10. Vorlesung Wintersemester
|
|
|
- Damian Zimmermann
- vor 9 Jahren
- Abrufe
Transkript
1 10. Vorlesung Wintersemester 1 Existenz von Potentialen Für einimensionale Bewegungen unter er Einwirkung einer Kraft, ie nur vom Ort abhängt, existiert immer ein Potential, a man immer eine Stammfunktion berechnen kann. Wenn ie Kraft von er Zeit abhängt, wir as Potential un amit auch ie Gesamtenergie ebenfalls zeitabhängig. Für geschwinigkeitsabhängige Kräfte, wie Reibungskräfte, gibt es agegen kein Potential un keine Energieerhaltung. Wie sieht es mit ortsabhängigen Kräften im reiimensionalen Raum aus? Wie lässt sich überhaupt eine Stammfunktion er Kraft ort efinieren? Dazu brauchen wir wieer einen mathematischen Exkurs. 2 Die Arbeit im reiimensionalen Raum Im reiimensionalen Raum geschieht ie Bewegung entlang einer Kurve. Für ein kurzes Stück er Kurve muss man efinieren A = F ( r) r. (1) Das Skalarproukt rückt aus, ass nur ie Komponente von F in Richtung er Bewegung Arbeit leistet. Kräfte, ie senkrecht zur Bewegung stehen, leisten keine Arbeit! Die Gesamtarbeit muss nun urch Aufsummierung über ie Kurvenstücke berechnet weren. Das führt auf ie Notwenigkeit von Linienintegralen (Kurvenintegralen, Wegintegralen). 3 Linienintegrale Ein Linienintegral (auch Wegintegral oer Kurvenintegral) F ( r) r (2) über einen Weg C: wir berechnet über C r(s), s = s 1... s 2 (3) s2 s 1 F r(s) ( r(s)) s (4) s Auch wenn zwei Kurven enselben Anfangs- un Enpunkt haben, können ie Integrale verschieen sein. 1
2 3.1 Beispiel Betrachten wir im zweiimensionalen Raum as Vektorfel F (x, y) = (2x 2 3y, 4xy) un integrieren es über zwei verschieene Wege zwischen en Punkten (0, 0) un (1, 1): 1. Der erste Weg C 1 sei ie gerae Verbinung, auf er x = y gilt. In Parameterarstellung führt as auf x(s) = s, y(s) = s, s = (5) Der Integran wir ( F r = F x (x(s), y(s)) s, y ) s s = (2s 2 3s, 4s 2 ) (1, 1) s (6) = (6s 2 3s) s. Das Integral wir also in iesem Fall zu C 1 F r = 1 0 (6s 2 3s) s = [ 2s 3 3s 2 /2 ] 1 0 = 1 2. (7) 2. Der Weg C 2 sei urch as Parabelstück y = x 2 gegeben, in Parameterarstellung also In iesem Fall wir er Integran zu un as Integral selbst zu C 2 F r = x(s) = s, y(s) = s 2, s = (8) F r = (2s 2 3s 2, 4s 3 ) (1, 2s) s 1 0 = ( s 2 + 8s 4 ) s, ( s 2 + 8s 4 ) s = ] 1 [ s s5 = (9) Dieses Beispiel zeigt also schon einringlich, ass er Wert eines Linienintegrals vom Weg abhängen kann. 4 Energieerhaltung im reiimensionalen Raum Die Arbeit wir ein Linienintegral über Kraft mal Weg sein, un as Potential muss ähnlich efiniert weren. Wir weren erst versuchen zu formulieren, wie ie Energieerhaltung aussehen sollte, un ann ie mathematischen Hintergrüne erforschen. Zunächst eine weiter Definition: ie Leistung ist ie Arbeit pro Zeit, P = W = F r = F v. (10) Die Leistung hängt immer vom zeitlichen Verlauf er Bewegung ab, weil sie ja beschreibt, mit welcher Geschwinigkeit Arbeit geleistet wir. Dagegen ist ie Arbeit unabhängig vom zeitlichen Verlauf (wenn ie Kraft, wie hier immer angenommen, nur vom Ort abhängt). Jetzt können wir so vorgehen wie im einimensionalen Fall. Wir schreiben P = F v = m r r (11)
3 Nun gilt analog zum einimensionalen Fall r 2 = (ẋ2 + ẏ 2 + ż 2) = 2ẋẍ + 2ẏÿ + 2ż z (12) = 2 r r. Damit folgt ( m 2 r 2) = F r = P. (13) Auf iese Art erhalten wir zwar ie naheliegene Definition er kinetischen Energie T = m 2 v2 (14) un urch Integrieren über ie Zeit ie Aussage, ass ie geleistete Arbeit in kinetische Energie umgesetzt wir: W = t2 t 1 P = T (t 2 ) T (t 1 ), (15) aber es fehlt ie Aussage über eine Erhaltung er Energie an jeem Punkt er Bahnkurve. Im einimensionalen Fall war azu ie Leistung als reine Zeitableitung umgeschrieben woren, was