Kondensator und Spule
|
|
|
- Eleonora Messner
- vor 9 Jahren
- Abrufe
Transkript
1 Hochschule für angewandte Wissenschaften Hamburg Naturwissenschaftliche Technik - Physiklabor Physikalisches Praktikum Allgemeine Grundlagen: 1. Der Kondensator Kondensator und Spule Es gibt positive und negative adungen. Werden adungen Q transportiert, fließt ein elektrischer Strom. Es gilt: = dq / dt [ ] = A = As / s = C / s Zwei elektrisch isolierte eiter bilden einen Kondensator, der geladen werden kann. Die Kapazität des Kondensators ist das Verhältnis von adung Q zur Spannung am Kondensator: C = Q / [C] = F = As / V Zwischen den eitern (Belägen) eines geladenen Kondensators existiert ein elektrisches Feld. Zum Aufbau des elektrischen Feldes muss dem Kondensator die Energie: zugeführt werden. W C = C 2 / 2 Das aden eines Kondensators wird wie folgt beschrieben: Zur Zeit t = 0 wird ein zunächst nicht geladener Kondensator C (Spannung am Kondensator C = 0) über einen Widerstand an eine Batterie (Spannung B ) angeschlossen. Es fließt ein adestrom, der mit der Zeit geringer wird. B C Abb. 1. eihenschaltung von Widerstand und Kapazität Für die Spannung am Kondensator gilt: u C (t) = B - u (t) = B ( 1 - e -t / C ) ; Kleine Buchstaben für zeitabhängige Größen J = C, daraus folgt u C (J) = 0,63 B ; C nennt man die Zeitkonstante τ. Während des adens, entsprechendes gilt beim Entladen des Kondensators, fließt ein Verschiebungsstrom: i V = dq / dt = C du C / dt = i (t) Erarbeiten Sie sich die Grundlagen mit Hilfe der iteratur. Stellen Sie die Funktions- oder Differentialgleichung für die Schaltung auf, zur Zeit t = 0 wird der Schalter geschlossen und die Spannung an die Masche gelegt (Maschengleichung).Bestimmen Sie die Funktion u c =f(t) für das aden der Kapazität. Welche Spannung würden Sie bei t = 3J über der Kapazität messen? Die schriftliche Vorbereitung gehört nicht in das Protokoll. 1
2 2. Die Spule Die Spule setzt infolge der Selbstinduktion jeder Änderung di/dt des Stromflusses einen Widerstand entgegen (enzsche egel). Es gilt für die induzierte Spannung u ind = - di / dt, wobei als Selbstinduktion bezeichnet wird. Sie ist eine von der Geometrie und Windungszahl der Spule abhängige Größe mit der Maßeinheit H. [] = H = Vs / A Will man über einen Widerstand eine Spule (nduktivität) zur Zeit t = 0 an eine Batterie ( B ) anschließen, dann bewirkt die Selbstinduktionsspannung, dass der Strom durch die Spule "allmählich" von 0 zur Zeit t = 0 auf den Endwert ansteigt. Es gilt: i (t) = B / ( 1 - e -t / ( / ) ) ; / nennt man die Zeitkonstante J. B Abb. 2. Widerstand und nduktivität in eihenschaltung Zum Aufbau des magnetischen Feldes (der Spule) wird die Energie W m = 2 / 2 zugeführt. Machen Sie sich mit den Grundlagen vertraut. Stellen Sie die Funktions- oder Differentialgleichung für die Schaltung auf. Zur Zeit t = 0 wird der Schalter geschlossen und die Spannung an die Masche gelegt (Maschengleichung). Bestimmen Sie die Funktion i = f(t). 3. Spule und Kondensator Jeder reale elektromagnetische Schwingkreis besteht aus einer Spule, einem Kondensator C und einem ohmschen Widerstand. n dem Experiment ist der ohmsche Widerstand der Spule und der nnenwiderstand des Funktionsgenerators zu beachten. Spule B C Abb. 3 Schwingkreis mit Spulenwiderstand 2
3 Das Einschaltverhalten eines Schwingkreises mit ohmschen Anteil wird durch die Differentialgleichung d²i di i + + = 0 dt² dt C di mit den andbedingungen t = 0, i = 0, = 0 dt beschrieben. Die esonanzkreisfrequenz für den gedämpften elektrischen Schwingkreis berechnet sich aus: ω d = 1 C ( Vergleichen Sie dieses Ergebnis mit der Thomson Formel. - Stellen Sie die Funktions- oder Differentialgleichung für die Schaltung auf, zur Zeit t = 0 wird der Schalter geschlossen. egen Sie die andbedingungen fest und lösen Sie die Differentialgleichung. 2 )² Aufgaben A Messungen mit dem Oszilloskop 1. Der C-Schaltkreis Bauen Sie folgende Schaltung auf: = 2-20kΩ i 50 Ω ca. 5V C = 2-5nF Oszilloskop 1-5kHz Stellen Sie das Oszilloskop so ein, dass Sie den zeitlichen Verlauf der Spannung u c (t) verfolgen können. Achten Sie auf das Massepotenzial. 1.1 Bestimmen Sie mit Hilfe des Oszilloskops die Zeitkonstante τ. 1.2 Bestimmen Sie τ rechnerisch, indem Sie die Werte der von hnen verwendeten Bauelemente für und C einsetzen, berücksichtigen Sie den nnenwiderstand des Funktionsgenerators. 1.3 Verdoppeln Sie den Widerstand. Wie verändert sich der Spannungsverlauf (Skizze) und die Zeitkonstante? (Qualitative Beschreibung und Erklärung) 3
4 B Messungen mit einer PC-Messwerterfassung Öffnen Sie den Ordner C. esen Sie zunächst den Kommentar in der dann geöffneten Datei und bauen sie die Schaltung auf. Für alle Experimente setzen Sie C-Dekaden ein. hre Messwerte speichern Sie in einer excel Datei, die Sie übers nternet nach Hause senden können. Für alle Schaltungen gilt: i = 50Ω, Frequenzgenerator: ca. 2V, 20 Hz, die Spannungsmessung erfolgt mit einem Keithley Multimeter im AC Modus. 2. Der C-Schaltkreis 2.1 Bestimmen Sie die Zeitkonstante des C-Gliedes. Die vom PC abgelesenen Werte und die Messfehler halten Sie im Protokoll fest. 2.2 Ermitteln Sie τ rechnerisch, indem Sie die Werte der von hnen verwendeten Bauelemente für und C einsetzen, berücksichtigen Sie den nnenwiderstand ( i ) des Funktionsgenerator ca. 10 k Ω ca. 500 nf 3. Der Strom durch die Spule nach dem Ein- und Ausschalten 3.1 Bestimmen Sie Zeitkonstante des -Gliedes. 3.2 Ermitteln Sie τ rechnerisch, indem Sie die Werte der von hnen verwendeten Bauelemente für und einsetzen, berücksichtigen Sie den nnenwiderstand ( i ) des Funktionsgenerators und den Widerstand der Spule. ca. 5 H ca. 0,5 kω PC 3.3 Verändern Sie um 50%. Was beobachten Sie? (Qualitative Beschreibung) 4. Schwingkreis aus, C und 4.1 Bestimmen Sie die Frequenz der gedämpften Schwingung und die Abklingkonstante aus den vom PC abgelesenen Werten. 4.2 Bestimmen Sie die Frequenz der ungedämpften Schwingung mit Hilfe der Thomson-Formel. ca. 0,5 kω ca. 5 H 4.3 Berechnen Sie die Frequenz der gedämpften Schwingung unter Berücksichtigung von 3 i. 4.4 Vergleichen Sie die rechnerisch ermittelten Werte mit den empirisch gefundenen. ca. 100 nf PC 4.5 Ermitteln Sie den Widerstand zum aperiodischen Grenzfall (theoretisch und experimentell). 4.6 Demonstrieren Sie im Experiment den Kriechfall. 4
5 5. Berechnung des Messfehlers von τ. Da τ unabhängig von der absoluten Spannung ist und inearitätsfehler vernachlässigt werden können, wird die Messunsicherheit für τ von B und c bestimmt. Bestimmen Sie den absoluten Messfehler τ und den relativen Messfehler τ /τ, indem Sie die Gleichung t u c = B 1 e C nach t auflösen, das totale Differential für die Fehlerfortpflanzung berechnen und die Messwerte sowie deren nsicherheiten einsetzen. Durch welche Größen wird der Messfehler für τ bei der Messung mit dem Oszilloskop und bei der Messung mit dem PC dominiert, wenn Sie zusätzlich den durch die Abtastrate des PC gegebenen Zeitmessfehler τ t ( τ PC = τ u + τ t ) bzw. den τ o -Ablesefehler beim Oszilloskop ( τ Os = τ u + τ o ) berücksichtigen? Zusatzaufgaben Wählen Sie für die weiteren Versuche am Frequenzgenerator die Amplitudenform Sinus. Bauen Sie die folgende Schaltung auf: G C i V ~ Generator C 6. Ermitteln Sie die Amplitudenresonanzkurve. 6.1 Verändern Sie schrittweise die Frequenz - nicht die Amplitude - von G im Bereich von 30 bis 500Hz. Messen Sie die Spannung C mit dem PC und entnehmen Sie dem PC Bild die jeweiligen Werte für die Frequenz und die Amplitude. 6.2 Erhöhen Sie den Widerstand und verfahren Sie wie in Aufgabe Zeigen Sie die Phasenlage der Spannung zum Strom über den angegebenen einzelnen Bauteilen auf. Fertigen Sie ein Vektordiagramm an. F:\wptxtneu\praktikm\vorlagen\versuche\rcl\rcl.doc
Kondensator und Spule
()()(())0,6()HAW Hamburg Fakultät Life Sciences - Physiklabor Physikalisches Praktikum Kondensator und Spule Allgemeine Grundlagen 1. Ladung Q und Strom I Es gibt positive und negative Ladungen. Werden
Wechselstromkreis E 31
E 3 kreis kreis E 3 Aufgabenstellung. Bestimmung von Phasenverschiebungen zwischen Strom und Spannung im kreis.2 Aufbau und ntersuchung einer Siebkette 2 Physikalische Grundlagen n einem kreis (Abb.) befinde
