Explizite und Implizite Darstellung einer Funktion
|
|
|
- Hertha Kappel
- vor 9 Jahren
- Abrufe
Transkript
1 Eplizite un Implizite Darstellung einer Funktion Für ie implizite Differentiation weren ie Begriffe implizite un eplizite Darstellung von Funktionen benötigt. Bisher haben wir eine Funktion (Zusammenhang zwischen zwei Variablen un ) urch ihre Funktionsgleichung (in en Variablen un ) in er Form = f () angegeben. Diese Funktionsgleichung ist nach er Variablen aufgelöst. Man spricht in iesem Falle von einer epliziten Darstellung er Funktion oer kürzer von einer epliziten Funktion. Falls ie Funktionsgleichung (in en beien Variablen un ) nicht nach einer er beien Variablen aufgelöst ist (ie Funktionsgleichung liegt in iesem Falle in er Form F (, = 0 vor), spricht man von einer impliziten Darstellung er Funktion oer kürzer von einer impliziten Funktion. Eplizite Darstellung: = f () Die Funktion ist nach einer er beien Variablen, hier, aufgelöst. Implizite Darstellung: F (, = 0 Die Funktion ist nach keiner er beien Variablen aufgelöst. Beispiele (zur Darstellung von Funktionen): Eplizite Darstellung ( = f () ): a) =, ( f (), b) = ± 1, c) ) = mit = ± 1, ( f (), 3 =. = mit f ( ) = ) f ( ) = ± 1 Implizite Darstellung ( F (, = 0 ): a) = 0, ( F (, = 0, mit F(, = ) b) = 1 ( F (, = 0, mit F (, = 1 c) + 1 = 0 (oer + = 1) ( F (, = 0, mit F (, = + 1) (Kreis, mit Raius = 1) ) + 3 = e) = (oer = 0 ) f) ln = ln (oer ln ln = 0 ) ( F (, = 0, mit F(, = ln ln ) Die implizite Darstellung f) erhält man aus er epliziten Darstellung = urch logarithmieren beier Seiten er Gleichung zur Basis e. (Siehe azu auch logarithmisches Differenzieren.)
2 Oft kann man ie implizite Darstellung F (, = 0, urch Auflösen er Funktionsgleichung F (, = 0 nach z.b., in ie eplizite Darstellung = f () überführen. In vielen Fällen ist ies jeoch nicht möglich oer nur mit großem Aufwan zu erreichen. In en obigen Beispielen weren ie impliziten Darstellungen b) un c) (siehe implizite Darstellung), urch Auflösen er Funktionsgleichung F (, = 0 nach, in ie entsprechenen epliziten Darstellungen b) un c) (siehe eplizite Darstellung) überführt. Aufgaben: Aufgabe 1) Stelle ie in a) bis f) implizit gegebenen Funktionen, falls nicht bereits getan, in epliziter Form ar. Aufgabe ) Berechne ie Steigung er implizit argestellten Funktion ) an er Stelle 3. (Hinweis: Für ie Berechnung er Steigung weren ie -Werte für = 3 benötigt. Diese können aus er Funktionsgleichung urch Einsetzen von 3 für un Auflösen er Gleichung nach berechnet weren.) Implizite un logarithmische Differentiation Implizite Differentiation Vor em Lesen ieses Artikels sollten em/er Schüler/in ie Begriffe implizite un eplizite Funktion bekannt sein. Dazu ist es empfehlenswert, en Artikel implizite un eplite Darstellung von Funktionen (siehe Link) urchzulesen (oer besser gesagt: urchzuarbeiten ) Der Anstieg einer in impliziter Form F (, = 0 argestellten Funktion lässt sich schrittweise wie folgt bestimmen: 1. Glieweise Differentiation er Funktionsgleichung F (, = 0 nach, wobei ie Variable als Funktion von anzusehen ist. Jeer Term in er Funktionsgleichung, er ie (abhängige) Variable enthält, ist aher unter Verwenung er Kettenregel zu ifferenzieren.. Auflösung er ifferenzierten Funktionsgleichung nach. Beispiele (zur impliziten Differentiation): Im Folgenen weren ie oben implizit argestellten Funktionen a) bis f) implizit ifferenziert. Zu a) ( ) = = 0 =.