jetzt P = F r V ( r) = (16) lauten müsste (wie ie Ableitung zu berechnen ist, kommt später). Wenn es ein Potential in ieser Form gäbe, wäre t V ( r(t)) = F ( r(t )) r(t ) t 0, (17) as ergibt aber nur ann eine eineutige Funktion es Ortes, wenn as Integral für beliebige Wege es Teilchens zum Enpunkt enselben Wert hat. Wenn eine solche Funktion existiert, ann gilt aber wieer. h. ie Gesamtenergie (T + V ) = 0, (18) E = T + V (19) bleibt währen er Bewegung erhalten. Nun zur Beeutung von F r V ( r(t)) =. (20) Auf er rechten Seite steht ausführlicher geschrieben er Ausruck V ( r(t)) V (x(t), y(t), z(t)) =. (21) Die Ableitung hierin kann mit Hilfe einer verallgemeinerten Kettenregel ausgerück weren: V (x(t), y(t), z(t)) = V ẋ + V y ẏ + V ż, (22) z
4 wobei ie partiellen Ableitungen beeuten, ass man nach er entsprechenen Größe ableitet un abei alles anere als konstant betrachtet. Wenn man iesen Ausruck in (20) einsetzt un ann ie beien Seiten vergleicht, erhält man F x = V, F y = V y, F z = V z. (23) Das ist eigentlich eine naheliegene Verallgemeinerung er einimensionalen Gleichung F = V x. (24) 5 Partielle Ableitungen un Vektoranalysis Ein Fel ornet jeem Punkt im Raum eine physikalische Größe zu. Es gibt skalare Feler er Art V ( r) (25) un Vektorfeler wie F ( r). (26) Partielle Ableitungen V (27) weren ausgewertet, inem man alle aneren Variablen z. B. y un z bei er Ableitung wie Konstanten behanelt. Sie haben folgene Eigenschaften: für alle praktisch wichtigen Funktionen sin ie Ableitungen vertauschbar: oer als Operatorgleichung 2 V y = 2 V y 2 y = 2 y (28) (29) Beispiel: Für ie Funktion sin ie ersten partiellen Ableitungen f(x, y) = x 2 sin y (30) f f = 2x sin y, y = x2 cos y, (31) un für ie gemischten zweiten Ableitungen finet man tatsächlich Es gilt ie Kettenregel in er Form 2 f y = 2x cos y = 2 f y. (32) V x V (x(s), y(s), z(s)) = s s + V y y s + V z z s (33)
5 Manchmal kann man nach einer Variablen sowohl partiell als auch vollstänig ifferenzieren. Wenn eine Funktion f(x, t) gegeben ist, z. B. ann sin ie partiellen Ableitungen F = t2, F (x, t) = xt 2 (34) F t = 2xt. (35) Wenn aber jetzt x auch eine Funktion von t wir un man F (x(t), t) betrachtet, ann gibt es auch ie vollstänige Ableitung F F (x(t), t) = ẋ + F t. (36) Wenn man probeweise x(t) = sin t einsetzt, wir iese Gleichung zu F (x(t), t) = t2 cos t + 2t sin t (37) un man überzeugt sich, ass erst Einsetzen un ann Differenzieren F (t) = t 2 sin t, tatsächlich asselbe Ergebnis liefert. 6 Der Graient Der Graientenvektor ist efiniert als V = grav = F = 2t sin t + t2 cos t (38) ( V, V y, V ). (39) z In ieser Vorlesung wir ie Schreibweise mit em Nabla-Operator (engl. el) ( =, y, ) z bevorzugt (wir weren sehen, ass sich amit einige Formeln sehr einfach merken lassen). ist also er Operator, er als Komponenten ie partielle Ableitung nach er jeweiligen Koorinate enthält. Selten finet man auch ie Schreibweise für en Graienten. r Mit em Graienten schreibt sich ie Kettenregel als oer in Differentialform V s 6.1 Anschauliche Beeutung (40) = V r s, (41) V = V r. (42) Aus ieser Schreibweise ersieht man auch ie anschauliche Beeutung es Graienten: as Skalarproukt von r mit em Graienten beschreibt ie Änerung er Funktion bei einer infinitesimalen Verschiebung es Beobachtungspunktes. Das beeutet, ass V sich in er Richtung senkrecht zum Graienten überhaupt nicht änert un ass in Richtung es Graienten er maximale Anstieg er Funktion erfolgt. Wenn wir also wieer ie anschauliche Interpretation es Potentials als Gebirge betrachten, ann zeigt an jeer Stelle er Graient in Richtung es steilsten Anstiegs; sein Betrag gibt ie Änerung er Höhe pro zurückgelegter Wegstrecke an.
