PFLICHTTEIL FRANZ LEMMERMEYER

Größe: px
Ab Seite anzeigen:

Download "PFLICHTTEIL FRANZ LEMMERMEYER"

Transkript

1 PFLICHTTEIL FRANZ LEMMERMEYER ( Bestimmen Sie die erste Ableitung der Funktion f(x mit f(x = (3x x + und Vereinfachen Sie so weit wie möglich. ( Bestimmen Sie diejenige Stammfunktion F (x von ( π f(x = sin x + π, welche F (0 = genügt. (3 Lösen Sie die Gleichung für 0 x π. (sin(x + sin(x = 3 (4 Gegeben sind die beiden Funktionen f(x = x und g(x = c x. Bestimmen Sie c so, dass sich die Schaubilder von v und g senkrecht schneiden. (5 Die folgenden Abbildungen zeigen die Schaubilder einer Funktion f, ihrer Ableitung f, und zweier Stammfunktionen F und F. a Ordnen Sie die Schaubilder diesen Funktionen zu. b Die Funktion f hat die Form f(x = axe x. Bestimmen Sie den Wert von a.

2 FRANZ LEMMERMEYER (6 Eine Ebene E geht durch den Ursprung und schneidet das durch die Ebenen E : x = 0, E : x = 0, E 3 : x + x = bestimmte Prisma in einem gleichseitigen Dreieck. Bestimme die Koordinatengleichungen der beiden möglichen Ebenen E. (7 Zeigen Sie, dass die Gerade g und die Ebene E, die durch ( 3 g : x = 3 + t( und E : x = r( + s( parallel sind, und bestimmen Sie ihren Abstand. Geben Sie die Gleichung einer weiteren Geraden h g an, die von E denselben Abstand hat wie g. (8 In einer Urne befinden sich 7 blaue und rote Kugeln. Es werden zwei Kugeln ohne Zurücklegen gezogen. Bestimmen Sie den Erwartungswert für die Anzahl der gezogenen blauen Kugeln. (9 Gegeben ist ein Punkt P und zwei nicht parallele Ebenen E und E in Parameterform. Beschreiben Sie ein Verfahren zur Bestimmung einer Koordinatengleichung derjenigen Ebene E, welche P enthält und senkrecht auf E und E steht.

3 PFLICHTTEIL 3 Lösungen ( Bestimmen Sie die erste Ableitung der Funktion f(x mit f(x = (3x x + und Vereinfachen Sie so weit wie möglich. f (x = (6x (3x x + = 36x 3 36x + 0x + 4. ( Bestimmen Sie diejenige Stammfunktion F (x von ( π f(x = sin x + π, welche F (0 = genügt. Daran denken, dass die Klammer hinter sin stehen bleibt! Damit wird F (x = 4 ( π π cos x + π + c; Einsetzen von F (0 = gibt = 4 cos π + c = c, also c =. π (3 Lösen Sie die Gleichung für 0 x π. (sin(x + sin(x = 3 Wir setzen sin x = z und erhalten z + z 3 = 0, also z = und z = 3. Die Gleichung sin x = 3 hat keine Lösung, da sin x Amplitude hat. Es ist also sin x = zu lösen. Wegen sin(u = für u = π und u = π + π = 9π muss also x = π oder x = 9π sein, was auf x = π und x 4 = 5π führt. Die nächste Lösung (x 4 3 = 9π 4 liegt schon außerhalb des Intervalls [0; π]. (4 Gegeben sind die beiden Funktionen f(x = x und g(x = c x. Bestimmen Sie c so, dass sich die Schaubilder von v und g senkrecht schneiden. Senkrecht schneiden bedeutet, dass für die Steigungen m und m der Tangenten in den Schnittpunkten m m = gelten muss.

4 4 FRANZ LEMMERMEYER Wegen f (x = x und g (x = x muss also x ( x =, d.h. 4x = und x, = ± sein. In diesen beiden Punkten müssen sich die Schaubilder von f und g schneiden, d.h. es muss f( = g( sein (für x = erhält man nichts Neues. Dies ergibt 4 = c 4, also c =. (5 Die folgenden Abbildungen zeigen die Schaubilder einer Funktion f, ihrer Ableitung f, und zweier Stammfunktionen F und F. a Ordnen Sie die Schaubilder diesen Funktionen zu. b Die Funktion f hat die Form f(x = axe x. Bestimmen Sie den Wert von a. a Die beiden Stammfunktionen unterscheiden sich nur durch Verschiebung in Richtung y-achse: also sind die beiden rechten Schaubilder Stammfunktionen von f. Da F nur einen Extrempunkt (in x = 0 hat, muss f genau eine Nullstelle mit Vorzeichenwechsel haben, d.h. das Schaubild von f ist links unten. Damit bleibt das erste Schaubild für f übrig. b Einsetzen von x = 0 in f bringt nichts, da f(0 = 0 wird. Also setzen wir x = 0 in die Ableitung f (x = ae x ax e x ein und finden f (0 = a. Aus dem ersten Schaubild liest man f (0 = ab, und es folgt a =. (6 Eine Ebene E geht durch den Ursprung und schneidet das durch die Ebenen E : x = 0, E : x = 0, E 3 : x + x = bestimmte Prisma in einem gleichseitigen Dreieck. Bestimme die Koordinatengleichungen der beiden möglichen Ebenen E. Es empfiehlt sich, die Ebenen zu skizzieren (x x 3 -Ebene, x x 3 - Ebene, die dritte hat Spurpunkte S ( 0 0, S (0 0, und ist parallel zur x 3 -Achse. Man sieht dann, dass das gleichseitige Dreieck aus O(0 0 0 und den Punkten P ( 0 z und Q(0 z über (bzw. unter den beiden Spurpunkten bestehen muss. Gleichsetzen der Abstände P Q = und OP = + z liefert z =, also z, = ±.

5 PFLICHTTEIL 5 Die erste Ebene geht also durch O(0 0 0, P ( 0 und Q(0, und hat die Gleichung x +x x 3 = 0 (ausrechnen wie üblich; die zweite Ebene durch O(0 0 0, P ( 0 und Q(0 ist E : x + x + x 3 = 0. (7 Zeigen Sie, dass die Gerade g und die Ebene E, die durch ( 3 g : x = 3 + t( und E : x = r( + s( parallel sind, und bestimmen Sie ihren Abstand. Geben Sie die Gleichung einer weiteren Geraden h g an, die von E denselben Abstand hat wie g. g und E sind parallel, wenn der Richtungsvektor von g senkrecht auf den Normalenvektor ( ( ( 4 n E = = 3 steht, was wegen ( ( = = 0 der Fall ist. Da alle Punkte von g gleichen Abstand von E haben, brauchen wir nur den Abstand eines Punktes auf g, z.b. P ( 3, zu E bestimmen. Dazu verwandeln wir die Ebenengleichung in Koordinatenform: E : 4x 3x + x 3 = d; Einsetzen von (0 0 0 liefert d = 0, also E : 4x 3x + x 3 = 0. Damit ist die HNF E : 4x 3x + x 3 = 0, 6 und wir finden d = = 8 6. Wir erhalten eine zweite Gerade h mit demselben Abstand, wenn h parallel zu E ist und ebenfalls durch P geht, z.b. ( 0 h : x = 3 + t( 3 ( ( 0 4 wegen 3 = 0. 3

6 6 FRANZ LEMMERMEYER (8 In einer Urne befinden sich 7 blaue und rote Kugeln. Es werden zwei Kugeln ohne Zurücklegen gezogen. Bestimmen Sie den Erwartungswert für die Anzahl der gezogenen blauen Kugeln. Man kann entweder 0, oder blaue Kugeln ziehen. Wir finden p(rr = = 0 306, p(bb = = 4 306, also ist 0 4 = 54. Damit haben wir Anz. blaue 0 p und wir finden E = = (9 Gegeben ist ein Punkt P und zwei nicht parallele Ebenen E und E in Parameterform. Beschreiben Sie ein Verfahren zur Bestimmung einer Koordinatengleichung derjenigen Ebene E, welche P enthält und senkrecht auf E und E steht. (a Berechne die Normalenvektoren n von E und n von E. (b Der Normelenvektor vecn einer Ebene E, welche senkrecht auf E steht, genügt n n = 0. Daher muss n n = n n = 0 sein, also können wir n = n n nehmen. (c Die Normalenform der Ebene E lautet ( x OP n = 0. Ausmultiplizieren liefert die Koordinatenform.

K2 KLAUSUR 2. Aufgabe Punkte (max) Punkte. (1) Bestimmen Sie die Ableitung von f(x) = 2 x

K2 KLAUSUR 2. Aufgabe Punkte (max) Punkte. (1) Bestimmen Sie die Ableitung von f(x) = 2 x K2 KLAUSUR 2 PFLICHTTEIL 202 Aufgabe 2 3 4 5 6 7 8 Punkte (max) 2 2 3 3 5 3 5 3 Punkte () Bestimmen Sie die Ableitung von f(x) = 2 x 2 + 4. (2) Berechnen Sie das Integral 4 ( ) x 2 dx. (3) Lösen Sie die

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f(x) = x sin( x + ) Aufgabe : ( VP) Berechnen Sie das Integral

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik 00 Baden-Württemberg (ohne CAS) Haupttermin Pflichtteil - Aufgaben Aufgabe : ( VP) Bilden Sie die Ableitung der Funktion f mit Aufgabe : ( VP) f() e =. Bestimmen Sie eine Stammfunktion

Mehr

G13 KLAUSUR 1. (1) (2 VP) Bilden Sie die erste Ableitung der Funktion f mit. f(x) = e 2x+1 x

G13 KLAUSUR 1. (1) (2 VP) Bilden Sie die erste Ableitung der Funktion f mit. f(x) = e 2x+1 x G3 KLAUSUR PFLICHTTEIL Aufgabe 2 3 4 5 6 7 8 Punkte (max) 2 2 3 3 5 3 5 3 Punkte () (2 VP) Bilden Sie die erste Ableitung der Funktion f mit f(x) = e 2x+. x (2) (2 VP) Gegeben ist die Funktion f mit f(x)

Mehr

Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen

Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen Abiturprüfung Mathematik 202 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen klaus_messner@web.de www.elearning-freiburg.de Pflichtteil 202 2 Aufgabe : Bilden Sie die erste Ableitung

Mehr

Abiturprüfung Mathematik 006 Baden-Württemberg (ohne CAS) Haupttermin Pflichtteil - Aufgaben Aufgabe : ( VP) Bilden Sie die Ableitung der Funktion f mit f(x) sin(4x ). Aufgabe : ( VP) Geben Sie eine Stammfunktion

Mehr

Abitur - Übung 1 Glege 9/11

Abitur - Übung 1 Glege 9/11 Abitur - Übung 1 Glege 9/11 Aufgabe 1.1) ganz-rationale Funktion 1.1.a) Bestimmen Sie eine ganz-rationale Funktion 3.Grades, deren Graph bei =4 die -Achse berührt und an deren Punkt (2/f(2)) die Tangente

Mehr

Aufgaben mit Ebenen. Parameterform Normalenform Koordinatenform. Darstellung = + r + s =0 ax 1 + bx 2 + cx 3 = d. Beispiel

Aufgaben mit Ebenen. Parameterform Normalenform Koordinatenform. Darstellung = + r + s =0 ax 1 + bx 2 + cx 3 = d. Beispiel Aufgaben mit Ebenen Parameterform Normalenform Koordinatenform Spurpunkte Zur grafischen Darstellung der Ebene die Spurpunkt berechnen. Zwei Koordinaten gleich 0 setzen und jeweils die dritte ausrechnen.

