinatenursrun. Die horizontale Koordinatenachse bezeichnet an als -Achse. Die vertikale Koordinatenachse bezeichnet an als - Achse. Die nebenstehende Abbildun zeit eine Gerade die durch Punkte A und B eht. In der Geoetrie nach Euklid kann durch zwei unterschiedliche Punkte ier enau eine Gerade konstruiert werden. A O B. Zur -Achse arallele Geraden Geraden die arallel zur -Achse verlaufen ehorchen der alleeinen Gleichun c wobei c eine reale Zahl ist. Für c 0 ilt die Gleichun 0. Diese Gleichun beschreibt eine Gerade die auf der -Achse liet. Für c > 0 liet die Gerade rechts von der -Achse Beisiel: ). Für c < 0 liet die Gerade links von der -Achse Beisiel: ). - 0 O. Zur -Achse arallele Geraden Geraden die arallel zur -Achse verlaufen ehorchen der alleeinen Gleichun c wobei c eine reale Zahl ist. Für c 0 ilt die Gleichun 0. Diese Gleichun beschreibt eine Gerade die auf der -Achse liet. Für c > 0 liet die Gerade über der - Achse Beisiel: ). Für c < 0 liet die Gerade unter der - Achse Beisiel: ). 0 O -
2 PS - ATHEATIK P. Rendulić 007 LINEARE FUNKTION. Alleeine Geradenleichun I alleeinen Fall kann eine Gerade durch die lineare Funktion beschrieben werden: + und sind die Paraeter der Gerade. an bezeichnet sie folenderaßen: ist die Steiun der Gerade. Sie entsricht der senkrechten Kathete des Steiunsdreiecks dessen waaerechte Kathete ist. Wird die waaerechte Kathete u das -fache verrößert auf den Wert ) so verrößert sich auch die senkrechte Kathete u das -fache auf den Wert ). O ist die Verschiebun der Geraden entlan der -Achse relativ zu Koordinatenursrun O. wird auch als Achsenabschnitt bezeichnet. Ein Punkt R der auf der Gerade liet und dessen -Koordinate beträt besitzt als - Koordinate den Wert + siehe Fiur). und sind daher die Koordinaten aller Punkte welche die Geradenleichun erfüllen. Diese Punkte lieen soit auf der Geraden. 5 R).. Beisiel Die Steiun der Gerade beträt und der Achsenabschnitt. I Beisiel liet der Punkt R 5) auf der Geraden denn die Geradenleichun ist wahr: Einfluss der Paraeter der Gerade auf den Grahen > O 0<< 0 <0 >0 0 O <0 Einfluss der Steiun Einfluss des Achsenabschnitts Für > 0 steit die Gerade diaonal von links unten nach rechts oben). Für 0 ist die Gerade arallel zur -Achse. Für < 0 fällt die Gerade diaonal von links oben nach rechts unten).
3 PS - ATHEATIK P. Rendulić 007 LINEARE FUNKTION Für > 0 schneidet die Gerade die -Achse i ositiven Bereich. Für 0 ist die Gerade eine Ursrunserade sie eht durch den Koordinatenursrun). Für < 0 schneidet die Gerade die -Achse i neativen Bereich..6 Bestiun der Steiun einer Gerade -Punktethode) Die Steiun einer Geraden kann durch Bildun des Differenzquotienten bestit werden. Dazu wählt an beliebie verschiedene Punkte R ) und S ) der Geraden und berechnet den Quotienten I nebenstehenden Beisiel wurden die Punkte R - -) und S ) ewählt. Die Steiun der Gerade beträt deentsrechend ) 075 ) R ) O S) Anerkun: Für eine senkrechte Gerade arallel zur -Achse) tendiert die Steiun een Unendlich..7 Parallele Geraden Zwei Geraden und sind arallel zueinander wenn sie in eine beliebien kartesischen Koordinatensste die leiche Steiun besitzen..8 Schnittunkt von Geraden Zwei beliebie Geraden und die nicht arallel zueinander sind besitzen einen eeinsaen Schnittunkt..8. Bestiun der Koordinaten des Schnittunkts Die Koordinaten und des Schnittunkts können leicht bestit werden. Die Geraden und werden durch die folenden Funktionen beschrieben: a + a + Da der Schnittunkt ein Punkt beider Geraden ist können beide Funktionen leich esetzt werden. Es ilt für : O )
4 PS - ATHEATIK P. Rendulić 007 LINEARE FUNKTION + + ) Deentsrechend ist die -Koordinate des Schnittunkts bekannt. Die -Koordinate kann bestit werden inde in die Geradenleichun von einesetzt wird: + + ) + + Die Koordinaten des Schnittunkts sind daher: I ezeiten Beisiel werden die Geraden un durch diese Funktionen beschrieben: + a a Daher besitzt der Schnittunkt die Koordinaten: ) ) ) ) ) 8 ) Dies sind in der Tat die Koordinaten die aus der Grahik bestit werden können.