6 7 Rechenregeln un Beispiele Es gelten einige erselben Regeln wie bei er normalen Differentiation: Ableitung von Linearkombinationen (c 1 f 1 ( r) + c 2 f 2 ( r)) = c 1 f 1 + c 2 f 2, (43) un ie Prouktregel Eine nützliche Beziehung ist ( a sei konstant) (f 1 ( r)f 2 ( r)) = f 1 f 2 + f 2 f 1. (44) ( a r) = a. (45) Wichtig sin auch ie Graienten von Funktionen es Betrags es Ortsvektors r = r : r = x 2 + y 2 + z 2. (46) Für ie x-komponente finet man r = x2 + y 2 + z 2 x = x2 + y 2 + z = x 2 r (47) un analog für ie aneren Komponenten, was sich zu r = r r (48) zusammenfassen lässt. Das Resultat ist also er Einheitsvektor in Richtung es Ortsvektors. Da auch für en Graienten ie Kettenregel gilt, wie man an einer Komponente wieer sieht: f g f(g(x, y, z)) = g, (49) also errechnet man leicht z. B. f(g( r)) = f g (50) g 1 r = r r 3. (51) Im allgemeinen Fall führt as auf ie sehr häufig verwenete Formel 8 Graient un Energieerhaltung f(r) = f r r r. (52) Für ie Ableitung er Energieerhaltung in er Mechanik braucht man as ist erfüllt für F ( r) v = V, (53) F ( r) = V. (54) Eine konservative Kraft muss sich also als Graient einer skalaren Funktion V arstellen lassen. Das ist nachprüfbar über ie zweiten Ableitungen, z. B. muss gelten: F x y = 2 V y = 2 V y = F y (55)
Einführung in die theoretische Physik 1
Mathey Einführung in ie theor. Physik 1 Einführung in ie theoretische Physik 1 Prof. Dr. L. Mathey Dienstag 15:45 16:45 un Donnerstag 1:45 12: Beginn: 23.1.12 Jungius 9, Hörs 2 1 Mathey Einführung in ie
7.1 Definitionen und Ableitungen der elementaren Funktionen. f(x + x) f(x)
Kapitel 7 Differentialrechnung 71 Definitionen un Ableitungen er elementaren Funktionen Die Funktion f) sei efiniert für a
Mathematik III. Vorlesung 87. Die äußere Ableitung
Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 87 Die äußere Ableitung In ieser Vorlesung weren wir ein neuartiges mathematisches Objekt kennenlernen, ie sogenannte äußere Ableitung.
Lösungshinweise zu den Hausaufgaben:
P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak 4. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 9 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu en Hausaufgaben: Aufgabe H. a)