3 Zu b) ( 1) = = 0 =. Zu c) ( + 1) = + = 0 =. + Zu ) ( + 3 ) = + ( + ) 6 = 0 =. 6 ( wure nach er Prouktregel abgeleitet. Zur Erinnerung: ist eine Funktion in ) 3 Zu e) ( ) = 3 = 0 =. 3 (Dabei wure 1 ln nach er Prouktregel abgeleitet) Zu f) (ln ln ) = (ln + ) = 0 = ( ln + 1). Einfache Merkregel bei er impliziten Differentiation: Beie Seiten er (impliziten) Funktionsgleichung (wie gewohnt) ifferenzieren un anschließen ie Gleichung nach auflösen. Dabei ist zu beachten, ass eine Funktion von ist. (Dabei ist es belanglos, ob ie Funktionsgleichung z.b. in c) in er Form + 1 = 0 oer, oer wie man es häufig sieht, in er Form + = 1 gegeben ist. Denn urch as Differenzieren wir ie rechte Seite er Gleichung in beien Fällen zu Null.) Z.B.: + = 1 Beie Seiten ifferenzieren + = 0 Gleichung nach auflösen = Übung: Bestimme ie Gleichung er Tangente = t( ) = k + im Punkt P = (3,(3)), mit ( 3) > 0 (Beschränkung auf en positiven Halbkreis), es Mittelpunktkreises mit em Raius r = 5 (Skizze). Die Funktionsgleichung es Kreises mit em Mittelpunkt M(0,0) un em Raius 5 lautet in impliziter Darstellung + = r = 5 (warum?) bzw. urch Umformung F (, = + 5 = 0.
4 Lösung: 1. Berechnung er. Koorinate ( 3) > 0 es Punktes P = (3, (3)) : Dazu setzen wir in ie Gleichung F (, = + 5 = 0 für = 3 ein, un lösen ie Gleichung nach auf: = 0 = ± 5 9 =. 1, ± Da wir ( 3) > 0 vorausgesetzt haben, fällt ie negative Lösung weg un es gilt: P = (3, (3)) = (3,).. Berechnung er Steigung k er Tangente im Punkt P (3,) : Wir wissen bereits, ass für ie Steigung k er Tangente im Punkt P (3,) gilt: k = (3). Da ie Funktion in impliziter Darstellung ( F (, = + 5 = 0 ) vorliegt, weren wir ie Tangentensteigung urch implizite Differentiation, wie oben beschrieben, ermitteln. Damit erhält man: F(, = ( [ ] + 5) = + = 0 = =. Im letzten Schritt oben wuren für un ie Koorinaten es Punktes P (3,) eingesetzt. (Beachte: ist eine Funktion von. Daher ist Daurch erhält man für ie Ableitung von =.) [ ] 3 als [ ()] mit Hilfe er Kettenregel aufzufassen. Damit gilt für ie Tangenten t: 3 t ( ) = k + = + = 0, Bestimmung es Wertes er Tangente im Punkt P (3,) : Da ie Tangente urch en Punkt P (3,) geht, kann aus er Gleichung = urch Auflösen nach gewonnen weren: = = + 0,75 3 = 6,5. Damit ist ie Gleichung er Tangente t im Punkt P (3,) vollstänig bestimmt: t ( ) = 0,75 + 6,5. Bemerkung: Die obige Schrittfolge kann bei ieser Aufgabenstellung auch urchgeführt weren, wenn ie Funktion, wie bisher üblich, in epliziter Darstellung ( = f ( ) = 5 ) (negative Lösung bereits ausgeschlossen) gegeben ist. Leiglich ie Differentiation in Punkt. wir in iesem Falle aners urchgeführt.
5 Logarithmisches Differenzieren Ein Spezialfall er impliziten Differentiation ist as logarithmische Differenzieren einer eplizit gegebenen Funktion = f (). Beim logarithmischen Differenzieren sin ie im folgenen Beispiel 1) angegebenen Schritte (von Umformungen abgesehen) urchzuführen. Beispiele: Beispiel 1) Die Funktion = f ( ) = sollte logarithmisch ifferenziert weren. Dazu sin ie folgenen Schritte urchzuführen. 1. = Beie Seiten zur Basis e logarithmieren (falls positiv). ln = ln Beie Seite er Gleichung nach ifferenzieren (Kettenregel) = ln + = (ln + 1) Gleichung nach auflösen. = (ln + 1) Für = einsetzen 5. = (ln + 1) Beispiel ) Die Funktion f ( ) = ( 1)( + ) sollte logarithmisch ifferenziert weren. 1. f ( ) = ( 1)( + ) Beie Seiten zur Basis e logarithmieren. ln f ( ) = ln[ ( 1)( + ) ] Beie Seite er Gleichung nach ifferenzieren 3. f ( ) 1 1 = + f ( ) 1 + Gleichung nach f () auflösen, umformen f ( ) = f ( ) ( 1)( ) Für f ( ) = ( 1)( + ) einsetzen, umformen f ( ) = ( 1)( + ) ( 1)( ) Kürzen + 6. f ( ) = + 1 In ) oben wure ln [( 1)( + ) ] = ln( 1) + ln( + ) ausgenutzt. + 1 Beispiel 3) Die Funktion f ( ) = ist logarithmisch zu ifferenzieren a f ( ) = logarithmieren (zur Basis e), ln = ln a lnb 3 b. ln f ( ) = ln( + 1) ln( 3) beie Seiten er Gleichung nach ifferenzieren 3. f ( ) = Gleichung nach f () auflösen un f ( ) = setzen f ( ) ( + 1) + 1 f ( ) = = ( + 1)( 3) 3 ( 3)
6 Das logarithmische Differenzieren ist manchmal einfacher un mit weniger Aufwan verbunen (siehe Beispiele oben), als er herkömmliche Weg zur Berechnung er Ableitung.
Implizite Differentiation
Implizite Differentiation -E -E Implizite Darstellung Eine Funktion ist in impliziter Form gegeben, wenn ie Funktionsgleichung nach keiner er beien Variablen x un y aufgelöst ist. Beispielsweise x y =
IMA II - Lösungen (Version 1.04) 1
IMA II - Lösungen Version.04 Übungsserie Aufgabe Ableitung über Differenzenquotient Der Differenzenquotient, auch bekannt als mittlere Änerungsrate, wir gebilet urch Betrachtung von Sekantensteigungen
f x n ) 2 1 Gleichung (*) f' x 1 f'' x 1
Das Newtonsche Näherungsverfahren, Teil Theorie - Konvergenzkriterium f x n Allgemeine Lösung: x n = x n f' x f' x n n 0 Nach er Fachliteratur (Bronstein/Semenjajew) arf man hier von einer Cauchy-Folge
Differentialrechnung
Differentialrechnung Um Funktionen genauer zu untersuchen bzw. sie zu analysieren, ist es notwenig, etwas über ihren Verlauf, as qualitative Verhalten er Funktion, sagen zu können. Das heisst, wir suchen
Lösungen für Klausur A
Lösungen für Klausur A Aufgabe Skizze es Zelts im Querschnitt: h. (a) Aus sin folgt cos un aher h tan, also h. (b) Aus 9 4 4 folgt urch Wurzelziehen. Einsetzen von m in ie Beziehung aus (a) liefert h 6
Serie 6 - Funktionen II + Differentialrechnung
Analysis D-BAUG Dr. Meike Akvel HS 05 Serie 6 - Funktionen II + Differentialrechnung. a) Sei Lösung 3, falls < 0, f : R R, f) c +, falls 0, + 8, falls >. Bestimmen Sie c R un R, so ass f überall stetig
mathphys-online Aufgaben zur Differentialrechnung - Lösung Tangentenaufgaben Aufgabe 1 Definition des Feldindex in Vektoren und Matrizen: ORIGIN 1
Aufgaben zur Differentialrechnung - Lösung Tangentenaufgaben Definition es Felinex in Vektoren un Matrizen: ORIGIN Aufgabe Gegeben ist ie Funktion f mit em Funktionsterm f( x) = x x, wobei x IR. a) Bestimmen
Cluster 1: Kabelverlauf
Teil B Seite 1 / 6 Doris Schönorfer Cluster 1: Kabelverlauf zum Menü Hinweis: Cluster 1 bezieht sich auf Höhere Technische Lehranstalten (HTL) für ie Ausbilungsrichtungen Bautechnik, Holztechnik & Innenraumgestaltung
Lösen einer Gleichung
Zum Lösen von Gleichungen benötigen wir: mindestens einen Term eine Definition der in Frage kommenden Lösungen (Grundmenge) Die Grundmenge G enthält all jene Zahlen, die als Lösung für eine Gleichung in
- 1 - Eine Funktion f(x) heißt differenzierbar an der Stelle x 0, wenn der Grenzwert (siehe Kap. 3)
- 1-4 Differentialrechnung 4.1 Ableitung einer Funktion Eine Funktion f() ist in einer Umgebung definiert. Abb.: Differenzenquotient Man kann immer einen Quotienten bilden, ( + ) f ( + h) f ( ) f h f +
10. Vorlesung Wintersemester
10. Vorlesung Wintersemester 1 Existenz von Potentialen Für einimensionale Bewegungen unter er Einwirkung einer Kraft, ie nur vom Ort abhängt, existiert immer ein Potential, a man immer eine Stammfunktion
Mathematik 1. Klausur am 12. Februar 2018
Mathematik 1 Klausur am 12. Februar 218 Aufgabe 1 (13 Punkte. Entscheien Sie, ob folgene Aussagen wahr oer falsch sin. Achtung: Für jee richtige Antwort erhalten Sie einen Punkt, für jee falsche Antwort
Partielle Ableitungen
Partielle Ableitungen 7-E Partielle Ableitungen einer Funktion von n Variablen Bei einer Funktion y f x1, x,..., xn von n unabhängigen Variablen x1, x,..., x n lassen sich insgesamt n partielle Ableitungen
LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie
LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: [email protected] Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fax:
Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe)
D-MAVT/D-MATL Analysis I HS 07 Dr. Anreas Steiger Lösung - Serie 3. MC-Aufgaben (Online-Abgabe). Es sei ie Funktion f : [0, ) [0, ) efiniert urc f() = ln( + ), wobei er Logaritmus ln zur Basis e ist. Welce
Differential- und Integralrechnung
Universität Paerborn, en 16.07.2007 Differential- un Integralrechnung Ein Repetitorium vor er Klausur Kai Gehrs 1 Übersicht Inhaltlicher Überblick: I. Differentialrechnung I.1. Differenzierbarkeit un er
www.mathe-aufgaben.com
Abiturprüfung Mathematik 00 Baden-Württemberg (ohne CAS) Haupttermin Pflichtteil - Aufgaben Aufgabe : ( VP) Bilden Sie die Ableitung der Funktion f mit Aufgabe : ( VP) f() e =. Bestimmen Sie eine Stammfunktion
Lösungshinweise zu den Hausaufgaben:
P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak 4. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 9 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu en Hausaufgaben: Aufgabe H. a)
Mathematik I Herbstsemester 2018 Kapitel 3: Differentialrechnung
Mathematik I Herbstsemester 2018 Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 39 3. Differentialrechnung Einführung Ableitung elementarer Funktionen Ableitungsregeln Kettenregel Ableitung
Kostenfunktion - Der Cournotsche Punkt
Kostenfunktion Seite 1 von 8 Wilfrie Rohm Kostenfunktion - Der Cournotsche Punkt Der Cournotsche Punkt C beschreibt ie gewinnmaximale Preis-Mengen-Kombination mit en Koorinaten C(p c ; x c ). Er sagt aus,
Überprüfung der 2.Ableitung
Übungen zum Thema: Extrempunkte ganzrationaler Funktionen Lösungsmethode: Überprüfung der.ableitung Version: Ungeprüfte Testversion vom 8.9.7 / 1. h 1. Finde lokale Extrema der unten aufgeführten ganzrationalen
PFLICHTTEIL FRANZ LEMMERMEYER
PFLICHTTEIL FRANZ LEMMERMEYER ( Bestimmen Sie die erste Ableitung der Funktion f(x mit f(x = (3x x + und Vereinfachen Sie so weit wie möglich. ( Bestimmen Sie diejenige Stammfunktion F (x von ( π f(x =
Matura2016-Lösung. Problemstellung 1
Matura-Lösung Problemstellung. Die Funktion f( = + 9k + müsste bei = den Wert annehmen, also gilt + 9k + = k =. Wir betrachten den Bereich mit positiven Werten. Dann gilt: f ( = 8 + 8 = = ; = Bei liegt
D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 5
D-MAVT/D-MATL Analysis I HS 08 Dr. Anreas Steiger Lösung - Serie 5 MC-Aufgaben (Online-Abgabe). Es sei f : [a, b] R eine Funktion. Welce er folgenen Aussagen ist rictig? (a) (b) f ist stetig f ist ifferenzierbar.
LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 4. Übung/Lösung Mathematik für Studierende der Biologie
LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: [email protected] Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fax:
0 1 0 b Die inverse Funktion muss die Translation um b sein und hat daher die homogene Matrix b b 1
Homogene Koorinaten Aufgabe. In homogener Darstellung ist ie Translation f R 4 R 4 um einen Vektor b R 3 eine lineare Funktion un kann aher urch eine Matri Vektor Multiplikation realisiert weren. Wie sieht
Halbleiter. Differenzieller Widerstand
Scnces Cologne Dipl.-ng. (FH) Dipl.-Wirt. ng. (FH) G. Danlak Differenzller Wierstan DW- Stan: 9.3.6; m Steigung einer Funktion in einem Punkt x zu ermitteln, bestimmt man ihren Differenzialuotnten. Das
1. Tangente, Ableitung, Dierential
1. Tangente, Ableitung, Dierential Variablen un Funktionen 1.1. Verallgemeinern Sie ie folgenen Gruppen von Gleichungen mithilfe von Variablen. (1) 5 + 3 = 3 + 5, 1 2 = 2 + 1. (2) 3 2 + 5 2 = (3 + 5) 2,
Gruppe D: Kreis und Tangente
Gruppe D: Kreis und Tangente 1.) Tangente durch einen Punkt am Kreis A) Berechnen durch die Normalform Beispiel: Ermittle für den Kreis k [( 3 2 ); 5] und den Berührpunkt T (1 ) die Gleichung 5 der Tangente.
Abitur 2010 Mathematik GK Infinitesimalrechnung I
Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 2010 Mathematik GK Infinitesimalrechnung I Teilaufgabe 2 (4 BE) Gegeben ist für k R + die Schar von Funktionen f k : x 1 Definitionsbereich D k. Der
Linearisierung einer Funktion Tangente, Normale
Linearisierung einer Funktion Tangente, Normale 1 E Linearisierung einer Funktion Abb. 1 1: Die Gerade T ist die Tangente der Funktion y = f (x) im Punkt P Eine im Punkt x = a differenzierbare Funktion
Grundlagen Algebra. Bruchgleichungen
Bruchgleichungen EL / GS -.0.05 - _Bruchgl.mc Definition: Eine Gleichung, bei er eine Variable x auch im Nenner vorkommt, ohne ass man sie kürzen kann, heißt Bruchgleichung. Bezeichnung: Gleichungen, ie
Die gleiche Lösung erhält man durch Äquivalenzumformung:
R. Brinkmann http://brinkmann-du.de Seite 3..0 Quadratische Gleichungen Reinquadratische Gleichung Lösen Sie die Gleichung x = 5 Durch probieren erhält man die Lösung: x = 5 oder x = 5 Denn x = 5 = 5 oder
Mathematik III. Vorlesung 87. Die äußere Ableitung
Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 87 Die äußere Ableitung In ieser Vorlesung weren wir ein neuartiges mathematisches Objekt kennenlernen, ie sogenannte äußere Ableitung.
f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J}
9 Der Satz über implizite Funktionen 41 9 Der Satz über implizite Funktionen Wir haben bisher Funktionen g( von einer reellen Variablen immer durch Formelausdrücke g( dargestellt Der Zusammenhang zwischen
mathphys-online Umkehrfunktionen Aufgabe 1 1 Gegeben ist die Funktion f mit f( x) 2 x 1 und x [ 0.5 ; 4 [.
Umkehrfunktionen Aufgabe Gegeben ist ie Funktion f mit f( ) un [ 0. ; [. a) Bestimmen Sie ie Wertemenge un tragen Sie en Graphen von f in as Koorinatensystem ein. Kennzeichnen Sie Definitionsmenge (grün)
Lösungshinweise zu den Hausaufgaben:
M. Boßle, B. Krinn Ü. Okur, M. Wie Blatt 7 Gruppenübung zur Vorlesung Höere Matematik 2 Sommersemester 202 Dr. M. Künzer Prof. Dr. M. Stroppel Lösungsinweise zu en Hausaufgaben: Aufgabe H 58. Differenzierbarkeit
f x durch die Funktionsgleichung
1. Aufgabe In einem ebenen Geläne soll für eine neue Bahntrasse auf einer Strecke von km er zugehörige Bahnamm neu errichtet weren. Dabei sollen ie folgenen, in er Abbilung angeeuteten Beingungen eingehalten
4 Gleichungen und Ungleichungen
In diesem Kapitel werden Techniken zur Bestimmung der Lösungsmengen von Gleichungen und Ungleichungen rekapituliert. 4.1 Eindimensionale Gleichungen und Ungleichungen Eine Gleichung oder Ungleichung ohne
Übungen zu Physik I für Naturwissenschaftler Serie 1 Musterlösungen
Übungen zu Physik I für Naturwissenschaftler Serie 1 Musterlösungen Denys Sutter, 25. September 217 Allgemeine Fragen 1. Dimensionsanalyse ist eine nützliche Methoe sich avon zu überzeugen, ass eine physikalische
Abschlussaufgabe Nichttechnik - A II - Lösung
GS - 7 - m_nta_lsgmc Abschlussaufgabe - Nichttechni - A II - Lösung Gegeben ist ie relle Funtion f ( x) x = x mit IR > un ID f = IR Der Graph wir mit G f bezeichnet Bestimmen Sie Lage un Vielfachheit er
Kurzzusammenstellung der in der Vorlesung behandelten impliziten Gleichungen und deren Ableitungen
Kurzzusammenstellung der in der Vorlesung behandelten impliziten Gleichungen und deren Ableitungen Einleitung: Funktion mit einer Veränderlichen Als Einleitung haben wir folgende Funktion besprochen: y
Inhalt der Lösungen zur Prüfung 2012:
Inhalt der Lösungen zur Prüfung : Pflichtteil... Wahlteil Analsis... 8 Wahlteil Analsis... Wahlteil Analsis... 4 Wahlteil Analtische Geometrie... 8 Wahlteil Analtische Geometrie... Pflichtteil Lösungen
Musterlösungen. Theoretische Physik I: Klassische Mechanik
Blatt 4 08.11.01 Musterlösungen Theoretische Physik I: Klassische Mechanik Prof. Dr. G. Alber MSc Nena Balanesković Die Lagrange Methoe zweiter Art, Symmetrien un Erhaltungsgrößen 1. y r x Gegeben sei
Abitur 2011 G8 Musterabitur Mathematik Infinitesimalrechnung
Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 211 G8 Musterabitur Mathematik Infinitesimalrechnung I Teilaufgabe 1 (3 BE) Bestimmen Sie die Nullstellen der Funktion f : x (e x 2) (x 3 2x ) mit Definitionsbereich
Mathematik 1 für Naturwissenschaften
Hans Walser Mathematik für Naturwissenschaften Moul 0 Einführung Lernumgebung Teil 2 Hans Walser: Moul 0, Einführung. Lernumgebung Teil 2 ii Inhalt Where is the flaw?... 2 Intervalle... 3 Frage er Grenzen...2
Lösungen Aufgabenblatt 7 zur Spieltheorie SS 2017
Lösungen Aufgabenblatt 7 zur Spieltheorie SS 07 Aufgabe 7. Wir betrachten as folgene Spiel zwischen hungrigen Löwen i =,, : Es gibt ein Schaf, as von genau einem Löwen gefressen weren kann. Wenn ein Löwe
LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 2. Übung/Lösung Mathematik für Studierende der Biologie
LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: [email protected] Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fa:
Musterlösung Analysis 3 - Funktionentheorie
Musterlösung Analysis 3 - Funktionentheorie 3. Mär Aufgabe : Zum Aufwärmen (i) Betrachte ie Lauranterlegung von f : C C, f() = sin un eige mit Hilfe er Zerlegung, ass ie Singularität bei = hebbar ist.
Aufgaben zum Wochenende (2)
Aufgaben zum Wochenene () Alle Koorinatensysteme seien kartesisch.. Berechnen Sie zu a =(, 3, ) un b =(,, ), c =(, 3, ) : a 3, 4 a b, b ( a c), a 4 b ( ) c. Rechnen Sie möglichst praktisch.. Lösen Sie
Abitur 2017 Mathematik Infinitesimalrechnung I
Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 217 Mathematik Infinitesimalrechnung I Gegeben ist die Funktion g : x 2 4 + x 1 mit maximaler Definitionsmenge D g. Der Graph von g wird mit G g bezeichnet.
1. Probeklausur. φ = 2x 2 y(z 1).
Übungen zur T: Theoretische Mechanik, SoSe04 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45. Probeklausur Dr. Reinke Sven Isermann [email protected] Übung.: Gegeben sei ie Funktion φ = x y z. a Berechnen
Ferienkurs Experimentalphysik 3
Ferienkurs Experimentalphysik 3 Wintersemester 04/05 Thomas Maier, Alexaner Wolf Lösung Optische Abbilungen Aufgabe : Vergrößerungslinse Mit einer (ünnen) Linse soll ein Gegenstan G so auf einen 3m entfernten
Pflichtteil... 2. Wahlteil Analysis 1... 6. Wahlteil Analysis 2... 9. Wahlteil Analysis 3... 13. Wahlteil Analytische Geometrie 1...
Pflichtteil... Wahlteil Analsis 1... 6 Wahlteil Analsis... 9 Wahlteil Analsis 3... 13 Wahlteil Analtische Geometrie 1... 16 Wahlteil Analtische Geometrie... 3 Lösungen: 006 Pflichtteil Lösungen zur Prüfung
Mathematikaufgaben > Analysis > Kurven (Polarkoordinaten)
Michael Buhlmann Mathematikaufgaben > Analysis > Kurven Polarkoorinaten Aufgabe: Gegeben sei für reelle Winkel φ ie Kurve K als Karioie Herzkurve in Polarkoorinaten: im x-y-koorinatensystem. r, φ a Skizziere
Mathematik: Mag. Schmid Wolfgang+ LehrerInnenTeam ARBEITSBLATT 6-8 UMKEHRAUFGABEN ZUR KURVENDISKUSSION
Mathematik: Mag. Schmid Wolfgang LehrerInnenTeam ARBEITSBLATT 6-8 UMKEHRAUFGABEN ZUR KURVENDISKUSSION Wir wollen uns zu diesem Aufgabenbereich noch einige komplexere Aufgabenstellungen überlegen: Beispiel:
4.2. Quadratische Funktionen
Definition: Normalform der Parabelgleichung.. Quadratische Funktionen Eine Funktion mit der Gleichung f() = a + b + c mit a R* und b,c R heißt quadratische Funktion oder ganzrationale Funktion. Grades
Polynomfunktionen - Fundamentalsatz der Algebra
Schule / Institution Titel Seite 1 von 7 Peter Schüller [email protected] Polynomfunktionen - Funamentalsatz er Algebra Mathematische / Fachliche Inhalte in Stichworten: Polynomfunktionen, Funamentalsatz
24.1 Überblick. 24.2 Beispiele. A. Bestimmen einer ganzrationalen Funktion. 24. Interpolation mit Ableitungen
4. Interpolation mit Ableitungen 4. Interpolation mit Ableitungen 4.1 Überblick Die Interpolationsaufgabe haben wir bereits in Kapitel 7 (Band Analysis 1) untersucht. Als Auffrischung: Zu n vorgegebenen
Lineare Gleichungen mit 2 Variablen
Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen sind sehr eng verwandt mit linearen Funktionen. Die Funktionsgleichung einer linearen Funktion f(x) = m x+q m: Steigung, q: y Achsenabschnitt
Mathematik 1 -Arbeitsblatt 1-9: Multiplizieren mehrgliedriger Termee. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB
Schule Thema Personen Bunesgymnasium für Berufstätige Salzburg Mathematik 1 -Arbeitsblatt 1-9: Multiplizieren mehrglieriger Termee 1F Wintersemester 01/013 Unterlagen: LehrerInnenteam GFB Ein neues Problem
Partielle Ableitungen & Tangentialebenen. Folie 1
Partielle Ableitungen & Tangentialebenen Folie 1 Bei Funktionen mit einer Variable, gibt die Ableitung f () die Steigung an. Bei mehreren Variablen, z(,), gibt es keine eindeutige Steigung. Die Steigung
Inhalt der Lösungen zur Prüfung 2015:
Inhalt der Lösungen zur Prüfung : Pflichtteil... Wahlteil Analysis... 8 Wahlteil Analysis... Wahlteil Analytische Geometrie/Stochastik... Wahlteil Analytische Geometrie/Stochastik... 9 Pflichtteil Lösungen
f : x y = mx + t Der Graph einer linearen Funktion ist eine Gerade, welche die y-achse im Punkt S schneidet. = m 2 x 2 m x 1
III. Funktionen und Gleichungen ================================================================== 3.1. Lineare Funktionen Eine Funktion mit der Zuordnungvorschrift f : x y = mx + t und m, t R heißt lineare
2.4. GAUSSSCHER SATZ π ε 0 r 2. π r 2)
2.4. GAUSSSCHER SATZ 23 2.4 Gaußscher Satz Das Fel einer Punktlaung genügt er Gleichung: E = 1 4 π ε 0 Q r 2 Desweiteren berechnet sich ie Oberfläche einer Kugel, eren Punkte vom Mittelpunkt en Abstan
6.3 Exakte Differentialgleichungen
6.3. EXAKTE DIFFERENTIALGLEICHUNGEN 23 6.3 Exakte Differentialgleichungen Andere Bezeichnungen: Pfaffsche Dgl., Dgl. für Kurvenscharen, Nullinien Pfaffscher Formen. 1. Definitionen Pfaffsche Dgl, Dgl.
Übungen zum Ferienkurs Theoretische Mechanik
Übungen zum Ferienkurs Theoretische Mechanik Lagrange un Hamilton Mechanik Übungen, ie mit einem Stern markiert sin, weren als besoners wichtig erachtet. 2.1 3D Faenpenel Betrachten Sie ein Faenpenel er
Der Taschenrechner CAS: TI Inspire (Texas Instruments)
Der Taschenrechner (Texas Instruments) Übersicht: 1. Katalog (wichtige Funktionen un wie man sie aufruft) 2. Funktionen efinieren (einspeichern mit un ohne Parameter) 3. Nullstellen 4. Gleichungen lösen
Satz über implizite Funktionen und seine Anwendungen
Satz über implizite Funktionen und seine Anwendungen Gegeben sei eine stetig differenzierbare Funktion f : R 2 R, die von zwei Variablen und abhängt. Wir betrachten im Folgenden die Gleichung f(,) = 0.
Ableitung einer Betragsfunktion Differenzierbarkeit
Ableitung einer Betragsfunktion Differenzierbarkeit 1-E Differenzierbarkeit einer Funktion Eine Funktion y = f (x) heißt an der Stelle x differenzierbar, wenn der Grenzwert f ' ( x) = lim Δ x 0 Δ y Δ x
2. Umkehrfunktionen und ihre Ableitung, Hyperbelfunktionen 2.1. Höhere Ableitungen. Die Ableitung der Ableitung von f bezeichnet man, x 2, fur x < 0,
. Umkehrfunktionen un ihre Ableitung, Hyperbelfunktionen.. Höhere Ableitungen. Die Ableitung er Ableitung von f bezeichnet man, falls sie existiert, mit f x) oer f ) x) oer fx)) oer fx) bzw. allgemein
Hauptprüfung Abiturprüfung 2016 (ohne CAS) Baden-Württemberg
Baden-Württemberg: Abitur 06 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 06 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Aleander Schwarz www.mathe-aufgaben.com
Analysis Aufstellen ganzrationaler Funktionen (Steckbriefaufgaben)
Analysis (Steckbriefaufgaben) Alexaner Schwarz August 18 1 Aufgabe 1: Bestimme jeweils en Funktionsterm. a) Der Graph einer ganzrationalen Funktion ritten Graes hat einen Tiefpunkt bei T(/) un einen Wenepunkt
Ü b u n g s b l a t t 13. Organisatorisches:
MATHEMATIK FÜ INFOMATIKE I WINTESEMESTE 7/8 POF. D. FIEDICH EISENBAND D. KAI GEHS Ü b u n g s b l t t 13 Orgnistorisches: Dieses Übungsbltt wir nicht mehr korrigiert. D ie Aufgben ennoch klusurrelevnt
Mathematische Funktionen
Mathematische Funktionen Viele Schüler können sich unter diesem Phänomen überhaupt nichts vorstellen, und da zusätzlich mit Buchstaben gerechnet wird, erzeugt es eher sogar Horror. Das ist jedoch gar nicht
Achsensymmetrie. Konstruktionen M 7.1
M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke
Mathematik II Frühjahrssemester 2013
Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 8. Funktionen von mehreren Variablen Kapitel 8.3 Anwendungen der partiellen Differentiation (Teil 1): Kettenregel und Linearisierung
www.mathe-aufgaben.com
Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f(x) = x sin( x + ) Aufgabe : ( VP) Berechnen Sie das Integral
7.1 Definitionen und Ableitungen der elementaren Funktionen. f(x + x) f(x)
Kapitel 7 Differentialrechnung 71 Definitionen un Ableitungen er elementaren Funktionen Die Funktion f) sei efiniert für a
LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 4. Übung/Lösung Mathematik für Studierende der Biologie
LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: [email protected] Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fax:
Relationen / Lineare Funktionen
Relationen / Lineare Funktionen Relationen Werden Elemente aus einer Menge X durch eine Zuordnungsvorschrift anderen Elementen aus einer Menge Y zugeordnet, so wird durch diese Zuordnungsvorschrift eine
(Unvollständige) Zusammenfassung Analysis Grundkurs
(Unvollständige) Zusammenfassung Analysis Grundkurs. Ableitungs und Integrationsregeln (Folgende 0 Funktionen sind alles Funktionen aus dem Zentralabitur Grundkurs.) a) f(t) = 0,0t e 0,t b) f(t) = t 3
Abituraufgaben: Statische elektrische Felder. 1 Aus Abiturprüfung 1990, Grundkurs - Plattenkondensator im Vakuum. Aufgabe
Abituraufgaben: Statische elektrische Feler 1 Aus Abiturprüfung 1990, Grunkurs - Plattenkonensator im Vakuum Aufgabe An einem Plattenkonensator mit er Plattenfläche A = 80cm 2 un em Plattenabstan = 25mm
Rechnen mit rationalen Zahlen
Rechnen mit rationalen Zahlen a ist die Gegenzahl von a und ( a) a Subtraktionsregel: Statt eine rationale Zahl zu subtrahieren, addiert man ihre Gegenzahl. ( 8) ( ) ( 8) + ( + ) 8 + 7, (,6) 7, + ( +,6)
1 Analysis Kurvendiskussion
1 Analysis Kurvendiskussion 1.1 Allgemeingültige Betrachtungen Die folgenden aufgezeigten Betrachtungen und Rechenschritte gelten für alle Arten von Funktionen. Funktion (z.b. Polynom n-ten Grades) Schreibweise
Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.3 Anwendungen (Teil 1): Kettenregel und Linearisierung
Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.3 Anwendungen (Teil 1): Kettenregel und Linearisierung www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2
Optimieren unter Nebenbedingungen
Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht
Einführung in die Chaostheorie (Teil 1) Ac 2018
Einführung in ie Chaostheorie (Teil 1) Ac 2018 Die sogenannte Chaostheorie befasst sich mit er Erforschung nichtlinearer ynamischer Systeme, ie chaotisches Verhalten zeigen können. Chaotisches Verhalten
LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie
LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: [email protected] Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fa:
Mathematik 3 für Informatik
Gunter Ochs Sommersemester 0 Mathematik 3 für Informatik Hausaufgabenblatt Lösungshinweise ohne Garantie auf Fehlerfeiheit). Seien f ) = { {, falls, falls und f ) =. ln, falls a) Skizzieren