Mehr

Abiturprüfung Mathematik 2014 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen

Abiturprüfung Mathematik 2014 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen Abiturprüfung Mathematik Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen klaus_messner@web.de www.elearning-freiburg.de Pflichtteil Aufgabe : Bilden Sie die Ableitung der Funktion f

Mehr

K2 MATHEMATIK KLAUSUR 4. Aufgabe PT Ana Geo Sto Gesamtpunktzahl Punkte (max) Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR 4. Aufgabe PT Ana Geo Sto Gesamtpunktzahl Punkte (max) Punkte Notenpunkte K MATHEMATIK KLAUSUR 4 17.03.017 Aufgabe PT Ana Geo Sto Gesamtpunktzahl Punkte (max 0 0 10 10 60 Punkte Notenpunkte PT 1 3 4 5 6 7 * Summe P. (max 3 3 4 4 0 Punkte WT Ana A.1a b c A 1. Summe P. (max 6

Mehr

Lösungen zur Prüfung 2014: Pflichtteil

Lösungen zur Prüfung 2014: Pflichtteil Pflichtteil Lösungen zur Prüfung : Pflichtteil Benötigte Kenntnisse: Analysis: Ableiten mit Produktregel, Integral mit Stammfunktion berechnen, Gleichung lösen, Kosinusfunktion, Nullstellen, Funktionswerte

Mehr

Zusammenfassung Vektorrechnung und Komplexe Zahlen

Zusammenfassung Vektorrechnung und Komplexe Zahlen Zusammenfassung Vektorrechnung und Komplexe Zahlen Michael Goerz 8. April 006 Inhalt Vektoren, Geraden und Ebenen. Länge eines Vektors.......................... Skalarprodukt..............................

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 01 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 01 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Abiturprüfung Mathematik 0 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f() = ( sin() + 7) 5. Aufgabe : ( VP) Berechnen Sie eine Stammfunktion

Mehr

Pflichtteil - Exponentialfunktion

Pflichtteil - Exponentialfunktion Pflichtteil - Eponentialfunktion Aufgabe (Ableiten) Bestimme die. und. Ableitung der folgenden Funktionen: a) f() = ln() + b) g() = e Aufgabe (Integrieren) Berechnen Sie die Integrale: a) e d b) c) h()

Mehr

K2 MATHEMATIK KLAUSUR 1. Gesamtpunktzahl /30 Notenpunkte. (1) Bilden Sie die erste Ableitung der Funktion f mit f(x) = 1 + x ln(2x + 1).

K2 MATHEMATIK KLAUSUR 1. Gesamtpunktzahl /30 Notenpunkte. (1) Bilden Sie die erste Ableitung der Funktion f mit f(x) = 1 + x ln(2x + 1). K MATHEMATIK KLAUSUR NACHTERMIN..6 Aufgabe 3 4 6 7 8 9 Punkte (max 3 3 4 4 Punkte Gesamtpunktzahl /3 Notenpunkte ( Bilden Sie die erste Ableitung der Funktion f mit f(x = + x ln(x +. ( Bestimmen Sie das

Mehr

Hauptprüfung Abiturprüfung 2017 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2017 (ohne CAS) Baden-Württemberg Hauptprüfung Abiturprüfung 07 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Aleander Schwarz www.mathe-aufgaben.com Mai 07 Aufgabe : (,5 VP) Bilden Sie die Ableitung

Mehr

Mathematik Name: Nr.5 K2 Punkte: /30 Note: Schnitt:

Mathematik Name: Nr.5 K2 Punkte: /30 Note: Schnitt: Pflichtteil (etwa 40min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen abgegeben sein, ehe der GTR und die Formalsammlung verwendet werden dürfen.) Vorbemerkung: Viele

Mehr

Mathematik. Abiturprüfung 2014. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden.

Mathematik. Abiturprüfung 2014. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Mathematik Abiturprüfung 2014 Prüfungsteil A Arbeitszeit: 90 Minuten Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Zu den Themengebieten Analysis, Stochastik und Geometrie

Mehr

(Quelle Landungsbildungsserver BW) (Quelle Landungsbildungsserver BW)

(Quelle Landungsbildungsserver BW) (Quelle Landungsbildungsserver BW) Aufgabe M01 Lösen Sie das lineare Gleichungssystem 7 2 2 3 5 4 4 7 Aufgabe M02 14 Stellen Sie den Vektor 5 als Linearkombination der drei Vektoren 7 0 1 5 1, 3 und 2 dar. 3 7 2 Aufgabe M03 0 2 Gegeben

Mehr

Pflichtteil... 2. Wahlteil Analysis 1... 6. Wahlteil Analysis 2... 9. Wahlteil Analysis 3... 13. Wahlteil Analytische Geometrie 1...

Pflichtteil... 2. Wahlteil Analysis 1... 6. Wahlteil Analysis 2... 9. Wahlteil Analysis 3... 13. Wahlteil Analytische Geometrie 1... Pflichtteil... Wahlteil Analsis 1... 6 Wahlteil Analsis... 9 Wahlteil Analsis 3... 13 Wahlteil Analtische Geometrie 1... 16 Wahlteil Analtische Geometrie... 3 Lösungen: 006 Pflichtteil Lösungen zur Prüfung

Mehr

Hauptprüfung 2007 Aufgabe 3

Hauptprüfung 2007 Aufgabe 3 Hauptprüfung 7 Aufgabe. Gegeben sind die Funktionen f, g und h mit f (x) = sin x g (x) = sin(x) +, x h(x) = sin x Ihre Schaubilder sind Beschreiben Sie, wie hervorgehen.. Skizzieren Sie K g. K f, K f,

Mehr

Aufgaben zur Vektorrechnung

Aufgaben zur Vektorrechnung ) Liegt der Punkt P(; -; 2) auf der Geraden 4 g: x = 5+t 2? 6 2 Aufgaben zur Vektorrechnung 2) a) Wie groß ist der Abstand der Punkte A(4; 2; -4) und B(;-2;-4) zueinander? b) Gesucht wir der Mittelpunkt

Mehr

Analytische Geometrie Aufgaben und Lösungen

Analytische Geometrie Aufgaben und Lösungen Analytische Geometrie Aufgaben und Lösungen http://www.fersch.de Klemens Fersch. Januar Inhaltsverzeichnis Punkte:Vektor - Abstand - Steigung - Mittelpunkt. Aufgaben....................................................

Mehr

Pflichtteil Pflichtteil Pflichtteil Abiturprüfung Mathematik 2013 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen

Pflichtteil Pflichtteil Pflichtteil Abiturprüfung Mathematik 2013 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen Abiturprüfung Mathematik Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen Pflichtteil Aufgabe : Bilden Sie die erste Ableitung der Funktion mit +5 ( VP) Verwende Produkt- und Kettenregel

Mehr

Abitur Mathematik Baden-Württemberg 2012

Abitur Mathematik Baden-Württemberg 2012 Abitur Mathematik: Baden-Württemberg 2012 Im sind keine Hilfsmittel zugelassen. Aufgabe 1 1. SCHRITT: STRUKTUR DER FUNKTION BESCHREIBEN Der Funktionsterm von f ist die Verkettung der Potenzfunktion g(x)

Mehr

Aufgabe A1. Aufgabe A2. Aufgabe A3 Die Funktion mit 3 3 hat die Nullstelle 1. Bestimmen Sie die weiteren Nullstellen.

Aufgabe A1. Aufgabe A2. Aufgabe A3 Die Funktion mit 3 3 hat die Nullstelle 1. Bestimmen Sie die weiteren Nullstellen. Aufgabe A1 Bilden Sie die Ableitung der Funktion mit 4. Aufgabe A2 Geben Sie eine Stammfunktion der Funktion mit an. Aufgabe A3 Die Funktion mit 3 3 hat die Nullstelle 1. Bestimmen Sie die weiteren Nullstellen.

Mehr

Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit x f(x) = (x + 5) e. Aufgabe : ( VP) Gegeben ist die Funktion

Mehr

Demo: Mathe-CD. Prüfungsaufgaben Mündliches Abitur. Analysis. Teilbereich 1: Ganzrationale Funktionen 1. März 2002

Demo: Mathe-CD. Prüfungsaufgaben Mündliches Abitur. Analysis. Teilbereich 1: Ganzrationale Funktionen 1. März 2002 Prüfungsaufgaben Mündliches Abitur Analysis Teilbereich : Ganzrationale Funktionen Hier nur Aufgaben als Demo Datei Nr. 9 März 00 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Vorwort Die in dieser Reihe von

Mehr

K2 KLAUSUR Pflichtteil

K2 KLAUSUR Pflichtteil K2 KLAUSUR 10.02.2012 MATHEMATIK Pflichtteil: Aufgabe 1 2 3 4 5 6 7 8 Punkte (max) 2 2 3 4 5 3 4 3 Punkte Wahlteil Analysis Aufgabe a b c Punkte (max) 9 5 4 Punkte Wahlteil Geometrie Aufgabe a b c Punkte

Mehr

Abiturprüfung Mathematik 004 Baden-Württemberg (ohne CAS) Haupttermin Pflichtteil - Aufgaben Aufgabe : ( VP) Bilden Sie die Ableitung der Funktion f mit f() = + 3 Aufgabe : ( VP) Geben Sie eine Stammfunktion

Mehr

Formelsammlung Analytische Geometrie

Formelsammlung Analytische Geometrie Formelsammlung Analytische Geometrie http://www.fersch.de Klemens Fersch 6. August 6 Inhaltsverzeichnis 6 Analytische Geometrie 6. Vektorrechung in der Ebene......................................... 6..

Mehr

Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1...

Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1... Pflichtteil... Wahlteil Analysis... Wahlteil Analysis... Wahlteil Analysis 3... 5 Wahlteil Analytische Geometrie... Wahlteil Analytische Geometrie... Lösungen: 00 Pflichtteil Lösungen zur Prüfung 00: Pflichtteil

Mehr

Abiturprüfung Mathematik 2005 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A

Abiturprüfung Mathematik 2005 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A Für jedes a > ist eine Funktion f a definiert durch fa (x) = x (x a) mit x R a Das Schaubild von f

Mehr

Inhalt der Lösungen zur Prüfung 2015:

Inhalt der Lösungen zur Prüfung 2015: Inhalt der Lösungen zur Prüfung : Pflichtteil... Wahlteil Analysis... 8 Wahlteil Analysis... Wahlteil Analytische Geometrie/Stochastik... Wahlteil Analytische Geometrie/Stochastik... 9 Pflichtteil Lösungen

Mehr

Formelsammlung Analytische Geometrie

Formelsammlung Analytische Geometrie Formelsammlung http://www.fersch.de Klemens Fersch. September 8 Inhaltsverzeichnis 6 6. Vektorrechung in der Ebene.............................................. 6.. Vektor - Abstand - Steigung - Mittelpunkt.................................

Mehr

6.6. Abstandsbestimmungen

6.6. Abstandsbestimmungen 6.6. Abstandsbestimmungen 6. Geraden und Ebenen im Raum In diesem Kapitel werden folgende Fälle vorgestellt:. Abstand zweier Punkte. Abstand zweier paralleler Geraden 3. Abstand einer Ebene zu einer zur

Mehr

Aufgaben zu den Ableitungsregeln

Aufgaben zu den Ableitungsregeln Aufgaben zu den Ableitungsregeln 1.0 Bestimmen Sie die Gleichung der Tangente im Punkt P(2;?) an den Graphen der folgenden Funktionen. 1.1 f(x) = x 2 2x 1.2 f(x) = (x + 1 2 )2 1.3 f(x) = 1 2 x2 3x 1 2.

Mehr

MATHEMATIK K1 EINSTIEGSARBEIT (OHNE GTR)

MATHEMATIK K1 EINSTIEGSARBEIT (OHNE GTR) MATHEMATIK K EINSTIEGSARBEIT (OHNE GTR Einige Stichworte: Bruchrechnen: bei Addition und Subtraktion beide Brüche auf den Hauptnenner bringen Man teilt durch einen Bruch, indem man mit dessen Kehrwert

Mehr

Übungen 4 Gerade, Ebene - Kurze Aufgaben Ebene: Spurpunkte, Spurgerade, Achsenabschnittsform Gerade, Ebene U04 Übungen 4 - Seite 1 (von 5)

Übungen 4 Gerade, Ebene - Kurze Aufgaben Ebene: Spurpunkte, Spurgerade, Achsenabschnittsform Gerade, Ebene U04 Übungen 4 - Seite 1 (von 5) Übungen Gerade, Ebene - Kurze Aufgaben ) Gesucht ist Normalenform einer Ebene, die den Punkt P( ) enthält und auf der x- Achse senkrecht steht. ) Gegeben ist die Ebene E: x ( Gesucht ist der Winkel zwischen

Mehr

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13 Pflichtteil Aufgabe BEISPIEL A. Geben Sie Lage und Art der Nullstellen der Funktion f mit 4 f( x) ( x ) ( x ) ; x IR an.. Bestimmen Sie die Gleichung der Tangente in P( f ()) an das Schaubild der Funktion

Mehr

K2 ÜBUNGSBLATT 2 F. LEMMERMEYER

K2 ÜBUNGSBLATT 2 F. LEMMERMEYER K2 ÜBUNGSBLATT 2 F. LEMMERMEYER Aufgabe 1. Hier ein knappes Beispiel, wie man einen Punkt P an einer Geraden g spiegelt (Wer sich gerne was merkt: Lotfußpunkte auf Ebene mit Lotgerade, Lotfußpunkte auf

Mehr

1 aus allen 3 Zeilen folgt t = 1, also liegt A auf g. Orsvektor und Richtungsvektor der Geraden werden übernommen, den zweiten Spannvektor bekommt

1 aus allen 3 Zeilen folgt t = 1, also liegt A auf g. Orsvektor und Richtungsvektor der Geraden werden übernommen, den zweiten Spannvektor bekommt Lösungsskizzen Klassische Aufgaben Lösung zu Abi - PTV Punktprobe: = + t aus allen Zeilen folgt t =, also liegt A auf g. Richtungsvektor von g: u = ; Normalenvektor von E: n = Da die n und u Vielfache

Mehr

3 Differenzialrechnung

3 Differenzialrechnung Differenzialrechnung 3 Differenzialrechnung 3.1 Ableitungsregeln Übersicht Beispiel Vorgehen Potenzfunktionen f(x) = x 4 f (x) = 4 x 3 f(x) = x f (x) = 1 x 0 = 1 f(x) = x Hochzahl f (x) = Hochzahl x Hochzahl

Mehr

Pflichtteil. Baden-Württemberg Aufgabe 1. Aufgabe 2. Musterlösung. Abitur Mathematik Baden-Württemberg Abitur Mathematik: Musterlösung

Pflichtteil. Baden-Württemberg Aufgabe 1. Aufgabe 2. Musterlösung. Abitur Mathematik Baden-Württemberg Abitur Mathematik: Musterlösung Abitur Mathematik: Baden-Württemberg 2013 Aufgabe 1 1. SCHRITT: STRUKTUR DER FUNKTION BESCHREIBEN Der Funktionsterm von f ist das Produkt einer ganzrationalen Funktion u(x) = 2x 2 + 5x und einer Verkettung

Mehr

Kursstufe K

Kursstufe K Kursstufe K 6..6 Schreiben Sie die Ergebnisse bitte kurz unter die jeweiligen Aufgaben, lösen Sie die Aufgaben auf einem separaten Blatt. Aufgabe : Berechnen Sie das Integral Lösungsvorschlag : exp(3x

Mehr

Viele Aufgaben sind ähnlich, beim Bearbeiten ist genaues Hinsehen

Viele Aufgaben sind ähnlich, beim Bearbeiten ist genaues Hinsehen Die Lerndominos sind ein idealer Weg, um Gelerntes zu vertiefen. Das Domino wird mit der Start-Karte begonnen, dann werden die passenden Antwort-Karten angelegt bis die Ziel-Karte erreicht ist. Bewährt

Mehr

PFLICHTTEIL NT = e x (x+2) = x+2 Oder Umschreiben: f(x) = 1. = (x 2 e x ) 1, und dann Kettenregel

PFLICHTTEIL NT = e x (x+2) = x+2 Oder Umschreiben: f(x) = 1. = (x 2 e x ) 1, und dann Kettenregel PFLICHTTEIL NT 26 F. LEMMERMEYER (1 Quotientenregel: f (x = x2 e x 2xe x x = e x (x+2 4 x = x+2 3 x 3 e. x Oder Umschreiben: f(x = 1 x 2 e = (x 2 e x 1, und dann Kettenregel x f (x = (x 2 e x 2 (2xe x

Mehr

Abiturprüfung Mathematik 2007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik 007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (8 Punkte) Das Schaubild einer Polynomfunktion. Grades geht durch den Punkt S(0/) und hat den 3 Wendepunkt

Mehr

Mathematik Name: Nr.5 K2 Punkte: /30 Note: Schnitt:

Mathematik Name: Nr.5 K2 Punkte: /30 Note: Schnitt: Pflichtteil (etwa min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen abgegeben sein, ehe der GTR und die Formalsammlung verwendet werden dürfen.) Aufgabe 1: [P] Bestimmen

Mehr

Aus folgt: 1; 3 Eingesetzt in : $$$$$ #! * 1 + ; # $$$$$$$ # $$$$$ 2 $$$$$! * 3 Der Bildpunkt hat die Koordinaten

Aus folgt: 1; 3 Eingesetzt in : $$$$$ #! * 1 + ; # $$$$$$$ # $$$$$ 2 $$$$$! * 3 Der Bildpunkt hat die Koordinaten Abituraufgaben Analytische Geometrie (Pflichtteil) ab Lösung A6/ Wir stellen die gegebene Normalengleichung von in die Koordinatengleichung um und bilden. Im Gleichungssystem mit drei Unbekannten und zwei

Mehr

Mathematik Name: Klausur Nr.6 K1 Punkte: /30 Note: Schnitt:

Mathematik Name: Klausur Nr.6 K1 Punkte: /30 Note: Schnitt: K1 Punkte: /30 Note: Schnitt: 0.1.18 Pflichtteil (etwa 40 min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen abgegeben sein, ehe der GTR und die Formalsammlung verwendet

Mehr

Lernkarten. Analytische Geometrie. 6 Seiten

Lernkarten. Analytische Geometrie. 6 Seiten Lernkarten Analytische Geometrie 6 Seiten Zum Ausdrucken muss man jeweils eine Vorderseite drucken, dann das Blatt wenden, nochmals einlegen und die Rückseite drucken. Am besten druckt man die Karten auf

Mehr

MATHEMATIK KLAUSUR V. Gesamtpunktzahl /30 Notenpunkte. (1) Bestimmen Sie die erste Ableitung der folgenden Funktionen: f(x) = 3x sin(x) + x ln(2x)

MATHEMATIK KLAUSUR V. Gesamtpunktzahl /30 Notenpunkte. (1) Bestimmen Sie die erste Ableitung der folgenden Funktionen: f(x) = 3x sin(x) + x ln(2x) MATHEMATIK KLAUSUR V 296216 Aufgabe 1 2 3 4 5 6 7 8 9 Punkte (max 4 2 3 3 3 3 5 6 1 Punkte Gesamtpunktzahl /3 Notenpunkte (1 Bestimmen Sie die erste Ableitung der folgenden Funktionen: (2 Berechnen Sie

Mehr

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1 2008/2009 Das Wichtigste in Kürze Klasse 3 Lineare Gleichungssysteme und Determinanten Definiton (Lineare Gleichungssysteme: Lineare Gleichungssysteme löst man entweder mit dem Gauß-Algorithmus oder nach

Mehr

Aufgabe A6/13. Aufgabe A7/13. Aufgabe A6/14

Aufgabe A6/13. Aufgabe A7/13. Aufgabe A6/14 Aufgabe A6/ Gegeben sind die Ebene 4 : Abituraufgaben Analytische Geometrie (Pflichtteil) ab und : 8. Bestimmen Sie eine Gleichung der Schnittgeraden. (Quelle Abitur BW Aufgabe 6) Aufgabe A7/ Gegeben sind

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )

Mehr

Bayern Musterlösung zu Klausur Analysis, Aufgabengruppe I

Bayern Musterlösung zu Klausur Analysis, Aufgabengruppe I Diese Lösung wurde erstellt von Tanja Reimbold. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus. Teil 1 Aufgabe 1 Definitionsbereich: Bestimmung der Nullstelle

Mehr

DAS ABI-PFLICHTTEIL Büchlein

DAS ABI-PFLICHTTEIL Büchlein DAS ABI-PFLICHTTEIL Büchlein für Baden-Württemberg Alle Originalaufgaben Haupttermine 004 0 Ausführlich gerechnete und kommentierte Lösungswege Mit vielen Zusatzhilfen X π Von: Jochen Koppenhöfer und Pascal

Mehr

MATHEMATIK K1. Aufgabe F Punkte (max) Punkte. Gesamtpunktzahl /30 Notenpunkte

MATHEMATIK K1. Aufgabe F Punkte (max) Punkte. Gesamtpunktzahl /30 Notenpunkte MATHEMATIK K1.06.015 Aufgabe 1 5 6 7 8 9 10 F Punkte (max 11 1 1 Punkte Gesamtpunktzahl /0 Notenpunkte Für vorbildliche Darstellung wird ein Extrapunkt vergeben. (1 Bestimmen sie die ersten beiden Ableitungen

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik 008 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe 1: ( VP) x Gegeben ist die Funktion f mit f(x). x Bilden Sie die Ableitung von f und fassen Sie diese so weit wie

Mehr

b) [2P] 7x Lösungsvorschlag 1: f '(x) = cos 3x 6x = 6x cos 3x

b) [2P] 7x Lösungsvorschlag 1: f '(x) = cos 3x 6x = 6x cos 3x K1 Punkte: / Note: Schnitt:.10.1 Pflichtteil (etwa 40 min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen abgegeben sein, ehe der GTR und die Formalsammlung verwendet werden

Mehr

Inhalt der Lösungen zur Prüfung 2012:

Inhalt der Lösungen zur Prüfung 2012: Inhalt der Lösungen zur Prüfung : Pflichtteil... Wahlteil Analsis... 8 Wahlteil Analsis... Wahlteil Analsis... 4 Wahlteil Analtische Geometrie... 8 Wahlteil Analtische Geometrie... Pflichtteil Lösungen

Mehr

K2 MATHEMATIK KLAUSUR 2. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR 2. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 2 06.12.2013 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 27 15 15 3 60 Punkte Notenpunkte PT 1 2 3 4 5 6 7 8 P. (max 2 3 2 4 5 3 4 4 Punkte WT Ana a b Summe P. (max 8 7

Mehr

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13 Musteraufgaben ab 08 Pflichtteil Aufgabe Seite / BEISPIEL A. Geben Sie Lage und Art der Nullstellen der Funktion f mit f( x) ( x ) ( x ) ; x IR an.. Bestimmen Sie die Gleichung der Tangente in P( f ())

Mehr

Inhalt der Lösungen zur Prüfung 2011:

Inhalt der Lösungen zur Prüfung 2011: Inhalt der Lösungen zur Prüfung : Pflichtteil Wahlteil Analysis 7 Wahlteil Analysis Wahlteil Analysis 6 Wahlteil Analytische Geometrie Wahlteil Analytische Geometrie 6 Pflichtteil Lösungen zur Prüfung

Mehr

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01 . Klasse TOP 0 Grundwissen Geradengleichungen 0 Punkt-Richtungs-Form Geraden sind gegeben durch einen Aufpunkt A (mit Ortsvektor a) auf der Geraden und einen Richtungsvektor u: x = a + λ u, λ IR. (Interpretation:

Mehr

A Vektorrechnung. B Geraden und Ebenen

A Vektorrechnung. B Geraden und Ebenen A Vektorrechnung Seite 1 Lineare Gleichungssysteme... 4 2 Gauß-Algorithmus... 6 3 Vektoren... 10 4 Vektorberechnungen und Vektorlängen... 12 5 Linearkombination und Einheitsvektor... 16 6 Lineare Abhängigkeit

Mehr

5. Geraden und Ebenen im Raum 5.1. Lineare Abhängigkeit und Unabhängigkeit von Vektoren

5. Geraden und Ebenen im Raum 5.1. Lineare Abhängigkeit und Unabhängigkeit von Vektoren 5 Geraden und Ebenen im Raum 5 Lineare Abhängigkeit und Unabhängigkeit von Vektoren Definition: Die Vektoren a,a,,a n heißen linear abhängig, wenn mindestens einer dieser Vektoren als Linearkombination

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1...

Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1... Pflichtteil... Wahlteil Analysis... 7 Wahlteil Analysis... Wahlteil Analysis... Wahlteil Analytische Geometrie... 9 Wahlteil Analytische Geometrie... 008 Pflichtteil Lösungen zur Prüfung 008: Pflichtteil

Mehr

e-funktionen f(x) = e x2

e-funktionen f(x) = e x2 e-funktionen f(x) = e x. Smmetrie: Der Graph ist achsensmmetrisch, da f( x) = f(x).. Nullstellen: Bed.: f(x) = 0 Es sind keine Nullstellen vorhanden, da e x stets positiv ist. 3. Extrema: notw. Bed.: f

Mehr

Impressum. Torsten Möller Augustastraße Flensburg. 1. Auflage. Idee und Ausführung in L A TEX: Torsten Möller

Impressum. Torsten Möller Augustastraße Flensburg. 1. Auflage. Idee und Ausführung in L A TEX: Torsten Möller Impressum Torsten Möller Augustastraße 6 4937 Flensburg. Auflage 8 Idee und Ausführung in L A TEX: Torsten Möller Umschlaggestaltung: Torsten Möller Illustrationen: Torsten Möller Das Werk, einschließlich

Mehr

K2 KLAUSUR MATHEMATIK

K2 KLAUSUR MATHEMATIK K2 KLAUSUR MATHEMATIK NACHTERMIN 16.02.2012 Pflichtteil: Aufgabe 1 2 3 4 5 6 7 8 (max) 2 2 3 4 5 3 4 3 Wahlteil Analysis Aufgabe a b c (max) 10 3 5 Wahlteil Geometrie Aufgabe a b c (max) 7 4 5 Gesamtpunktzahl

Mehr

Geometrie / Lineare Algebra

Geometrie / Lineare Algebra 6 Geometrie / Lineare Algebra Vektoren und Rechenregeln Länge, Winkel, Abstand Darstellung von Geraden und Ebenen Umformungen Abstandsbestimmungen Lage, Schnitte, Schnittwinkel Spiegelungen E-Mail: klaus_messner@web.de,

Mehr

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz wwwmathe-aufgabencom September 7 Abituraufgaben (Haupttermin) Aufgabe

Mehr

M I N I S T E R I U M F Ü R K U L T U S, J U G E N D U N D S P O R T. Berufsoberschule (BOS) SO/TO/WO. 2 2x

M I N I S T E R I U M F Ü R K U L T U S, J U G E N D U N D S P O R T. Berufsoberschule (BOS) SO/TO/WO. 2 2x Mathematik (43) Musteraufgabe Gruppe I: Analysis ohne Hilfsmittel ab 07 Seite /3 Gegeben ist die Funktion f mit 4 3 f(x) x x 3x 4x ; xir. 6 Bestimmen Sie den Bereich, in dem das Schaubild von f rechtsgekrümmt

Mehr

Crashkurs sin 2 x + 5 cos 2 x = sin 2 x 2 sin x = 3

Crashkurs sin 2 x + 5 cos 2 x = sin 2 x 2 sin x = 3 Crashkurs. Funktion mit Parameter/Ortskurve - Wahlteil Analysis.. Gegeben sei für t > die Funktion f t durch f t (x) = 4 x 4t x 2 ; x R\{}. a) Welche Scharkurve geht durch den Punkt Q( 4)? b) Bestimme

Mehr

Inhaltsverzeichnis VB 2003

Inhaltsverzeichnis VB 2003 VB Inhaltsverzeichnis Inhaltsverzeichnis Die Integralrechnung Die Stammfunktion Wie kommt man zur Stammfunktion am Beispiel der Potenzfunktion Beispiele für Stammfunktionen: Beispiele mit Wurzelfunktionen

Mehr

MATHEMATIK K1. Gesamtpunktzahl /30 Notenpunkte

MATHEMATIK K1. Gesamtpunktzahl /30 Notenpunkte MATHEMATIK K1 21.11.2013 Aufgabe 1 2 3 4 5 6 7 Punkte (max) 6 3 4 4 2 10 1 Punkte Gesamtpunktzahl /30 Notenpunkte Der GTR ist nur für die Lösung der Textaufgabe (und zur Kontrolle der andern) zugelassen.

Mehr

Abituraufgaben allg. bildendes Gymnasium Pflichtteil 2007 BW Aufgabe A1

Abituraufgaben allg. bildendes Gymnasium Pflichtteil 2007 BW Aufgabe A1 Aufgabe A1 Bilden Sie die Ableitung der Funktion mit 1. Aufgabe A2 Berechnen Sie das Integral. Aufgabe A3 Lösen Sie die Gleichung 2 0. Aufgabe A4 Gegeben ist die Funktion mit. a) Bestimmen Sie die Punkte

Mehr

8. Übungsblatt zur Mathematik I für Maschinenbau

8. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 8. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS / 6..-.. Aufgabe G (Matrixinversion mit Gauß-Algorithmus

Mehr

1.2 Berechne den Inhalt der Fläche, die das Schaubild von mit 5P der -Achse einschließt.

1.2 Berechne den Inhalt der Fläche, die das Schaubild von mit 5P der -Achse einschließt. Diese Aufgaben sind zu bearbeiten. Sie können nicht abgewählt werden. Aufgabe A1 1. Gegeben ist die Funktion mit 2 3; 1.1 Eine der folgenden Abbildung zeigt das Schaubild. 6P Untersuche für jede der Abbildungen,

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 04 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 04 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Hauptprüfung Abiturprüfung 2016 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2016 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 06 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 06 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Aleander Schwarz www.mathe-aufgaben.com

Mehr

Passerellen-Prüfungen 2007 Mathematik: 4 Stunden (3 Seiten)

Passerellen-Prüfungen 2007 Mathematik: 4 Stunden (3 Seiten) Punkte: Note: BME ISME MfB MSE Berner Maturitätsschule für Erwachsene Interstaatliche Maturitätsschule für Erwachsene St. Gallen/Sargans Maturitätsschule für Berufstätige, Basel Maturitätsschule für Erwachsene,

Mehr

3. Übungsblatt Aufgaben mit Lösungen

3. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe 6: Gegeben seien die Ebene E : 4x + x + 8 =, der Punkt P = ( und die Gerade H : x(λ = (4,, + λ(,,, λ R. (a Bestimmen Sie eine Gerade durch den Punkt P, die senkrecht

Mehr

Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1...

Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1... Pflichtteil Wahlteil Analysis 8 Wahlteil Analysis Wahlteil Analysis 9 Wahlteil Analytische Geometrie Wahlteil Analytische Geometrie 9 Lösungen: Pflichtteil Lösungen zur Prüfung : Pflichtteil Benötigte

Mehr

E : y=0. g : x= ) +s ( 1 1. d = 17. Partnerquiz Punkte, Geraden und Ebenen im Raum Ausschneidebogen

E : y=0. g : x= ) +s ( 1 1. d = 17. Partnerquiz Punkte, Geraden und Ebenen im Raum Ausschneidebogen Partnerquiz Aufgabe A Partnerquiz Aufgabe B Gib eine Ebenengleichung in Parameterform für die xz-ebene an. Gib eine Ebenengleichung in Koordinatenform für die xz-ebene an. E : y= E : x=r +s Partnerquiz

Mehr

K2 MATHEMATIK KLAUSUR 3

K2 MATHEMATIK KLAUSUR 3 K2 MATHEMATIK KLAUSUR 3 NACHTERMIN 2..23 Aufgabe PT WTA WTGS Gesamtpunktzahl Punkte (max 3 5 5 6 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 3 4 5 3 4 4 3 Punkte WT Ana a b c Summe P. (max 8 4 3

Mehr

Bayern Aufgabe 1. Abitur Mathematik: Musterlösung. V = 1 G h, wobei G die Fläche des quadratischen Bodens und h die Höhe V = = 384 [VE]

Bayern Aufgabe 1. Abitur Mathematik: Musterlösung. V = 1 G h, wobei G die Fläche des quadratischen Bodens und h die Höhe V = = 384 [VE] Abitur Mathematik: Bayern 2 Aufgabe a). SCHRITT: KOORDINATEN DES PUNKTS B ANGEBEN 2 2 OB = OA + AB = OA + DC = ( ) + ( 2) = ( 2) B(2 2 ) 2. SCHRITT: VOLUMEN BERECHNEN V = G h, wobei G die Fläche des quadratischen

Mehr

Geometrie / Lineare Algebra. Rechenregeln. Geometrische Deutung. Vektoren

Geometrie / Lineare Algebra. Rechenregeln. Geometrische Deutung. Vektoren Vektoren Geometrie / Lineare Algebra Vektoren und Rechenregeln Länge, Winkel, Abstand Darstellung von Geraden und Ebenen Umformungen Abstandsbestimmungen Lage, Schnitte, Schnittwinkel Spiegelungen E-Mail:

Mehr

Teil II. Geometrie 19

Teil II. Geometrie 19 Teil II. Geometrie 9 5. Dreidimensionales Koordinatensystem Im dreidimensionalen Koordinatensystem gibt es acht Oktanten, oben I bis VI und unten VI bis VIII. Die Koordinatenachsen,x 2 und stehen jeweils

Mehr

Mathematik-Aufgabenpool > Grundaufgaben zur Vektorrechnung I

Mathematik-Aufgabenpool > Grundaufgaben zur Vektorrechnung I Michael Buhlmann Mathematik-Aufgabenpool > Grundaufgaben zur Vektorrechnung I Einleitung: Elemente der Vektorrechnung im dreidimensionalen reellen kartesischen x -x -x 3-Koordinatensystem sind Punkte P(p

Mehr

Abitur 2011 G8 Musterabitur Mathematik Geometrie VI

Abitur 2011 G8 Musterabitur Mathematik Geometrie VI Seite http://www.abiturloesung.de/ Seite Abitur G8 Musterabitur Mathematik Geometrie VI In einem kartesischen Koordinatensystem ist ein Würfel W der Kantenlänge gegeben. Die Eckpunkte G ( ) und D ( ) legen

Mehr

Pflichtteil. Baden-Württemberg Aufgabe 1. Aufgabe 2. Musterlösung. Abitur Mathematik Baden-Württemberg Abitur Mathematik: Musterlösung

Pflichtteil. Baden-Württemberg Aufgabe 1. Aufgabe 2. Musterlösung. Abitur Mathematik Baden-Württemberg Abitur Mathematik: Musterlösung Abitur Mathematik: Baden-Württemberg 14 Aufgabe 1 1. SCHRITT: STRUKTUR DER FUNKTION BESCHREIBEN Der Funktionsterm von f ist das Produkt einer einfachen Funktion u(x) = x und einer Verkettung v(x) = e x

Mehr

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz wwwmathe-aufgabencom September 6 Abituraufgaben (Haupttermin) Aufgabe

Mehr

Mathematik Name: Nr.4 K1 Punkte: /32 Note: Schnitt:

Mathematik Name: Nr.4 K1 Punkte: /32 Note: Schnitt: Pflichtteil (etwa 40 min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen abgegeben sein, ehe der GTR und die Formalsammlung verwendet werden dürfen.) Aufgabe 1:[P] Bestimmen

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 4.02.204 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 28 5 5 2 60 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 2 4 5 3 3 4 3 Punkte WT Ana A.a b A2.a b Summe P. (max

Mehr