1. Probeklausur. φ = 2x 2 y(z 1).
Übungen zur T: Theoretische Mechanik, SoSe04 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45. Probeklausur Dr. Reinke Sven Isermann [email protected] Übung.: Gegeben sei ie Funktion φ = x y z. a Berechnen
I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9
I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall
8.1. Das unbestimmte Integral
8 Das unbestimmte Integral So wie ie Bilung von Reihen, also Summenfolgen, ein zur Bilung er Differenzenfolgen inverser Prozess ist, kann man ie Integration als Umkehrung er Differentiation ansehen Stammfunktionen
1 Lokale Umkehrbarkeit und implizite Funktionen
Christina Schinler Karolina Stoiber Ferienkurs Analysis 2 für Physiker SS 2013 A 1 Lokale Umkehrbarkeit un implizite Funktionen In iesem Kapitel weren Kriterien vorgestellt, wann eine Funktion umkehrbar
Übungen zum Ferienkurs Theoretische Mechanik
Übungen zum Ferienkurs Theoretische Mechanik Lagrange un Hamilton Mechanik Übungen, ie mit einem Stern markiert sin, weren als besoners wichtig erachtet. 2.1 3D Faenpenel Betrachten Sie ein Faenpenel er
Differential- und Integralrechnung
Universität Paerborn, en 16.07.2007 Differential- un Integralrechnung Ein Repetitorium vor er Klausur Kai Gehrs 1 Übersicht Inhaltlicher Überblick: I. Differentialrechnung I.1. Differenzierbarkeit un er
2.4. GAUSSSCHER SATZ π ε 0 r 2. π r 2)
2.4. GAUSSSCHER SATZ 23 2.4 Gaußscher Satz Das Fel einer Punktlaung genügt er Gleichung: E = 1 4 π ε 0 Q r 2 Desweiteren berechnet sich ie Oberfläche einer Kugel, eren Punkte vom Mittelpunkt en Abstan
Mathematischer Vorkurs für Physiker WS 2009/10
TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 29/ Vorlesung 9, Freitag vormittag Linienintegrale und Potential Wir betrachten einen Massenpunkt, auf den die konstante
15 Differentialrechnung in R n
36 15 Differentialrechnung in R n 15.1 Lineare Abbilungen Eine Abbilung A : R n R m heißt linear falls A(αx + βy) = αa(x) + βa(y) für alle x, y R n un alle α, β R. Man schreibt oft Ax statt A(x) un spricht
Differentialrechnung
Differentialrechnung Um Funktionen genauer zu untersuchen bzw. sie zu analysieren, ist es notwenig, etwas über ihren Verlauf, as qualitative Verhalten er Funktion, sagen zu können. Das heisst, wir suchen
1. Tangente, Ableitung, Dierential
1. Tangente, Ableitung, Dierential Variablen un Funktionen 1.1. Verallgemeinern Sie ie folgenen Gruppen von Gleichungen mithilfe von Variablen. (1) 5 + 3 = 3 + 5, 1 2 = 2 + 1. (2) 3 2 + 5 2 = (3 + 5) 2,
Übungsblatt 04. PHYS4100 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Hans-Dieter Vollmer,
Übungsblatt 04 PHYS400 Grunkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Hans-Dieter Vollmer, ([email protected]) 2. 5. 2005 bzw. 3. 5. 2005 Aufgaben. Der Operator A sei proportional
TECHNISCHE UNIVERSITÄT MÜNCHEN. Vektorräume: Basen und lineare Unabhängigkeit
TECHNISCHE UNIERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Frierich Roesler Ralf Franken, PhD Max Lein Lineare Algebra WS 26/7 en Blatt 8.2.26 ektorräume: Basen un lineare Unabhängigkeit Zentralübungsaufgaben
Theoretische Physik: Mechanik
Ferienkurs Theoretische Physik: Mechanik Sommer 2017 Vorlesung 1 (mit freundlicher Genehmigung von Merlin Mitschek und Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis
Aufgaben zum Wochenende (2)
Aufgaben zum Wochenene () Alle Koorinatensysteme seien kartesisch.. Berechnen Sie zu a =(, 3, ) un b =(,, ), c =(, 3, ) : a 3, 4 a b, b ( a c), a 4 b ( ) c. Rechnen Sie möglichst praktisch.. Lösen Sie
Experimentalphysik I (EP I): Mathematische Ergänzungen
Experimentalphysik I (EP I): Mathematische Ergänzungen Prof. Dr. Niels e Jonge INM - Leibniz Institut für neue Materialien Experimentalphysik, Universität es Saarlanes Email: [email protected]
9. Vorlesung Wintersemester
9. Vorlesung Wintersemester 1 Die Phase der angeregten Schwingung Wertebereich: bei der oben abgeleiteten Formel tan φ = β ω ω ω0. (1) ist noch zu sehen, in welchem Bereich der Winkel liegt. Aus der ursprünglichen
1 Lokale Umkehrbarkeit und implizite Funktionen
Karolina Stoiber Aileen Wolf Ferienkurs Analysis 2 für Physiker SS 2016 A 1 Lokale Umkehrbarkeit un implizite Funktionen In iesem Kapitel weren Kriterien vorgestellt, wann eine Funktion umkehrbar ist oer
Implizite Differentiation
Implizite Differentiation -E -E Implizite Darstellung Eine Funktion ist in impliziter Form gegeben, wenn ie Funktionsgleichung nach keiner er beien Variablen x un y aufgelöst ist. Beispielsweise x y =
Mathematischer Vorkurs für Physiker WS 2009/10
TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 2, Montag nachmittag Differentiation und Integration von Vektorfunktionen Der Ortsvektor: Man kann
Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3
TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 Differenziation und Integration von Vektorfunktionen Der Ortsvektor: Man kann einen Punkt P im Raum eindeutig durch die
Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7
TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7 Definition: Ein Skalarfeld ordnet jedem Punkt im dreidimensionalen Raum R 3 eine ahl () zu. Unter einem räumlichen Vektorfeld
Theoretische Physik: Mechanik
Ferienkurs Theoretische Physik: Mechanik Sommer 2016 Vorlesung 1 (mit freundlicher Genehmigung von Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Mathematische
Das elektrische Feld als Energiespeicher
Laungsquantelung Das elektrische Fel als Energiespeicher 79. Das elektrische Fel als Energiespeicher a) Welche Beobachtung legt nahe, ass in einem elektrischen Fel Energie gespeichert ist? b) Zeigen Sie,
Explizite und Implizite Darstellung einer Funktion
Eplizite un Implizite Darstellung einer Funktion Für ie implizite Differentiation weren ie Begriffe implizite un eplizite Darstellung von Funktionen benötigt. Bisher haben wir eine Funktion (Zusammenhang
2. Vorlesung Wintersemester
2. Vorlesung Wintersemester 1 Mechanik von Punktteilchen Ein Punktteilchen ist eine Abstraktion. In der Natur gibt es zwar Elementarteilchen (Elektronen, Neutrinos, usw.), von denen bisher keine Ausdehnung
Wir erinnern zunächst an die verschiedenen Arten von Funktionen, die uns bisher begegnet sind: V : r 0 3 V ( r) 0 3
3 1. Mathematische Grundlagen Zur Vorbereitung fassen wir in diesem ersten Kapitel die wichtigsten mathematischen Konzepte zusammen, mit denen wir in der Elektrodynamik immer wieder umgehen werden. 1.1.
2. Umkehrfunktionen und ihre Ableitung, Hyperbelfunktionen 2.1. Höhere Ableitungen. Die Ableitung der Ableitung von f bezeichnet man, x 2, fur x < 0,
. Umkehrfunktionen un ihre Ableitung, Hyperbelfunktionen.. Höhere Ableitungen. Die Ableitung er Ableitung von f bezeichnet man, falls sie existiert, mit f x) oer f ) x) oer fx)) oer fx) bzw. allgemein
Stetigkeit und Differenzierbarkeit
Kapitel 5 Stetigkeit un Differenzierbarkeit 5.1 Stetigkeit Unstrenge Definitionen : Eine Funktion heißt stetig, wenn - man ihren Graphen mit em Bleistift ohne Absetzen zeichnen kann; - kleine Änerungen
Stetigkeit vs Gleichmäßige Stetigkeit.
Stetigkeit vs Gleichmäßige Stetigkeit. Beispiel: Betrachte ie Funktion f(x) = 1/x auf em Intervall D = (0, 1]. f ist in jeem Punkt p (0, 1] stetig. Denn: Sei p (0, 1] un ε > 0 gegeben. Setze δ = min (
D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 15
D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 15 1. Der Wert einer Funktion f : R R fällt am schnellsten in die Richtung (a) (b) (c) der minimalen partiellen Ableitung. entgegengesetzt
2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n
2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve
Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird,
Determinanten Wir entwickeln eine Lösungsformel für Gleichungssysteme mit zwei Variablen. ax + cy = e b bx + y = f a } abx bcy = be + abx + ay = af ya bc = af be Man schreibt y = af be a bc = a e b f analog
Serie 6 - Funktionen II + Differentialrechnung
Analysis D-BAUG Dr. Meike Akvel HS 05 Serie 6 - Funktionen II + Differentialrechnung. a) Sei Lösung 3, falls < 0, f : R R, f) c +, falls 0, + 8, falls >. Bestimmen Sie c R un R, so ass f überall stetig
Technische Universität Berlin Wintersemester 2010/11. Allgemeine Volkswirtschaftslehre 2 - Makroökonomie Wiederholung mathematischer Grundlagen
Prof. Dr. Frank Heinemann Technische Universität Berlin Wintersemester 2010/11 Allgemeine Volkswirtschaftslehre 2 - Makroökonomie Wieerholung mathematischer Grunlagen Dieses Übungsblatt enthält keine abzugebenen
2. Lagrange-Gleichungen
2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen
Logik / Kombinatorik - Hinweise zur Lösungsfindung
Logik / Kombinatorik Hinweise zur Lösungsfinung Aufgabe 1) Günstige Bezeichnungen einführen; Tabelle anfertigen un ie unmittelbaren Folgerungen aus bis eintragen (siehe linke Tabelle). Da ies noch nicht
a) b) Abb. 1: Buchstaben
Hans Walser, [20171019] Magische Quarate ungeraer Seitenlänge nregung: uler (1782) 1 Worum geht es? Zu einer gegebenen ungeraen Zahl u wir ein magisches Quarat mit er Seitenlänge u konstruiert. 2 as Vorgehen
8. DIE ABLEITUNG EINER VEKTORFUNKTION
75 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch
Mathematik II Frühjahrssemester 2013
Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 8. Funktionen von mehreren Variablen 8.2 Partielle Differentiation Prof. Dr. Erich Walter Farkas Mathematik I+II, 8.2 Part. Diff.