Praktikum Grundlagen der Elektrotechnik
Praktikum Grundlagen der Elektrotechnik 1. Versuch GET : Schaltverhalten an und 2. Standort Helmholtzbau H 2546 und 2548 Fakultät für Elektrotechnik und Informationstechnik Institut für Informationstechnik
Laden und Entladen eines Kondensators
Universität Potsdam Institut für Physik und Astronomie Grundpraktikum E5 Laden und Entladen eines Kondensators Bei diesem Versuch werden Sie mit dem zeitlichen Verlauf der Spannungen und Ströme beim Aufund
1. Laboreinheit - Hardwarepraktikum SS 2003
1. Laboreinheit - Hardwarepraktikum SS 2003 1. Versuch: Gleichstromnetzwerk Berechnen Sie für die angegebene Schaltung alle Teilströme und Spannungsabfälle. Fassen Sie diese in einer Tabelle zusammen und
Versuch E Bei einer unbelasteten Spannungsquelle liegt kein geschlossener Stromkreis vor. Außer dem Innenwiderstand
1 Spannungsquelle Belastete und unbelastete Spannungsquelle: Unbelastete Spannungsquelle Bei einer unbelasteten Spannungsquelle liegt kein geschlossener Stromkreis vor. Außer dem Innenwiderstand R i der
Protokoll zum Anfängerpraktikum
Protokoll zum Anfängerpraktikum Elektromagnetischer Schwingkreis Gruppe, Team 5 Sebastian Korff Frerich Max 8.5.6 Inhaltsverzeichnis. Einleitung -3-. Versuchsdurchführung -5-. Eigenfrequenz und Dämpfung
Komplexe Zahlen und ihre Anwendung in der Elektrotechnik
Praktikum für die Schüler der BOB Rosenheim im Rahmen des Workshops Komplexe Zahlen und ihre Anwendung in der Elektrotechnik SCHALTUNG 1 I ein Gegeben ist die Reihenschaltung eines Widerstandes R 10 k
Grundlagen der Elektrotechnik Protokoll Schwingkreise. Christian Kötz, Jan Nabbefeld
Grundlagen der Elektrotechnik Protokoll Schwingkreise Christian Kötz, Jan Nabbefeld 29. Mai 200 3. Versuchsdurchführung 3.. Versuchsvorbereitung 3..2. Herleitung Resonanzfrequenz und der 45 o Frequenz
Hochschule für angewandte Wissenschaften Hamburg, Department F + F. Versuch 4: Messungen von Kapazitäten und Induktivitäten
1 Versuchsdurchführung 1.1 Messen des Blindwiderstands eines Kondensators Der Blindwiderstand C eines Kondensators soll mit Hilfe einer spannungsrichtigen Messschaltung (vergleiche Versuch 1) bei verschiedenen
GRUNDLAGEN DER ELEKTROTECHNIK
GRUNDLAGEN DER ELEKTROTECHNIK Versuch 4: Messungen von Kapazitäten und Induktivitäten 1 Versuchsdurchführung 1.1 Messen des Blindwiderstands eines Kondensators Der Blindwiderstand X C eines Kondensators
Arbeitsbereich Technische Aspekte Multimodaler Systeme (TAMS) Praktikum der Technischen Informatik T2 2. Kapazität. Wechselspannung. Name:...
Universität Hamburg, Fachbereich Informatik Arbeitsbereich Technische Aspekte Multimodaler Systeme (TAMS) Praktikum der Technischen Informatik T2 2 Kapazität Wechselspannung Name:... Bogen erfolgreich
Reihenschwingkreis. In diesem Versuch soll das Verhalten von ohmschen, kapazitiven und induktiven Widerständen im Wechselstromkreis untersucht werden.
Universität Potsdam Institut für Physik und Astronomie Grundpraktikum E 13 Reihenschwingkreis In diesem Versuch soll das Verhalten von ohmschen, kapazitiven und induktiven Widerständen im Wechselstromkreis
Ein- und Ausschaltvorgang am Kondensator ******
6.2.3 ****** Motivation Bei diesem Versuch werden Ein- und Ausschaltvorgänge an RC-Schaltkreisen am PC vorgeführt. 2 Experiment Abbildung : Versuchsaufbau zum Eine variable Kapazität (C = (0 bis 82) nf)
Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 R =
Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 Versuch zur Ermittlung der Formel für X C In der Erklärung des Ohmschen Gesetzes ergab sich die Formel: R = Durch die Versuche mit einem
Elektrischer Schwingkreis
Fakultät für Technik Bereich Informationstechnik Elektrischer Schwingkreis Name 1: Name 2: Name 3: Gruppe: Datum: 2 1 Allgemeines Im Versuch Mechanischer Schwingkreis haben Sie einen mechanischen Schwingkreis
BESTIMMUNG DES WECHSELSTROMWIDERSTANDES IN EINEM STROMKREIS MIT IN- DUKTIVEM UND KAPAZITIVEM WIDERSTAND.
Elektrizitätslehre Gleich- und Wechselstrom Wechselstromwiderstände BESTIMMUNG DES WECHSELSTROMWIDERSTANDES IN EINEM STROMKREIS MIT IN- DUKTIVEM UND KAPAZITIVEM WIDERSTAND. Bestimmung des Wechselstromwiderstandes
Elektrische Schwingungen
Dr. Angela Fösel & Dipl. Phys. Tom Michler Revision: 14.10.2018 Ein elektrischer Schwingkreis ist eine (resonanzfähige) elektrische Schaltung aus einer Spule (L) und einem Kondensator (C), die elektrische
Komplexe Widerstände
Komplexe Widerstände Abb. 1: Versuchsaufbau Geräteliste: Kondensator 32μ F 400V, Kapazitätsdekade, Widerstandsdekade, Widerstand ( > 100Ω), Messwiderstand 1Ω, verschiedene Spulen, Funktionsgenerator Speicheroszilloskop,
Physik LK 12, 3. Kursarbeit Induktion - Lösung
Physik K 1, 3. Kursarbeit Induktion - ösung.0.013 Aufgabe I: Induktion 1. Thomson ingversuch 1.1 Beschreibe den Thomson'schen ingversuch in Aufbau und Beobachtung und erkläre die grundlegenden physikalischen
Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 2
Werner-v.-Siemens-Labor für elektrische Antriebssysteme Prof. Dr.-Ing. Dr. h.c. H. Biechl Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 2 Messungen mit dem Oszilloskop Lernziel: Dieser Praktikumsversuch
Ostfalia Hochschule für angewandte Wissenschaften Fakultät Elektrotechnik
Ostfalia Hochschule für angewandte Wissenschaften Fakultät Elektrotechnik Labor Mess- und Elektrotechnik Laborleiter: Prof. Dr. Ing. Prochaska Versuch 5: Laborbetreuer: Schwingkreise 1. Teilnehmer: Matrikel-Nr.:
Elektrische Schwingungen
E05 Elektrische Schwingungen Elektrische Schwingungen am Serien- und Parallelschwingkreis werden erzeugt und untersucht. Dabei sollen Unterschiede zwischen den beiden Schaltungen und Gemeinsamkeiten mit
Wechselstromwiderstände
Grundpraktikum Wechselstromwiderstände 1/7 Übungsdatum: 15.05.001 Abgabetermin:.05.001 Grundpraktikum Wechselstromwiderstände Gabath Gerhild Matr. Nr. 98054 Mittendorfer Stephan Matr. Nr. 9956335 Grundpraktikum
PROTOKOLL ZUM ANFÄNGERPRAKTIKUM PHYSIK. Messung von Kapazitäten Auf- und Entladung von Kondensatoren. Sebastian Finkel Sebastian Wilken
PROTOKOLL ZUM ANFÄNGERPRAKTIKUM PHYSIK Messung von Kapazitäten Auf- und Entladung von Kondensatoren Sebastian Finkel Sebastian Wilken Versuchsdurchführung: 23. November 2005 0. Inhalt 1. Einleitung 2.
Labor für Grundlagen der Elektrotechnik. EE1- ETP1 Labor 4. Weitere Übungsteilnehmer: Messung von Kapazitäten und Induktivitäten
Department Informations- und Elektrotechnik Studiengruppe: Übungstag: Professor: abor für Grundlagen der Elektrotechnik EE1- ETP1 abor 4 Testat: Protokollführer (Name, Vorname): Weitere Übungsteilnehmer:
Elektrizitätslehre und Magnetismus
Elektrizitätslehre und Magnetismus Othmar Marti 02. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 02. 06.
Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den
E6 Elektrische Resonanz Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch Münster, den.. INHALTSVERZEICHNIS. Einleitung. Theoretische Grundlagen. Serienschaltung von Widerstand R, Induktivität L
Schaltvorgänge und Schwingungen
Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum E13 Schaltvorgänge und Schwingungen Aufgaben 1. Messen Sie zum ennenlernen des computerunterstützten Messplatzes PA verschiedene
15. Elektromagnetische Schwingungen
5. Elektromagnetische Schwingungen Elektromagnetischer Schwingkreis Ein Beispiel für eine mechanische harmonische Schwingung wäre eine schwingende Feder, die im Normalfall durch den uftwiderstand gedämpft
Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung.
Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Prinzip In einer langen Spule wird ein Magnetfeld mit variabler Frequenz
EO - Oszilloskop Blockpraktikum Frühjahr 2005
EO - Oszilloskop, Blockpraktikum Frühjahr 25 28. März 25 EO - Oszilloskop Blockpraktikum Frühjahr 25 Alexander Seizinger, Tobias Müller Assistent René Rexer Tübingen, den 28. März 25 Einführung In diesem
Laborpraktikum 2 Kondensator und Kapazität
18. Januar 2017 Elektrizitätslehre II Martin Loeser Laborpraktikum 2 Kondensator und Kapazität 1 Lernziele Bei diesem Versuch wird das elektrische Verhalten von Kondensatoren untersucht und quantitativ
Elektromagnetische Schwingungen und Lenz sche Regel in der Anwendung. Experimentalphysikalisches Seminar II
Elektromagnetische Schwingungen und Lenz sche Regel in der Anwendung Experimentalphysikalisches Seminar II 1 1. Elektromagnetischer Schwingkreis 1 In der Elektrizitätslehre gibt es drei Grundelemente:
Protokoll zum Laborversuch (Bachelor-Anleitung) Wechselstrom an Spule und Kondensator. Zug Labor am: Wochentag Abgabe am:
FHTW Berlin, Fachbereich, Physikalisches Praktikum - Wechselstromwiderstände Version /04 Hochschule für Technik und Wirtschaft Berlin Physikalisches Praktikum HTW-Berlin Protokoll zum Laborversuch (Bachelor-Anleitung)
1. Laboreinheit - Hardwarepraktikum SS 2005
1. Versuch: Gleichstromnetzwerk Ohmsches Gesetz Kirchhoffsche Regeln Gleichspannungsnetzwerke Widerstand Spannungsquelle Maschen A B 82 Ohm Abbildung 1 A1 Berechnen Sie für die angegebene Schaltung alle
Aufgaben zum Thema Elektromagnetische Schwingungen
Aufgaben zum Thema Elektromagnetische Schwingungen 10.03.2011 1.Aufgabe: a)an eine vertikal aufgehängte Schraubenfeder wird ein Körper mit der Masse m = 0,30 kg gehängt. Dadurch wird die Feder um x = 1,2
Aufgabe 1 Transiente Vorgänge
Aufgabe 1 Transiente Vorgänge S 2 i 1 i S 1 i 2 U 0 u C C L U 0 = 2 kv C = 500 pf Zum Zeitpunkt t 0 = 0 s wird der Schalter S 1 geschlossen, S 2 bleibt weiterhin in der eingezeichneten Position (Aufgabe
3, wobei C eine Konstante ist. des Zentralgestirns abhängig ist.
Abschlussprüfung Berufliche Oberschule 00 Physik Technik - Aufgabe I - Lösung Teilaufgabe.0 Für alle Körper, die sich antriebslos auf einer Kreisbahn mit dem Radius R und mit der Umlaufdauer T um ein Zentralgestirn
Praktikum GEE Grundlagen der Elektrotechnik Teil 3
Grundlagen der Elektrotechnik Teil 3 Jede Gruppe benötigt zur Durchführung dieses Versuchs einen USB-Speicherstick! max. 2GB, FAT32 Name: Studienrichtung: Versuch 11 Bedienung des Oszilloskops Versuch
BESTIMMUNG DES WECHSELSTROMWIDERSTANDES IN EINEM STROMKREIS MIT IN- DUKTIVEM UND OHMSCHEM WIDERSTAND.
Elektrizitätslehre Gleich- und Wechselstrom Wechselstromwiderstände BESTIMMUNG DES WECHSELSTOMWIDESTANDES IN EINEM STOMKEIS MIT IN- DUKTIVEM UND OHMSCHEM WIDESTAND. Bestimmung von Amplitude und Phase des
ET-Praktikumsbericht 3. Semester I (Versuch 4, Zeit-/Frequenzverhalten von Vierpolen) Inhaltsverzeichnis 1 Der RC-Tiefpass Messung bei konstante
Praktikumsbericht Elektrotechnik 3.Semester Versuch 4, Vierpole 7. November Niels-Peter de Witt Matrikelnr. 8391 Helge Janicke Matrikelnr. 83973 1 ET-Praktikumsbericht 3. Semester I (Versuch 4, Zeit-/Frequenzverhalten
R C 1s =0, C T 1
Aufgaben zum Themengebiet Aufladen und Entladen eines Kondensators Theorie und nummerierte Formeln auf den Seiten 5 bis 8 Ein Kondensator mit der Kapazität = 00μF wurde mit der Spannung U = 60V aufgeladen
BESTIMMUNG DES WECHSELSTROMWIDERSTANDES IN EINEM STROMKREIS MIT KA- PAZITIVEM UND OHMSCHEM WIDERSTAND.
Elektrizitätslehre Gleich- und Wechselstrom Wechselstromwiderstände BESTIMMUNG DES WECHSELSTROMWIDERSTANDES IN EINEM STROMKREIS MIT KA- AZITIVEM UND OHMSCHEM WIDERSTAND. Bestimmung von Amplitude und hase
Elektromagnetische Schwingkreise
Grundpraktikum der Physik Versuch Nr. 28 Elektromagnetische Schwingkreise Versuchsziel: Bestimmung der Kenngrößen der Elemente im Schwingkreis 1 1. Einführung Ein elektromagnetischer Schwingkreis entsteht
Musterloesung. Name:... Vorname:... Matr.-Nr.:...
1. Klausur Grundlagen der Elektrotechnik I-A 15. Dezember 23 Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 135 Minuten Trennen Sie den Aufgabensatz nicht auf. Benutzen Sie für die Lösung der Aufgaben
Ein Idealer Generator - Variante
Ein Idealer Generator - Variante Dein Freund Luis möchte bei einem schulischen Wettbewerb mit folgender genialer antreten: Er hat einen Wechselspannungsgenerator entworfen, der, einmal angeworfen, für
Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik
erbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik ersuch 3 Grundschaltungen der Wechselstromtechnik Teilnehmer: Name orname Matr.-Nr. Datum der
Grundlagenpraktikum Elektrotechnik Teil 1 Versuch 4: Reihenschwingkreis
ehrstuhl ür Elektromagnetische Felder Friedrich-Alexander-Universität Erlangen-Nürnberg Vorstand: Pro. Dr.-Ing. Manred Albach Grundlagenpraktikum Elektrotechnik Teil Versuch 4: eihenschwingkreis Datum:
E17 Fourier-Analyse gekoppelter elektrischer Schwingungen
Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum E7 Fourier-Analyse gekoppelter elektrischer Schwingungen Aufgaben 0. In der Vorbereitung sind die Fourierkoeffizienten für eine Rechteck-
Übungen zu Experimentalphysik 2
Physik Department, Technische Universität München, PD Dr. W. Schindler Übungen zu Experimentalphysik 2 SS 3 - Übungsblatt 7 Wechselstrom In der Zeichnung ist ein Stromkreis mit reellen (Ohmschen) sowie
RC-Glied E Aufgabenstellung. 2 Grundlagen. I I sin( t ) (2) 2 2 f (3) harmonische Schwingung darstellen: (1)
-Glied E Aufgabenstellung Die Zeitkonstanten von -Gliedern sind zu bestimmen:. aus der Entladung eines Kondensators,. aus dem Frequenzverhalten der - Glieder und.3 aus ihrem Impulsverhalten. Grundlagen
Diplomvorprüfung WS 2009/10 Grundlagen der Elektrotechnik Dauer: 90 Minuten
Diplomvorprüfung Grundlagen der Elektrotechnik Seite 1 von 8 Hochschule München Fakultät 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung WS 2009/10
Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 2
Werner-v.-Siemens-Labor für elektrische Antriebssysteme Prof. Dr.-Ing. Dr. h.c. H. Biechl Prof. Dr.-Ing. E.-P. Meyer Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 2 Messungen mit dem Oszilloskop
Versuch P1-70,71,81 Elektrische Messverfahren. Auswertung. Von Ingo Medebach und Jan Oertlin. 26. Januar 2010
Versuch P1-70,71,81 Elektrische Messverfahren Auswertung Von Ingo Medebach und Jan Oertlin 26. Januar 2010 Inhaltsverzeichnis 1. Aufgabe...2 I 1.1. Messung des Innenwiderstandes R i des µa-multizets im
Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. Daten: U AB. der Induktivität L! und I 2. , wenn Z L. = j40 Ω ist? an!
Grundlagen der Elektrotechnik I Aufgabe K4 Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. R 1 A R 2 Daten R 1 30 Ω R 3 L R 2 20 Ω B R 3 30 Ω L 40 mh 1500 V f 159,15 Hz 1. Berechnen Sie
Auf- und Entladung eines Kondensators
Klasse 12 Physik Praktikum 10.12.2005 Auf- und Entladung eines Kondensators 1. Aufladen eines Kondensators Versuchsdurchführung: Wir bauten die Schaltung auf einem Brett nach folgender Skizze auf: Wir
Technische Universität Clausthal
Technische Universität Clausthal Klausur im Wintersemester 2012/2013 Grundlagen der Elektrotechnik I Datum: 18. März 2013 Prüfer: Prof. Dr.-Ing. Beck Institut für Elektrische Energietechnik Univ.-Prof.
Praktikum EE2 Grundlagen der Elektrotechnik. Name: Testat : Einführung
Fachbereich Elektrotechnik Ortskurven Seite 1 Name: Testat : Einführung 1. Definitionen und Begriffe 1.1 Ortskurven für den Strom I und für den Scheinleistung S Aus den Ortskurven für die Impedanz Z(f)
RE - Elektrische Resonanz Praktikum Wintersemester 2005/06
RE - Elektrische Resonanz Praktikum Wintersemester 5/6 Philipp Buchegger, Johannes Märkle Assistent Dr. Torsten Hehl Tübingen, den 8. November 5 Einführung Ziel dieses Versuches ist es, elektrische Resonanz
1. Frequenzverhalten einfacher RC- und RL-Schaltungen
Prof. Dr. H. Klein Hochschule Landshut Fakultät Elektrotechnik und Wirtschaftsingenieurwesen Praktikum "Grundlagen der Elektrotechnik" Versuch 4 Wechselspannungsnetzwerke Themen zur Vorbereitung: - Darstellung
PROTOKOLL ZUM ANFÄNGERPRAKTIKUM PHYSIK. Elektromagnetischer Schwingkreis. Sebastian Finkel Sebastian Wilken
PROTOKOLL ZUM ANFÄNGERPRAKTIKUM PHYSIK Elektromagnetischer Schwingkreis Sebastian Finkel Sebastian Wilken Versuchsdurchführung:. Mai 6 . Inhalt. Einleitung. Theoretischer Teil.. Idealer L-Schwingkreis..
SECUCONTACT Multiplizierer-Kit Best.- Nr
SECUCONTACT Multiplizierer-Kit Best.- Nr. 2010239 1. Produktbeschreibung Diese Zusammenstellung besteht aus: 1 Schaltplatte SECUCONTACT 2 Drahtbrücken auf 2-fach Sockel 2 Widerständen auf 2-fach Sockel
Bewegter Leiter im Magnetfeld
Bewegter Leiter im Magnetfeld Die Leiterschaukel mal umgedreht: Bewegt man die Leiterschaukel im Magnetfeld, so wird an ihren Enden eine Spannung induziert. 18.12.2012 Aufgaben: Lies S. 56 Abschnitt 1
Elektrische Schwingungen und Wellen
Elektrische Schwingungen und Wellen. Wechselströme. Elektrischer Schwingkreis i. Wiederholung Schwingung ii. Freie Schwingung iii. Erzwungene Schwingung iv. Tesla Transformator 3. Elektromagnetische Wellen
Protokoll zum Physikalischen Praktikum III Versuch 1 - Widerstandsmessung
Protokoll zum Physikalischen Praktikum III Versuch 1 - Widerstandsmessung Experimentatoren: Sebastian Knitter Thomas Kunze Betreuer: Dr. Holzhüter Rostock, den 30.11.2004 Inhaltsverzeichnis 1 Ziel des
= 16 V geschaltet. Bei einer Frequenz f 0
Augaben Wechselstromwiderstände 6. Ein Kondensator mit der Kapazität 4,0 µf und ein Drahtwiderstand von, kohm sind in eihe geschaltet und an eine Wechselspannungsquelle mit konstanter Eektivspannung sowie
E 12 Gedämpfter Schwingkreis
Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum E Gedämpfter Schwingkreis Aufgaben. Messen Sie die frequenzabhängige Stromaufnahme eines L-Serienresonanzkreises für drei verschiedene
(2 π f C ) I eff Z = 25 V
Physik Induktion, Selbstinduktion, Wechselstrom, mechanische Schwingung ösungen 1. Eine Spule mit der Induktivität = 0,20 mh und ein Kondensator der Kapazität C = 30 µf werden in Reihe an eine Wechselspannung
Laborversuche zur Physik I. Versuch 1-10 Wechselstrom und Schwingkreise. Versuchsleiter:
Laborversuche zur Physik I Versuch - 0 Wechselstrom und Schwingkreise Versuchsleiter: Autoren: Kai Dinges Michael Beer Gruppe: 5 Versuchsdatum: 3. Oktober 2005 Inhaltsverzeichnis 2 Aufgaben und Hinweise
Wechselstromwiderstände
Elektrizitätslehre und Schaltungen Versuch 29 ELS-29-1 Wechselstromwiderstände 1 Vorbereitung 1.1 Allgemeine Vorbereitung für die Versuche zur Elektrizitätslehre 1.2 Wechselspannung, Wechselstrom, Frequenz,
Repetitionen. Widerstand, Drosseln und Kondensatoren
Kapitel 16.1 epetitionen Widerstand, Drosseln und Kondensatoren Verfasser: Hans-udolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn 055-654 12 87 Ausgabe: Oktober 2011 1 1.702 Serieschaltung
Protokoll zu Versuch E4: Wheatstonesche Brücke. 1. Einleitung
Protokoll zu Versuch E: Wheatstonesche Brücke. Einleitung Die Wheatstonesche Brücke ist eine Brückenschaltung zur Bestimmung von Widerständen. Dabei wird der zu messende Widerstand mit bekannten Widerständen
4. Klausur Thema: Wechselstromkreise
4. Klausur Thema: Wechselstromkreise Physik Grundkurs 0. Juli 2000 Name: 0 = 8, 8542$ 0 2 C Verwende ggf.:,, Vm 0 =, 2566$ 0 6 Vs Am g = 9, 8 m s 2 0. Für saubere und übersichtliche Darstellung, klar ersichtliche
Zentralabitur 2007 Physik Schülermaterial Aufgabe II LK Bearbeitungszeit: 300 min
Thema: Abklingprozesse Aufgabenstellung In den folgenden Aufgaben werden anhand des radioaktiven Zerfalls und der gedämpften elektromagnetischen Schwingung zwei Abklingprozesse betrachtet. Außerdem werden
ELEKTRISCHE SPANNUNGSQUELLEN
Physikalisches Grundpraktikum I Versuch: (Versuch durchgeführt am 17.10.2000) ELEKTRISCHE SPANNUNGSQUELLEN Denk Adelheid 9955832 Ernst Dana Eva 9955579 Linz, am 22.10.2000 1 I. PHYSIKALISCHE GRUNDLAGEN
GRUNDLAGEN DER ELEKTROTECHNIK
GRUNDLAGEN DER ELEKTROTECHNIK Versuch 3: Messungen mit dem Oszilloskop 1 Versuchsdurchführung Dieser Versuch soll Sie an die grundlegenden Funktionen eines digitalen Oszilloskops heranführen. Lesen Sie
Diplomvorprüfung WS 2010/11 Fach: Grundlagen der Elektrotechnik, Dauer: 90 Minuten
Diplomvorprüfung GET Seite 1 von 8 Hochschule München FK 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A eigene Aufzeichnungen Matr.-Nr.: Hörsaal: Diplomvorprüfung WS 2010/11 Fach: Grundlagen
Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Kondensatoren und ohmschen Widerständen. LD Handblätter Physik
Elektrizitätslehre Gleich- und Wechselstromkreise Wechselstromwiderstände LD Handblätter Physik P3.6.3. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Kondensatoren und ohmschen Widerständen
Schaltungen mit Widerständen und Kondensatoren
Fakultät für Technik Bereich Informationstechnik Studiengang Elektrotechnik / Informationstechnik Elektrotechnisches Grundlagenlabor Versuch 3 Schaltungen mit Widerständen und Kondensatoren Laboranleitung/Laborbericht
Praktikum ETiT 1. Grundlagen der Elektrotechnik
Musterprotokoll zum Versuch : Kapazitäten & Induktivitäten Praktikum ETiT Grundlagen der Elektrotechnik Versuch Kapazitäten & Induktivitäten Musterprotokoll Aufgabe.5.6.7.8 (Vorbereitung) Punkte 4 4 44
6 Elektromagnetische Schwingungen und Wellen
6 Elektromagnetische Schwingungen und Wellen Gegen Ende des 19.Jahrhunterts gelang dem berühmten deutschen Physiker Heinrich Rudolph Hertz (1857-1894) zum ersten Mal in der Geschichte der Menschheit der
RE Elektrische Resonanz
RE Elektrische Resonanz Blockpraktikum Herbst 27 (Gruppe 2b) 24. Oktober 27 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Impedanz...................................... 2 1.2 Phasenresonanz...................................
Klausur Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5
Klausur 15.08.2011 Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5 Vorname: Matr.-Nr.: Nachname: Aufgabe 1 (6 Punkte) Gegeben ist folgende Schaltung aus Kondensatoren. Die Kapazitäten der
9. Schaltungen der Leistungselektronik
Einführung (a) 9. Schaltungen der Leistungselektronik Wenn große Lasten (Elektromotoren, Heizungen, Leuchtmittel) stufenlos angesteuert werden müssen, geschieht dies oft mittels Pulsweitenmodulation, kurz
Innovationspraktikum B Gedämpfte elektrische Schwingungen WS 2010/2011
Innovationspraktikum B Gedämpfte elektrische Schwingungen WS 2010/2011 Philipp Reichert [email protected] Wolfram Troeder [email protected] Philip Denkovski [email protected] Nikola
AUSWERTUNG: TRANSISTOR- UND OPERATIONSVERSTÄRKER
AUSWERTUNG: TRANSISTOR- UND OPERATIONSVERSTÄRKER FREYA GNAM, TOBIAS FREY 1. EMITTERSCHALTUNG DES TRANSISTORS 1.1. Aufbau des einstufigen Transistorverstärkers. Wie im Bild 1 der Vorbereitungshilfe wurde
GEM2, Praktikum 2: Oszilloskop (keine Berichtsabgabe möglich)
GEM2, Praktikum 2: Oszilloskop (keine Berichtsabgabe möglich) Bei diesem Praktikum wird gelernt, das wichtigste Messgerät der elektrotechnischen und elektrischen Messtechnik das Oszilloskop zu Bedienen.
Prof. Dr. Horst Fischer // Dr. Kim Heidegger WS 2017/2018
Prof. Dr. Horst Fischer // Dr. Kim Heidegger WS 207/208 Grundlagen der Physik mit Experimenten für Studierende der Medizin, Zahnmedizin und Pharmazie Übungsaufgaben für die Übungsstunde in der Woche vom
Systemtheorie. Vorlesung 17: Berechnung von Ein- und Umschaltvorgängen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann
Systemtheorie Vorlesung 7: Berechnung von Ein- und Umschaltvorgängen Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Ein- und Umschaltvorgänge Einführung Grundlagen der Elektrotechnik
Grolik Benno, Kopp Joachim. 2. Januar 2003 R 1 R 2 = R 3 R 4. herleiten, aus der man wiederum den unbekannten Widerstand sehr genau berechnen kann.
Brückenschaltungen Grolik Benno, Kopp Joachim 2. Januar 2003 Grundlagen des Versuchs. Brückenschaltung für Gleichstromwiderstände Zur genauen Bestimmung ohmscher Widerstände eignet sich die klassische
Physikalisches Praktikum 3. Semester
Torsten Leddig 26.Oktober 2004 Mathias Arbeiter Betreuer: Dr.Hoppe Physikalisches Praktikum 3. Semester - Galvanometer - 1 Aufgaben: 1. Bauen Sie eine Grundschaltung zur Bestimmung charakteristischer Größen
Prüfung _1. Lösung. Seite-01. Aufgabe ET2 U Q2
niversity of Applied Dipl.-Wirt. ng. (FH) Prüfung 6-_ Aufgabe ET Seite- Stand: 9..6; Bei dieser Aufgabe ist zu beachten, dass der Strom aus der Stromquelle negativ ist. Das bedeutet, dass man die Pfeilrichtung