5 PS - ATHEATIK P. Rendulić 007 LINEARE FUNKTION 5.8. Praktische Anwendun: Wahl des richtien Telefonabonneents Ein obilanbieter hat die folenden zwei Abonneents i Anebot: Abonneent Abonneent Grundebühr keine 5 / onat Preis ro in. 0 / inute 007 / inute Während wievielen inuten uss an ro onat indestens telefonieren dait das Abonneent it Grundebühr ünstier wird als das Abonneent ohne Grundebühr? Das Proble kann leicht elöst werden inde an erkennt dass der Preis ro inute für die beiden Abonneents durch die folenden linearen Funktionen beschrieben werden kann: steht für die a onatsende zu zahlende Geldsue entsricht der Zeitdauer in inuten während derer telefoniert wurde. Für ein ewisse Zeitdauer kosten beide Abonneents leich viel. U diese zu bestien werden die Preise und leich esetzt und die resultierende Gleichun wird nach elöst: ) inuten 005 it de Abonneent it Grundebühr telefoniert an ünstier wenn an onatlich ehr als 00 inuten telefoniert. Darunter ist das Abonneent ohne Grundebühr ünstier. Die nebenstehende Grahik zeit den Preisverlauf der beiden Abonneents. Für 00 inuten schneiden sich beide Geraden. Preis in Euro) it Grundebühr 8 6 ohne Grundebühr Zeitdauer in inuten)
6 PS - ATHEATIK P. Rendulić 007 LINEARE FUNKTION 6.9 Aufaben.9. Geraden zeichnen Zeichne die eebenen Geraden in ein eeinetes Koordinatensste!
7 PS - ATHEATIK P. Rendulić 007 LINEARE FUNKTION 7.9. Bestiun der Steiun Die folende Grahik zeit den linearen Zusaenhan zwischen hsikalischen Größen. Bestie die Steiun der Geraden! Kühlschränke Bei Kühlschrankkauf bieten sich die folenden odelle an: Kühlschrank Enerieklasse Preis in ) Stroverbrauch in kwh / Jahr) odell 50l) A 95 0 odell 50l) A odell 50l) A Stroreis: 05 / kwh Berechne nach wie vielen Jahren sich der Kauf des teureren jedoch strosarenden Geräts in Bezu zu den billieren Geräten aortisiert hat!
MATHEMATIK 1 LINEARE FUNKTION
PS - ATHEATIK P. Rendulić 009 LINEARE FUNKTION ATHEATIK LINEARE FUNKTION. Geradenleichun Eine Geradenleichun ist die atheatische Gleichun die eine Gerade i kartesischen Koordinatensste eindeuti beschreibt.
1. Lineare Funktionen
Grundwissen zu den Geraden. Lineare Funktionen Geraden sind die Graphen linearer Funktionen. Dazu müssen wir zuerst den Beriff Funktion und dann den Beriff linear klären.. Funktion Eine Funktion ist eine
(0 4) 4 :( 2) Bestimmung von Geradengleichungen Aufgabe 1
Bestimmun von Geradenleichunen Auabe Geeben ist die Geradenleichun (x) = -x +. Gesucht sind die Schnittpunkte mit den Koordinatenachsen. Lösun: Mit der y-achse (x=0): S y (0 ) Mit der x-achse (y=0): x
Affine (lineare) Funktionen und Funktionenscharen
Aine (lineare) Funktionen Funktionenscharen 1. Erkläre olende Berie: a) Ursprunserade b) Steiun bzw. Steiunsdreieck c) steiende u. allende erade d) eradenbüschel, Parallelenschar e) y-achsenabschnitt )
Reiner Winter. Analysis. Aufgaben mit Musterlösungen
Reiner Winter Analysis Aufaben mit Musterlösunen. Aufabe: Geeben sei die Funktion ƒ(x) 5 x5 4 x mit x IR +... Untersuchen Sie die Funktion ƒ(x) auf Symmetrie, Nullstellen, Extrempunkte und Wendepunkte.
Aufgabe 11: Windanlage
Zentrale schritliche Abiturprüunen im Fach Mathematik Auabe 11: Windanlae Das Foto zeit einen Darrieus-Windenerie-Konverter. Der Wind setzt die drei Blätter um die vertikale Achse in Drehun; die Blätter
Lineare Funktionen. Lineare Funktionen. a) Bestimmen Sie die Funktionsgleichung der linearen Funktion g, die durch die Punkte verläuft.
Schuljahr 07-08 AHR Schuljahr 07-08 AHR a) Bestimmen Sie die Funktionsleichun der linearen Funktion f, deren Graph durch den Punkt P / ) verläuft und die Steiun m, 7hat Die Funktion f hat die allemeine
Bestimmung der Molaren Masse nach Dumas (MOL) Gruppe 8 Simone Lingitz, Sebastian Jakob
Bestiun der Molaren Masse nach Duas (MO Gruppe 8 Sione initz, Sebastian Jakob 1. Grundlaen In diese ersuch wird nach de erfahren von Duas die Molare Masse von hlorofor bestit. Dazu wird anenoen, daß hlorofor
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 12 WINKELBERECHNUNGEN. a) WINKEL ZWISCHEN ZWEI GERADEN
ARBEITSBLATT 12 WINKELBERECHNUNGEN a) WINKEL ZWISCHEN ZWEI GERADEN Diese Formel haben wir a bereits kennenelernt: Satz: Der Winkel zwischen zwei Vektoren a und b, berechnet sich nach der Formel: a b cos
Download. Hausaufgaben: Lineare Funktionen und Gleichungen. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:
Download Otto Mar Hausaufgaben: Lineare Funktionen und Gleichungen Üben in drei Differenzierungsstufen Downloadauszug aus dem Originaltitel: Hausaufgaben: Lineare Funktionen und Gleichungen Üben in drei
2. Klausur Physik Leistungskurs Klasse Dauer: 90 min
. Klusur Physik Leistunskurs Klsse 11 8. 1. 1 Duer: 9 in 1. Wird ein Dch neu einedeckt, können die Dchzieel it eine Krn uf ds Dch befördert werden. Dzu brint der Motor eine bestite Krft uf. Wie roß ist
6. Analytische Geometrie : Geraden in der Ebene
M 6. Analtische Geometrie : Geraden in der Ebene 6.. Vektorielle Geradengleichung Eine Gerade ist durch einen Punkt A und einen Richtungsvektor r eindeutig bestimmt. Durch die Einführung eines Parameters
Lineare Funktionen. Das rechtwinklige (kartesische) Koordinatensystem. Funktionen
Das rechtwinklige (kartesische) Koordinatensystem Funktionen Funktion: Eine Funktion ist eine eindeutige Zuordnung. Jedem x D wird genau eine reelle Zahl zugeordnet. Schreibweise: Funktion: f: x f (x)
19 Aufstellen von Funktionstermen
9 Austellen von Funktionstermen 9 Austellen von Funktionstermen Kert man die Kurvendiskussion um, so ordert man jetzt, dass aus voreebenen Eienscaten eines Funktionsraen die entsrecende Funktion eunden
Lineare Funktion Eigenschaften von linearen Funktionen Übungen Bearbeite zu jeder der gegebenen Funktionen die Fragen:
Lineare Funktion Eigenschaften von linearen Funktionen Übungen - 3 2.0 Bearbeite zu jeder der gegebenen Funktionen die Fragen: steigt oder fällt der Graph der Funktion? schneidet der Graph die y-achse
K l a u s u r N r. 2 Gk Ph 11
2.12.2008 K l a u u r N r. 2 Gk Ph 11 Aufabe 1 Ein Fahrzeu durchfährt eine überhöhte Kurve, die eenüber der Horizontalen einen Winkel von 34 hat. Da Fahrzeu wird dabei mit der Kraft F e = 18000 N enkrecht
Zeichnen Sie die Geraden mit den Gleichungen: a) y = 4 x + 1; b) 2y + 3x = 7; c) f(x) = 1 x 3 ; d) x -2 x + 3
Zusättzlliiche Übungen zu lliinearren Funkttiionen Aufgabe Zeichnen Sie die Geraden mit den Gleichungen: a) y = x + ; b) y + x = ; c) f(x) = x ; d) x - x + e) + =. Was fällt bei der Gerade e) auf? Aufgabe
Funktionen gra sch darstellen
Arbeitsblätter zum Ausdrucken von sofatutor.com Funktionen gra sch darstellen = 2 + 8 Erkläre, wie du den Graphen der Funktion zeichnest. 2 Bestimme, ob der Weg des Meteoriten zu einer Funktion gehört.
Über die Bedeutung der zwei Zahlen m und x 1 für das Aussehen des Graphen wird an anderer Stelle informiert.
Lineare Funktionen - Term - Grundwissen Woran erkennt man, ob ein Funktionsterm zu einer Linearen Funktion gehört? oder Wie kann der Funktionsterm einer Linearen Funktion aussehen? Der Funktionsterm einer
a) b) c) d) e) f) g) h) i) j) k) l) s) t) u) v) w) x) y) z)
Aufabe 1: a) b) c) d) e) f) ) h) i) j) k) l) m) n) o) p) q) r) s) t) u) v) w) x) y) z) a) Welche der Fiuren a) z) ist achsensymmetrisch? Trae die Symmetrieachsen ein. b) Gib an, welche der Fiuren a) z)
Geradenspiegelung: Diese Abbildung haben wir schon untersucht. Punktspiegelung: Die beiden Spiegelungsachsen schneiden sich senkrecht.
17 25 Die 5 Typen on Isometrien Geradenspieelun: Diese Abbildun haben wir schon untersucht unktspieelun: Die beiden Spieelunsachsen schneiden sich senkrecht Rotation (Drehun): Die beiden Spieelunsachsen
Auswertung des Versuchs P1-31,40,41 : Geometrische Optik
Auswertun des Versuchs P1-31,40,41 : Geometrische Optik Marc Ganzhorn Tobias Großmann Aufabe 1.1: Brennweite einer dünnen Sammellinse Mit Hilfe eines Maßstabes und eines Schirmes haben wir die Brennweite
Manipulation am Funktionsgrahen
Lösun: Manipulation am Funktionsrahen 1 a) Zeichnen Sie den Graphen der Funktion x) = x 3 x b) Skizzieren Sie die Graphen der olenden Funktionen in das Koordinatensystem von a): i x) = x 3 x+ ii x) = x
Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente:
Inhalt: Punkte im Koordinatensstem Funktionen und ihre Schaubilder Punktprobe und Koordinaten berechnen Proportionale Funktionen 5 Steigung und Steigungsdreieck 6 Die Funktion = m + b 7 Funktionsgleichungen
Einstieg in die Koordinatengeometrie - lineare Funktionen -
Einstie in die Koordinateneoetrie - lineare Funktionen - Was ist eine Funktion? Definition: Funktion Eine Zuordnun f: D}, D eißt Funktion, wenn sie jede Eleent xd enau eine reelle Zal y zuordnet. f(x)=y
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Funktionen an der Berufsschule: Übungsaufgaben
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lineare Funktionen an der Berufsschule: Übungsaufgaben Das komplette Material finden Sie hier: School-Scout.de SCHOOL-SCOUT Übungsaufgaben:
Zusammengesetzte Übungsaufgaben lineare Funktionen
Zusammengesetzte Übungsaufgaben lineare Funktionen Nr Aufgabe Lösung 1 Gegeben ist die Funktion g mit g ( x ) = 3 x + 9 a) Geben Sie die Steigung und den y- Achsenabschnitt an. (Begründung) c) Bestimmen
Download. Mathe an Stationen Umgang mit Geodreieck. Einführung Geodreieck. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:
Download Marco Bettner, Erik Dines Mathe an Stationen Uman mit Geodreieck Einführun Geodreieck Downloadauszu aus dem Oriinaltitel: Mathe an Stationen Uman mit Geodreieck Einführun Geodreieck Dieser Download
Klasse 9: Lösungen. Der Term ist ein Quotient. Der Dividend ist eine Differenz mit dem Minuenden
. Beschreibe den Ter : unter Verwendung der atheatischen Fachbegriffe. Berechne den Terwert nachvollziehbar ohne Taschenrechner und erkläre dabei, was an unter Erweitern und Kürzen eines Bruches versteht.
Dichte besitzt Messing bei einer Temperatur von 35 C? (1 cm³ Messing vergrößert seinen Rauminhalt beim Erwärmen um 1 K um 0, cm³).
Aufaben Länen- und oluenausdehnun 0. Mit eine tahlaßband, das für eine Teperatur von 0 eeicht ist, wird bei einer Teperatur von 5 die Läne der eite eines Gartens eessen. Welche Aussae ist richti? a) Die
Schmuckstücke. Ein Goldschmied fertigt Schmuckstücke nach kreisrunden Designvorlagen.
Schmuckstücke Aufabennummer: B_278 Technoloieeinsatz: mölich erforderlich T Ein Goldschmied fertit Schmuckstücke nach kreisrunden Desinvorlaen. a) Die kreisrunde Desinvorlae für einen Ohrrin wird durch
TK II Mathematik 2. Feststellungsprüfung Nachprüfung Arbeitszeit: 120 Minuten
. Feststellungsprüfung Nachprüfung 19.0.005 1. Untersuchen Sie die Funktion p ( ) = + 16 auf Monotonie und geben Sie auf Grund dieses Ergebnisses die Lage des Scheitels an. (10. Der Graph einer ganz rationalen
Ergänzungsübungen zur Vorlesung Technische Mechanik 3
Eränzunsübunen zur Vorlesun Aufabe 1: Eine Welle bestehe aus zwei identischen Kreiskeeln der Läne L und der Masse K und eine Zylinder der Höhe H it der Masse Z. Bestien Sie das Massenträheitsoent I A.
1. Nach-Klausur - LK Physik Sporenberg - Q1/
. Nach-Klausur - LK Physik Sporenber - / 0.04.03.Aufabe: Geeben ist eine flache Rechteckspule mit n 00 indunen, der Höhe h 0 cm, der Breite b 3,0 cm und den Anschlüssen und (siehe Skizze). Diese Spule
MATHE KLASSE 11. Funktionen Extremwerte lineare Funktionen WOLFGANG STILLER
MATHE KLASSE Funktionen Etremwerte lineare Funktionen FUNKTION Def.: Funktionen sind eindeutige Zuordnungen. (Mathe eine Menge X [Definitionsbereich] wird einer Menge Y [Wertebereich] zugeordnet. Jedem
Dr. Jürgen Senger MATHEMATIK. Grundlagen für Ökonomen
Dr. Jürgen Senger MATHEMATIK Grundlagen für Ökonomen ÜBUNG.. LÖSUNGEN. Es handelt sich um lineare Funktionen (Geraden), die sich in der Steigung und im Ordinatenschnittpunkt unterscheiden. Der Linearfaktor
Übungsaufgaben zu linearen Gleichungen und Funktionen117
Übungsaufgaben zu linearen Gleichungen und Funktionen117 Anmerkung: Die Funktionsgraphen sollen den Zusammenhang nur noch einmal veranschaulichen. Sie sind zur Lösung der Aufgabe nicht erforderlich. Die
A2.2 Lineare Funktionen
A2.2 Lineare Funktionen Funktionen Beispiel: Ein estiter Strotarif erechnet den Stropreis P aus der Zähleriete M und de Areitspreis aus Kosten K je kwh und Anzahl N der verrauchten Einheiten: P = K N +
Lineare Funktion. Wolfgang Kippels 21. März 2011
Lineare Funktion Wolfgang Kippels. März 0 Inhaltsverzeichnis Grundlegende Zusammenhänge. Aufbau der Linearen Funktion......................... Nullstellenbestimmung............................. Schnittpunktbestimmung............................
Teil II: Aufgaben zur Differential- und Integralrechnung Ohne Lösungsweg
Staatliche Studienakademie Leipzi Brückenkurs Mathematik Studienrichtun Informatik 1. - 15. September 11 Teil II: Aufaben zur Differential- und Interalrechnun Ohne Lösunswe 1. Aufabe: Bilden Sie die ersten
7.1.2 Lineare Funktionen Schnittpunkte mit den Achsen - Lösungen
7.. Lineare Funktionen Schnittpunkte mit den Achsen - Lösungen. Bestimme von den nachfolgenden Funktionsgleichungen zunächst die Schnittpunkte mit den Achsen; stelle sie danach im Koordinatensystem dar.
Gleichung von Winkelhalbierenden
Gleichn von Winkelhalbierenden Lösnsmethoden z den Afaben:. Welche Gleichnen haben die Winkelhalbierenden zweier eebener Geraden.. Wie teilt eine Winkelhalbierende die Geenseite des Dreiecks? Interessante
Mathematik - 1. Semester. folgenden Zahlenpaare die gegebene Gleichung erfüllen:
Mathematik -. Semester Wi. Ein Beispiel Lineare Funktionen Gegeben sei die Gleichung y x + 3. Anhand einer Wertetabelle sehen wir; daß die folgenden Zahlenpaare die gegebene Gleichung erfüllen: x 0 6 8
Geometrie-Dossier Symmetrie in der Ebene
Geometrie-oier Symmetrie in der Ebene Name: Inhalt: Symmetrieeienchaft und bbildun: eriffe chenymmetrie und Geradenpieelun rehymmetrie und rehun Punktymmetrie und Punktpieelun Verwendun: iee Geometriedoier
s t =. v s t h = gt, t = v t = a v t t =
Michael Buhlmann Phsik > Mechanik > urf und urfparabel Innerhalb der Mechanik als Teilebiet der Phsik wird unter bestimmten Voraussetzunen earbeitet: Die Beweun eines Körpers im Raums wird zur Beweun eines
Lineare Funktion. Wolfgang Kippels 3. November Inhaltsverzeichnis
Lineare Funktion Wolfgang Kippels. November 0 Inhaltsverzeichnis Grundlegende Zusammenhänge. Aufbau der Linearen Funktion......................... Nullstellenbestimmung............................. Schnittpunktbestimmung............................
Thema 1: Geraden zeichnen Punkte berechnen. Ein Lese- und Übungsheft. 7 Seiten Einführung und Theorie. 22 Seiten Aufgaben mit Lösungen
Geradengleichungen Thema : Geraden zeichnen Punkte berechnen Ein Lese- und Übungsheft 7 Seiten Einführung und Theorie Seiten Aufgaben mit Lösungen Datei Nr. 000 Stand. Februar 09 INTERNETBIBLIOTHEK FÜR
Lineare Funktionen Arbeitsblatt 1
Lineare Funktionen Arbeitsblatt 1 Eine Funktion mit der Gleichung y = m x + b heißt lineare Funktion. Ihr Graph ist eine Gerade mit der Steigung m. Die Gerade schneidet die y-achse im Punkt P(0 b). Man
Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente:
Inhalt:. Punkte im Koordinatensstem....................................... Funktionen und ihre Schaubilder..................................... Punktprobe und Koordinaten berechnen...............................
Technische Mechanik III
epetitoriu Technische echanik III Version 3., 09.0.00 Dr.-In. L. Pannin Institut für Dynaik und Schwinunen Gottfried Wilhel Leibniz Universität Hannover Dieses epetitoriu soll helfen, klassische Aufabentypen
1.6 Homomorphismen von Gruppen
16 Homomorphismen von Gruppen 161 Definition Es seien (G, ) und (G, ) zwei Gruppen Eine Abbildun : G G heißt (Gruppen-) Homomorphismus, falls für alle ab, Gilt: (a b) (a) (b) Die obie Gleichun wird Homomorphie-Eienschaft
Aufgabensammlung zum Üben Blatt 1
Aufgabensammlung zum Üben Blatt 1 Seite 1 Lineare Funktionen ohne Parameter: 1. Die Gerade g ist durch die Punkte A ( 3 4 ) und B( 2 1 ) festgelegt, die Gerade h durch die Punkte C ( 5 3 ) und D ( -2-2
Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV.
LINEARE FUNKTIONEN heißt Anstieg oder Steigung heißt y-achsenabschnitt Graphen linearer Funktionen sind stets Geraden Konstante Funktionen Spezialfall Graphen sind waagerechte Geraden (parallel zur x-achse)
5. Tutorium zur Analysis I für M, LaG und Ph
Fachbereich Mathematik Prof. Dr. K.-H. Neeb Dipl.-Math. Rafaël Dahmen, Dipl.-Math. Stefan Waner 5. Tutorium zur Analysis I für M, LaG und Ph Aufaben und Lösunen Sommersemester 2007 18.5.2007 Definition:
Lineare Funktionen. Beispiele: y = 3x 1 y = 2x y = x 3 3. Im Koordinatensystem dargestellt erhalten wir folgende Geraden:
Lineare Funktionen Eine Funktion der Form x mx + b hat als Funktionsgleichung eine Gleichung der Form y = mx + b. Der Graph der Funktion ist eine Gerade mit der Steigung m und dem y-achsenabschnitt b.
b) Vorgehen genau wie oben, in diesem Fall hat es einfach 5 Eckpunkte, die man abbilden muss.
Lösunen Geometrie-Dossier Symmetrie in der Ebene Seite 5 Aufaben Achsensymmetrie und Geradenspieelun (Lösunen sind verkleinert ezeichnet) 1 a) Vorehen emäss Theorie: 1. Lotstrecken auf die Symmetrieachse
5.3. Abstrakte Anwendungsaufgaben
Aufgabe.. Abstrakte Anwendungsaufgaben In den Raum zwischen der x-achse und dem Graphen von f(x) = x x + soll ein Rechteck möglichst großer Fläche gelegt werden, dessen Ecken auf dem Graphen liegen. Wie
2. Klausur zur Theoretischen Physik II
PD Dr. Burkhard Dünwe SS 2006 Dipl.-Phys. Ulf D. Schiller 2. Klausur zur Theoretischen Physik II 22. Juli 2006 Name:............................................................ Matrikelnummer:...................................................
Üben. Lineare Funktionen. Lösung. Lineare Funktionen
Zeichne die drei Graphen jeweils in dasselbe Koordinatensstem und beschreibe, worin sich die Graphen jeweils gleichen und worin sie sich unterscheiden. a) b) f : x x f : x x f f f : x : x : x x x x 0,
HTBLA VÖCKLABRUCK STET
HTBLA VÖCKLABRUCK STET Relationen und Funktionen 2 INHALTSVERZEICHNIS 1. RELATIONEN... 3 2. FUNKTIONEN... 4 2.1. LINEARE FUNKTION... 6 Relationen und Funktionen 3 1. RELATIONEN Def.: Eine Relation zwischen
Rechnen mit dem Mischungskreuz und der Mischungsgleichung
Rechnen it de ischunskreuz und der ischunsleichun C1B 1. Basisaufaben 1.1 Welche Voluina einer 0,15-NaCl-sun und einer 0,5-NaCl-sun üssen eischt werden, u 50 einer 0,4-sun herzustellen? 1. us 0,7 Ca(NO
6 Bestimmung linearer Funktionen
1 Bestimmung linearer Funktionen Um die Funktionsvorschrift einer linearen Funktion zu bestimmen, muss man ihre Steigung ermitteln. Dazu sind entweder Punkte gegeben oder man wählt zwei Punkte P 1 ( 1
Graph der linearen Funktion
Graph der linearen Funktion Im unten stehenden Diagramm sind die Grafen der Funktionen f und g gezeichnet (a) Stelle die Gleichungen von f und g auf und berechne die Nullstellen der beiden Funktionen (b)
Philipp-Melanchthon-Gymnasium Bautzen Lk Mathematik Kl. 11. Schwerpunkt: Aufgaben ohne HM Abitur Sachsen
Übungen zur Analytischen Abitur 00 Die Punkte A( 0), B( 0) und C(5 0) sind Eckpunkte eines Rechtecks ABCD. Der Punkt S ist die Spitze einer geraden Pyramide mit dem Rechteck ABCD als Grundfläche und der
Lineare Funktionen und Funktionenscharen
. Erkläre folgende Begriffe: a) Ursprungsgerade b) Steigung bzw. Steigungsdreieck c) Steigende u. fallende Gerade d) Geradenbüschel, Parallelenschar e) y- Achsenabschnitt f) Lineare Funktion g) Normalform
Kreise Winkel Drehung
Kreise Winkel Drehun.) Der Kreis: ufabe: Zeichne in ein Koordinatensystem folende Punkte ein: M(4/) ; (/) ; (6/8) ; D(/8) ; E(6/) 9 8 D Durchmesser (d) 7 6 M Sehne (s) 4 Radius (r) E - 4 6 7 8 9 a.) Zeichne
Download. Mathe an Stationen Umgang mit Zirkel. Grundkonstruktionen Zirkel. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:
Download Marco ettner, Erik Dines Mathe an Stationen Uman mit Zirkel Zirkel Downloadauszu aus dem Oriinaltitel: Mathe an Stationen Uman mit Zirkel Zirkel Dieser Download ist ein uszu aus dem Oriinaltitel
Abstand Punkt/Gerade
Abstan unkt/gerae. Geeben sin er unkt un ie Gerae : x = +λ. Gesucht ist er Abstan von zu. 2. ür ein λ ilt: +λ O,.h. (+λ O = x O Hieraus lässt sich λ berechnen, allemein: λ = ( O λ einesetzt in ie Geraenleichun
Ein Exkurs in analytischer Geometrie des Raumes anhand Euklidischer Lehrsätze
Ein Exkurs in analytischer Geometrie des Raumes anhand Euklidischer Lehrsätze Im Koordinatenkreuz mit 3 Koordinatenachsen gilt: Ein Punkt P hat die Koordinaten P: (x; y; z). Die Größe OP ist die Entfernung
5 Die Gerade g 1 hat die Gleichung 6: y = 1 }
Geraden Schülerbuchseite 199 01 5 Die Gerade g 1 hat die Gleichung 6: = 1 }. Die Gerade g hat die Gleichung : = 1 }. Die Gerade g hat die Gleichung 1: =. Die Gerade g hat die Gleichung : =. Die Gerade
Übungen zu Kurvenscharen
Übungen zu Kurvenscharen. Gegeben ist die Geradenschar g t : = (t ) ( t) + 9 (t 9) mit D(g t ) = R, t R. a) Zeichnen Sie die Graphen der Funktionen g und g in ein Koordinatensstem. b) Geben Sie die Schnittpunkte
O01. Linsen und Linsensysteme
O0 Linsen und Linsensysteme In optischen Systemen spielen Linsen eine zentrale Rolle. In diesem Versuch werden Verahren zur Bestimmun der Brennweite und der Hauptebenen von Linsen und Linsensystemen vorestellt..
( ) (L3) ( ) ( ) Gymnasium Neutraubling: Grundwissen Mathematik 9. Jahrgangsstufe. Reelle Zahlen. a ist diejenige nicht negative Zahl, die quadriert a
Gymnasium Neutaublin: Gundissen Mathematik. Jahansstufe Wissen und Können Reelle Zahlen Iationale Zahlen sind Zahlen, die nicht als Buch (ationale Zahl) dastellba sind. Eine iationale Zahl hat eine unendliche
Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg
Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz wwwmathe-aufgabencom September 6 Abituraufgaben (Haupttermin) Aufgabe
Definitionen des Flächeninhaltsbegriffs werden immer mehr verfeinert, durch den Messprozess festgelegt.
Flächeninhalt 1 Flächeninhalt 2 Kapitel 6: Der Flächeninhalt Flächeninhalt einer Fiur soll etwas über deren Größe aussaen Flächeninhaltsberiff intuitiv irendwie klar, ab der Grundschule durch Ausleen von
Lineare Gleichungssysteme mit 2 Variablen
Lineare Gleichungssysteme mit 2 Variablen Lineare Gleichungssysteme mit 2 Variablen Einzelne lineare Gleichungen mit zwei Variablen Bis jetzt haben wir nur lineare Gleichungen mit einer Unbekannten (x)
Lösungen zu Übungsblatt 3
PN1 Einführun in die Physik 1 für Chemiker und Bioloen Prof. J. Lipfert WS 2017/18 Übunsblatt 3 Lösunen zu Übunsblatt 3 Aufabe 1 Paris-Geschütz. a) Unter welchem Abschusswinkel θ hat das Geschütz seine
2) Welche Zahl muss man mit 7 multiplizieren, damit man 56 erhält? Schreib eine Gleichung an! Wie heißt die Zahl?
1) Welche Gleichun ehört zum Text? Multipliziert man eine Zahl z mit 3 und zählt 15 dazu, so erhält man 27. a) z : 3 + 15 = 27 b) z. 3 + 15 = 27 c) z. 15 + 3 = 27 d) z. 3 = 27-15 2) Welche Zahl muss man
0,6 m. 0,4m. Gegeben seien die obigen drei auf den Balken wirkenden Kräfte mit:
Kurs: Statik Thema: Resultierende bestimmen Aufgabe 1) Wo liegt bei der Berechnung der Resultierenden der Unterschied zwischen Kräften mit einem gemeinsamen Angriffspunkt und Kräften mit unterschiedlichen
Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9.
Koordinatengeometrie Aufgabe 1 Gegeben sind der Punkt P (-1; 9) sowie die Geraden g: 3x y + 6 = 0 und h: x + 4y 8 = 0. a) Die Geraden g und h schneiden einander im Punkt S. Berechnen Sie die exakten Koordinaten
Mathematik Lineare Gleichungssysteme Grundwissen und Übungen
Mathematik Lineare Gleichungsssteme Grundwissen und Übungen Stefan Gärtner 00-00 Gr Mathematik Lineare Gleichungsssteme Seite Lineare Gleichung: a + b c ( a,b R) ist eine lineare Gleichung mit zwei Variablen
Abitur 2011 G8 Musterabitur Mathematik Geometrie VI
Seite http://www.abiturloesung.de/ Seite Abitur G8 Musterabitur Mathematik Geometrie VI In einem kartesischen Koordinatensystem ist ein Würfel W der Kantenlänge gegeben. Die Eckpunkte G ( ) und D ( ) legen
Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.
Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m
Coaching für den Wettbewerb
1. Bayreuther Ta der Mathematik 08. Juli 006 Klassenstufen 7-8 Aufabe 1: Die Zwilline Peter und Michael besuchen dieselbe Klasse. Beide verlassen morens leichzeiti das Haus und benutzen denselben We zur