Aufgabe 1: Interferenz von Teilchen und Wellen
Lösungsvorschlag Übung 6 Aufgabe 1: Interferenz von Teilchen un Wellen a) Konstruktive bzw. estruktive Interferenz beschreibt ie Tatsache, ass sich überlagerne Wellen gegenseitig verstärken bzw. auslöschen
Mathematischer Vorkurs zum Studium der Physik
Universität Heielberg Mathematischer Vorkurs zum Stuium er Physik Übungen Aufgaben zu Kapitel 5 aus: K. Hefft, Mathematischer Vorkurs zum Stuium er Physik, sowie Ergänzungen Aufgabe 5.: Differenzierbarkeit
1 Kurven und Kurvenintegrale
Fabian Kohler Karolina Stoiber Ferienkurs Analysis für Physiker SS 14 A 1 Kurven und Kurvenintegrale 1.1 Einschub: Koordinatentransformation Gegeben sei eine Funktion f : R n R. Dann ist die totale Ableitung
Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation
Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter
Wie man dieses (Weg-)Integral berechnet, kann man sich mit der folgenden Merkregel im Kopf halten. Man schreibt d~r = d~r
Vektoranalysis 3 Die Arbeit g Zum Einstieg eine kleine Veranschaulichung. Wir betrachten ein Flugzeug, das irgendeinen beliebigen Weg zurücklegt. Ausserdem seien gewisse Windverhältnisse gegeben, so dass
5.6 Potential eines Gradientenfelds.
die Zirkulation des Feldes v längs aufintegriert. 5.6 Potential eines Gradientenfelds. Die Ableitung einer skalaren Funktion ist der Gradient, ein Vektor bzw. vektorwertige Funktion (Vektorfeld). Wir untersuchen
Repetitorium Analysis II für Physiker
Technische Universität München Larissa Hammerstein Vektoranalysis und Fourier-Transformation Lösungen Repetitorium Analysis II für Physiker Analysis II Aufgabe Skalarfelder Welche der folgenden Aussagen
Mathematik 1 -Arbeitsblatt 1-9: Multiplizieren mehrgliedriger Termee. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB
Schule Thema Personen Bunesgymnasium für Berufstätige Salzburg Mathematik 1 -Arbeitsblatt 1-9: Multiplizieren mehrglieriger Termee 1F Wintersemester 01/013 Unterlagen: LehrerInnenteam GFB Ein neues Problem
11. Vorlesung Wintersemester
11. Vorlesung Wintersemester 1 Ableitungen vektorieller Felder Mit Resultat Skalar: die Divergenz diva = A = A + A y y + A z z (1) Mit Resultat Vektor: die Rotation (engl. curl): ( rota = A Az = y A y
Analysis III. Teil I. Rückblick auf das letzte Semester. Themen aus dem SS Inhalt der letzten Vorlesung aus dem SS.
Analysis III für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Teil I Rückblick auf das letzte Semester Fakultät für Mathematik, Informatik und Naturwissenschaften
Lösung - Serie 20. D-MAVT/D-MATL Analysis II FS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe)
D-MVT/D-MTL nalysis II FS 8 Dr. nreas Steiger Lösung - Serie MC-ufgaben (Online-bgabe). Es sei ie Einheitskugel um en Ursprung. Für welches er Vektorfeler (x, y, z) v(x, y, z) arf er Divergenzsatz für
y (t) Wie berechnet sich die Ableitung von F aus den Ableitungen von x (t) und y (t)? Die Antwort gibt die erste Kettenregel
103 Differenzialrechnung 553 1035 Kettenregeln Die Kettenregel bei Funktionen einer Variablen erlaubt die Berechnung der Ableitung von verketteten Funktionen Je nach Verkettung gibt es bei Funktionen von
Der Taschenrechner CAS: TI Inspire (Texas Instruments)
Der Taschenrechner (Texas Instruments) Übersicht: 1. Katalog (wichtige Funktionen un wie man sie aufruft) 2. Funktionen efinieren (einspeichern mit un ohne Parameter) 3. Nullstellen 4. Gleichungen lösen
Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen
Kapitel 7 Funktionentheorie In diesem Kapitel geht es meistens um Funktionen, die auf einem Gebiet G C definiert sind und komplexe Werte annehmen. Nach Lust, Laune und Bedarf wird C mit R identifiziert,
Linien- und Oberflächenintegrale
Linien- und berflächenintegrale Bei den früheren eindimensionalen Integralen wurde in der Regel entlang eines Intervalls einer Koordinatenachse integriert. Bei einem Linienintegral wird der Integrationsweg
T1: Theoretische Mechanik, SoSe 2016
T1: Theoretische Mechanik, SoSe 2016 Jan von Delft http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_16/t1_theor_mechanik Newtonsche Sätze (Originalformulierung) 1. Jeder Körper verharrt in seinem
Polynomfunktionen - Fundamentalsatz der Algebra
Schule / Institution Titel Seite 1 von 7 Peter Schüller [email protected] Polynomfunktionen - Funamentalsatz er Algebra Mathematische / Fachliche Inhalte in Stichworten: Polynomfunktionen, Funamentalsatz
Richtungsableitungen.
Richtungsableitungen. Definition: Sei f : D R, D R n offen, x 0 D, und v R n \ {0} ein Vektor. Dann heißt D v f(x 0 f(x 0 + tv) f(x 0 ) ) := lim t 0 t die Richtungsableitung (Gateaux-Ableitung) von f(x)
2. Räumliche Bewegung
2. Räumliche Bewegung Wenn die Bahn des Massenpunkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort im Raum zu bestimmen. Es muss ein Ortsvektor angegeben werden. Prof.
2. Lagrange-Gleichungen
2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen
5. Vorlesung Wintersemester
5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode
Ferienkurs Theoretische Mechanik. Lagrangeformalismus
Ferienkurs Theoretische Mechanik Lagrangeformalismus Sebastian Wild Mittwoch, 14.09.2011 Inhaltsverzeichnis 1 Zwangskräfte und Lagrangegleichungen 1. Art 2 1.1 Motivation, Definition von Zwangsbedingungen..........
5. Raum-Zeit-Symmetrien: Erhaltungssätze
5. Raum-Zeit-Symmetrien: Erhaltungssätze Unter Symmetrie versteht man die Invarianz unter einer bestimmten Operation. Ein Objekt wird als symmetrisch bezeichnet, wenn es gegenüber Symmetrieoperationen
Mathematische Grundlagen für die Vorlesung. Differentialgeometrie
Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie
1 Mathematische Hilfsmittel
Mathematische Hilfsmittel. Vektoranalysis Wiederholung Vektor: Länge und Richtung Vektoraddition: A + B = B + A (A + B) + C = A + (B + C) kartesische Koordinaten: B A + B = i (a i + b i )e i A+B Multiplikation
Übungsklausur Lineare Algebra I - Wintersemester 2008/09
1 Übungsklausur Lineare Algebra I - Wintersemester 008/09 Teil 1: Multiple Choice (1 Punkte Für ie ganze Klausur bezeichne K einen beliebigen Körper. 1. Welche er folgenen Aussagen sin ann un nur ann erfüllt,
Fehlerrechnung mit Hilfe der Differentialrechnung
HTBLA Neufelen Fehlerrechnung mit Hilfe er Differentialrechnung Seite von 9 Peter Fischer [email protected] Fehlerrechnung mit Hilfe er Differentialrechnung Mathematische / Fachliche nhalte in Stichworten:
Definition 1.1 (Wirkung) Wir wollen die Kurvenverläufe x(t) finden, die das Funktional
Christina Schindler Karolina Stoiber Ferienkurs Analysis für Physiker SS 13 A 1 Variationsrechnung 1.1 Lagrange. Art Wir führen die Überlegungen von gestern fort und wollen nun die Lagrangegleichungen.
f x n ) 2 1 Gleichung (*) f' x 1 f'' x 1
Das Newtonsche Näherungsverfahren, Teil Theorie - Konvergenzkriterium f x n Allgemeine Lösung: x n = x n f' x f' x n n 0 Nach er Fachliteratur (Bronstein/Semenjajew) arf man hier von einer Cauchy-Folge
Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.
Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:
Theoretische Physik 1, Mechanik
Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische
Einführung in die Kontinuumsmechanik Christian Schmeiser
Einführung in ie Kontinuumsmechanik Christian Schmeiser 1. KAPITEL Die Grungleichungen er Kontinuumsmechanik 1.1. Einige Resultate aus er Teilchenmechanik Wir beschäftigen uns mit einem System von N Massenpunkten,
mathphys-online Aufgaben zur Differentialrechnung - Lösung Tangentenaufgaben Aufgabe 1 Definition des Feldindex in Vektoren und Matrizen: ORIGIN 1
Aufgaben zur Differentialrechnung - Lösung Tangentenaufgaben Definition es Felinex in Vektoren un Matrizen: ORIGIN Aufgabe Gegeben ist ie Funktion f mit em Funktionsterm f( x) = x x, wobei x IR. a) Bestimmen
2. Räumliche Bewegung
2. Räumliche Bewegung Prof. Dr. Wandinger 1. Kinematik des Punktes TM 3 1.2-1 2. Räumliche Bewegung Wenn die Bahn des Punkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort
Kostenfunktion - Der Cournotsche Punkt
Kostenfunktion Seite 1 von 8 Wilfrie Rohm Kostenfunktion - Der Cournotsche Punkt Der Cournotsche Punkt C beschreibt ie gewinnmaximale Preis-Mengen-Kombination mit en Koorinaten C(p c ; x c ). Er sagt aus,
= r ). Beispiele. 1) Kreis. Skizze mit Tangentialvektoren ( x. 2) Zykloide. Skizze für a = r = 1:
VEKTORANALYSIS Inhalt: 1) Parametrisierte Kurven 2) Vektorfelder 3) Das Linienintegral 4) Potentialfelder 1 Parametrisierte Kurven Definitionen xt () Kurve: x = x() t = y() t, t zt () xt () dxt () Tangentialvektor:
Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder
DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/
6 Vektoranalysis Kurven
6 Vektoranalysis Kurven Zoltán Zomotor Versionsstand: 31. Juli 2014, 13:51 Die nummerierten Felder bitte mithilfe der Videos ausfüllen: http://www.z5z6.de This work is based on the works of Jörn Loviscach
6 Gewöhnliche Differentialgleichungen
6 Gewöhnliche Differentialgleichungen Differentialgleichungen sind Gleichungen in denen nicht nur eine Funktion selbst sondern auch ihre Ableitungen vorkommen. Im einfachsten Fall gibt es eine unabhängige
Beispiellösungen zu Blatt 6
µathematischer κorresponenz- zirkel Mathematisches Institut Georg-August-Universität Göttingen Aufgabe 1 Beispiellösungen zu Blatt 6 Gibt es eine Quaratzahl, eren Quersumme 6 ist? Hinweis: Die Quersumme
Klassische Theoretische Physik I WS 2013/2014
Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 213/214 Prof. Dr. J. Schmalian Blatt 6 Dr. P. P. Orth bgabe und Besprechung 6.12.213 1. Vektoranalysis I (2
Linien- oder Kurvenintegrale
Linien- oder Kurvenintegrale 1-E Einführendes Beispiel Abb. 1-1: Zum Begriff der Arbeit einer konstanten Kraft Wir führen den Begriff eines Linien- oder Kurvenintegrals am Beispiel der physikalischen Arbeit
Blatt 1. Kinematik- Lösungsvorschlag
Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die
Mathematik. für das Ingenieurstudium. 10 Funktionen mit mehreren Variablen. Jürgen Koch Martin Stämpfle.
10 Funktionen mit mehreren Variablen www.mathematik-fuer-ingenieure.de 2010 und, Esslingen Dieses Werk ist urheberrechtlich geschützt. Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung
LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 4. Übung/Lösung Mathematik für Studierende der Biologie
LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: [email protected] Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fax:
