Inverse Methoden in der FE

Größe: px
Ab Seite anzeigen:

Download "Inverse Methoden in der FE"

Transkript

1 Inverse Methoden in der FE 12. Mai Übung: Vorwärtsmodellierung im Mikrowellenbereich (STP) 19. Mai VL: Statistische Inversionsverfahren (Regression, Neuronales Netz) 2. Juni Übung: spez. Aufgaben der Gruppen (verlängert bis 19:00) 9. Juni Übung bei Wunsch (Literaturseminar auf der Zugspitze) 16. Juni VL: Direkte, lineare Invertierung Zwischenstand: Präsentation der Ergebnisse (10 min+3 Folien je Gruppe) 23. Juni Übung: spez. Aufgaben der Gruppen 30. Juni VL: Invertierung mit Zwangsbedingungen 7. Juli Übung: spez. Aufgaben der Gruppen 14. Juli Präsentation und Diskussion der Ergebnisse zusätzlich: vor dem Terminvereinbarung mit M. Mech möglich wegen Techniken zur graphischen Darstellung Infos und Aufgabenstellung + Quellcodes unter: Juni

2 Spezielle Aufgaben der Gruppen Gruppe 1 (Rafael und Markus) Temperaturprofile aus Multi-Frequenzmessungen entlang der 60 GHz Sauerstoffbande (AMSU-A) vom Satelliten aus Aufgaben bis zum Vorstellung der Problematik Analyse des Informationsgehalts der FE-Messung, d.h. Darstellung und Deutung des TB-Spektrums (AMSU-A Kanäle) und graphische Darstellung der Wichtungsfunktionen für einen ausgesuchten Fall Berechnung von gemittelten Temperaturprofilen, die später abgeleitet werden sollen Weitere Aufgaben bis zum Formulierung des Strahlungstransportes in Matrixschreibweise Berechnung der Zwangsbedingungsmatrizen Lösung mit Zwangsbedingungen und TB-Fehlerannahmen Graphische Darstellung der abgeleiteten Profile 16. Juni

3 Inverse Fernerkundung 2005 Temperaturprofile aus Multi-Frequenzmessungen entlang der 60 GHz Sauerstoffbande (AMSU-A) vom Satelliten aus

4 Spektrale Darstellung der Helligkeitstemperatur im Bereich von 50 GHz bis 58 GHz. Maximum bei GHz Physikalische Grundlagen der Fernerkundung Inverse Fernerkundung: Temperaturprofile entlang der 60 GHz Sauerstoffbande vom Satelliten aus M.Eifried & R.Kühnel SS 2005

5 Physikalische Grundlagen der Fernerkundung Inverse Fernerkundung: Temperaturprofile entlang der 60 GHz Sauerstoffbande vom Satelliten aus M.Eifried & R.Kühnel SS 2005

6 Physikalische Grundlagen der Fernerkundung Inverse Fernerkundung: Temperaturprofile entlang der 60 GHz Sauerstoffbande vom Satelliten aus M.Eifried & R.Kühnel SS 2005

7 Physikalische Grundlagen der Fernerkundung Inverse Fernerkundung: Temperaturprofile entlang der 60 GHz Sauerstoffbande vom Satelliten aus M.Eifried & R.Kühnel SS 2005

8 Physikalische Grundlagen der Fernerkundung Inverse Fernerkundung: Temperaturprofile entlang der 60 GHz Sauerstoffbande vom Satelliten aus M.Eifried & R.Kühnel SS 2005

9 Spezielle Aufgaben der Gruppen Gruppe 2 (Silke und Christoph) Temperaturprofile aus Multi-Frequenzmessungen entlang der 118 GHz Sauerstoffbande vom Satelliten aus Frequenzen: 110.0, , 117.3, 118.0, , , , 118.7, Aufgaben bis zum Vorstellung der Problematik Analyse des Informationsgehalts der FE-Messung, d.h. Darstellung und Deutung des TB-Spektrums ( GHz) und graphische Darstellung der Wichtungsfunktionen für einen ausgesuchten Fall Berechnung von gemittelten Temperaturprofilen, die später abgeleitet werden sollen Weitere Aufgaben bis zum Formulierung des Strahlungstransportes in Matrixschreibweise Berechnung der Zwangsbedingungsmatrizen Lösung mit Zwangsbedingungen und TB-Fehlerannahmen Graphische Darstellung der abgeleiteten Profile 16. Juni

10 Aufgabenstellung Berechnung der Helligkeitstemperaturen und Wichtungsfunktionen entlang der 118 GHz- Sauerstoffbande Grafische Darstellung der Wichtungsfunktionen mit der Höhe Darstellung und Deutung des Spektrums der Helligkeitstemperaturen Physikalische Grundlagen der Fernerkundung 10

11 Grafische Darstellung 118,7 118,55 118,35 117,3 115, Physikalische Grundlagen der Fernerkundung 11

12 Helligkeitstemperaturen Frequenzen 110 GHz 115,15 GHz 117,3 GHz 118,35 GHz 118,55 GHz 118,7 GHz 118,725 GHz Rand 90,0 98,0 105,0 Helligkeitstemperaturen 129,50 117,90 80,47 16,51 3,795 0,1043 0,0293 Rand 133,9 132,9 131,6 Physikalische Grundlagen der Fernerkundung 12

13 Spezielle Aufgaben der Gruppen Gruppe 3 (Kirstin und Thomas) Feuchteprofile aus Multi-Frequenzmessungen entlang der 183 GHz Wasserdampflinie vom Satelliten aus (AMSU-B Frequenzen) Aufgaben bis zum 16.6.: Vorstellung der Problematik Analyse des Informationsgehalts der FE-Messung, d.h. Darstellung und Deutung des TB-Spektrums (AMSU-B Kanäle) und graphische Darstellung der Wichtungsfunktionen für einen ausgesuchten Fall Darstellung der Korrelation zwischen den TB und der Feuchte in verschiedenen Höhe für den gesamten Radiosondendatensatz Weitere Aufgaben bis zum Berechnung der linearen Regressionskoeffizientenmatrix M (Anzahl TB x Anzahl Höhenschichten), wobei Feuchte=M*TB, aus einer Hälfte des Radiosondendatensatzes Darstellung der Genauigkeit des Verfahrens durch Anwendung auf die zweite Hälfte des Radiosondendatensatzes 16. Juni

14 Inverse Fernerkundung 2005 Feuchteprofile aus Multifrequenzmessungen entlang der 183 GHz Wasserdampflinie vom Satelliten aus

15 Spektrum der Helligkeitstemperaturen Helligkeitstemperaturen fuer speziellen Fall TB Helligkeitstemperaturen in K Hier plot mit x-achse frequenz y-achse TB Deutung des Spektrums : AMSU-B Kanäle 50 0 Physikalische Grundlagen 70 der Fernerkundung Frequenzen in GHz Inverse FE: Feuchteprofile entlang der 183 GHz Wasserdampflinie vom Satelliten aus T.Hamburger & K.Kober SoSe 2005

16 Berechnete Wichtungsfunktionen Wichtungsfunktionen 89 GHz 150 GHz 176 GHz 180 GHz 182 GHz H he in m Hier: plot mit x-achse wichtungsfkt y-achsehöhez Bei ausgesuchten fall Physikalische Grundlagen der Fernerkundung Wichtungsfunktionen in 1/m Inverse FE: Feuchteprofile entlang der 183 GHz Wasserdampflinie vom Satelliten aus T.Hamburger & K.Kober SoSe 2005

17 Korrelation zwischen TB & Feuchte in bestimmten Höhen... In Arbeit Physikalische Grundlagen der Fernerkundung Inverse FE: Feuchteprofile entlang der 183 GHz Wasserdampflinie vom Satelliten aus T.Hamburger & K.Kober SoSe 2005

18 Spezielle Aufgaben der Gruppen Gruppe 4a (Pascal) IWV aus Messungen bei 23.8 und 31.4 GHz vom Boden aus Aufgaben bis zum 16.6.: Vorstellung der Problematik Analyse des Informationsgehalts der FE-Messung, d.h. Darstellung und Deutung des TB-Spektrums (10-40 GHz) und graphische Darstellung der Wichtungsfunktionen bei 23.8 und 31.4 GHz für einen ausgesuchten Fall Darstellung der Korrelation zwischen den TB und dem IWV für den gesamten Radiosondendatensatz, Darstellung des mittleren Jahresgangs für IWV Weitere Aufgaben bis zum Berechnung von jahreszeitenabhängigen linearen Regressionskoeffizientenvektoren M (Anzahl TB), wobei IWV = M*TB), aus einer Hälfte des Radiosondendatensatzes Darstellung der Genauigkeit des Verfahrens durch Anwendung auf die zweite Hälfte des Radiosondendatensatzes 16. Juni

19 Spezielle Aufgaben der Gruppen Gruppe 4b (Dominik und Matthias) IWV aus Messungen bei 23.8 und 31.4 GHz vom Satelliten aus Aufgaben bis zum 16.6.: Vorstellung der Problematik Analyse des Informationsgehalts der FE-Messung, d.h. Darstellung und Deutung des TB-Spektrums (10-40 GHz) und graphische Darstellung der Wichtungsfunktionen bei 23.8 und 31.4 GHz für einen ausgesuchten Fall Darstellung der Korrelation zwischen den TB und dem IWV für den gesamten Radiosondendatensatz, Darstellung des mittleren Jahresgangs für IWV Weitere Aufgaben bis zum Berechnung von jahreszeitenabhängigen linearen Regressionskoeffizientenvektoren M (Anzahl TB), wobei IWV = M*TB), aus einer Hälfte des Radiosondendatensatzes Darstellung der Genauigkeit des Verfahrens durch Anwendung auf die zweite Hälfte des Radiosondendatensatzes 16. Juni

20 Ableitung des IWV aus der Helligkeitstemperatur Grundproblem: gegeben: TB=F(IWV) F: Vorwärtsmodell mit Trainingsdatensatz gesucht: IWV= T(TB) T = F -1 inverse Modellierung durch lineare Regression 0 T B = T sτa + W ρ ( z ) ρ ( z ) dz

21 Helligkeitstemperatur gegen Frequenz Helligkeitstemperatur [K] Frequenz [GHZ] Physikalische Grundlagen der Fernerkundung 21

22 Wichtungsfunktion von Wasserdampf Frequenz: 23.8 GHz Höhe [m] W( z) = k( z) = σ k( z) T( z) ( z) / ρ τ ( z) ( z) 2000 Frequenz: 31.4 GHz Wichtungsfunktion Wichtungsfunktion relativ konstant Informationen über den Wasserdampf aus allen Höhen gleich Physikalische Grundlagen der Fernerkundung 22

23 Grundproblem: gegeben: TB=F(IWV) F: Vorwärtsmodell mit Trainingsdatensatz gesucht: IWV= T(TB) T = F -1 inverse Modellierung durch lineare Regression 0 T B = T sτa + W ρ ( z ) ρ ( z ) dz

24 16. Juni Direkte Invertierung Δ Δ Δ = ) (.. ) ( ) (... ) (.... ) ( ) ( ) (.. ) ( ) ( 2 1, 1 2, , N A A A M B B B z T z T z T z z W z z W z z W T T T ν M ν ν ν ν ν τ τ τ ν ν ν Beispiel: Berechnung des Temperaturprofils T(z) durch M Messungen der Helligkeitstemperatur entlang einer Sauerstoffbande T B (ν) p s r r r = dz z T z W T dz z z T z T T T A s A s B ) ( ) ( ) ( ) ( ) ( = + = τ τ σ τ Problem: In Wahrheit geht die Anzahl der vertikalen Schichten n, zumindest ist allgemein N>>M T(z 1 )=T s Temperatur am Boden

25 Beispiel: Temperatur-Invertierung r 1 p = S r Voraussetzung für Invertierung: Quadratische Matrix S 8 Frequenzen nur 7 Höhen + Boden Betrachtung von Schichtmitteln W ν i T ( z ( z i i ) Δz ) T ( z ) i W i ν i ( z ) Δz Durchführung Berechnung der Schichtmittel W und T i i Neue Vorwärtsrechnung, da T B nicht gleich T B Berechnung von S -1 Anwendung auf T B (und T B ) Berücksichtigung von Messfehlern in T B 16. Juni später auch N<M

26 Einfache lineare Systemephysikalische Invertierung r r = S r p Aufgabe: Bestimmung von S p r Frage: Wie gut ist dann? 1 r 1 p = S r Prinzipielle Probleme Nichtlinearität der STP Informationsgehalt der Messungen Einfluss von Messfehlern Hier ist S der lineare Strahlungstransportoperator, der unabhängig von p (=T(z)) ist! Was ist problematisch? Absorptionskoeffizient σ ist abhängig von der Temperatur und somit auch die optische Dicke δ, die Transmission τ und die Wichtungsfunktion W (=S) 16. Juni

27 4.1 Algebraische Beispiele Frage an den Zoowärter: Antwort: Wie viele Vögel (V) und wie viele Säugetiere (S) gibt es im Zoo? 100 Köpfe und 300 Füße Lösung: V + S = 100 * -4 2V + 4S = 300-4V - 4S = 400 2V + 4S = 300-2V = -100 V = 50 S = 50 Bekannte r r 100 = 300 Unbekannte p r 50 = 50 S = r r = S r p 16. Juni

28 Weitere Beispiele 2. Frage : Wie viele Löwen (L) und wie viele Tiger (T) gibt es im Zoo? Antwort: 100 Köpfe und 300 Füße Lösung: L + T = 100 4L + 4T = 300 * -4-4L - 4T = 400 4L+ 4T = = -100 Lüge oder Fehler 16. Juni

29 Weitere Beispiele 2. Frage : Wie viele Löwen (L) und wie viele Tiger (T) gibt es im Zoo? Antwort: 100 Köpfe und 400 Füße Lösung: L + T = 100 4L + 4T = 400 * -4-4L - 4T = 400 4L+ 4T = = -0 S = Effektiv nur 1 Gleichung mit 2 Unbekannten Unterbestimmtes System! Gleiche Wichtungsfunktionen 16. Juni

30 Gleichungssysteme (algebraische Elimination) 1. x + y + z = x - y + 3z = x + 2y - z = x - 3y -3z = x + 2y - z = -1 -y - 4z = x - 2y - 2z = x - y + 3z = 9-3y + z = 5 r r = S r p 3y +12z = 21-3y + z = 5 13z = 26 r r = S = p r = 1 1. x + y + z = y + 1z = z = 26 Obere Dreiecksmatrix Weitere Lösung durch Sequentielles Einsetzen Gauss-Seidel-Eliminationsverfahren S 1 1 = Juni

31 Gauss-Seidel-Eliminationsverfahren Jede Gleichung durch Koeffizienten von x teilen 1. Gleichung von 2.,3., N.ter abziehen N-1 Gleichungen mit N-1 Unbekannten Iteration Einsetzen (back substitution) Obere Dreiecksmatrix 1. x + y + z = x - y + 3z = x + 2y - z = -1 oder Nutzung der Numerical Recipes Subroutine GAUSSJ(S,N,NP,B,M,MP) 16. Juni

32 Numerical Recipes Subroutine GAUSSJ(A,N,NP,B,M,MP) A r x = r b Input: A NxN Koeffizientenmatrix, z.b NP physikalische Dimension B NxM Matrix mit M Eingabegrößen für Ausgabe: A -1 steht auf S x j,j=1,m steht auf B S b r Numerisches Praktikum 1. A =S, aber Diskretisierung beachten, verwende ein Schema zur Diskretisierung mit z i an den Maxima der Wichtungsfunktionen 2. r r b = 1 1 A = S 3. Anwendung von GAUSSJ und 4. Führe aus S 1 r = r p r r x = p 16. Juni

33 1. x + y + z = x - y + 3z = x + y + 5z = 12 Probleme x + 4z = x - 8z = 21 geht nicht! War zu erwarten, da 1 1 ( ) S = det det = Singuläre Matrix nicht invertierbar 16. Juni

34 A r x r b 4.2. Theorie Linearer Systeme Koeffizientenmatrix Lösungsvektor Messvektor A r r A x = b quadratisch und nicht-singulär d.h es gibt eine Inverse) mit Einheitsmatrix A A A = A A = 1 t Transponierte von A wird definiert durch Vertauschen von Zeilen und Spalten ( ) B ( ) t t t A = B A A B = B A wenn A, B quadratische, symmetrische Matrix A t A ist quadratische, symmetrische Matrix A 1 = A t A 1 ist quadratische, symmetrische Matrix A t es existieren effiziente Verfahren zur Invertierung! 16. Juni

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 2 Rechenoperationen und Gesetze Gleichheit

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

Rückwärts-Einsetzen. Bei einem linearen Gleichungssystem in oberer Dreiecksform, nacheinander bestimmt werden: r n,n x n = b n. = x n = b n /r n,n

Rückwärts-Einsetzen. Bei einem linearen Gleichungssystem in oberer Dreiecksform, nacheinander bestimmt werden: r n,n x n = b n. = x n = b n /r n,n Rückwärts-Einsetzen Bei einem linearen Gleichungssystem in oberer Dreiecksform, r 1,1 r 1,n x 1 b 1..... =., } 0 {{ r n,n } x n b n R mit det R = r 1,1 r n,n 0 können die Unbekannten x n,..., x 1 nacheinander

Mehr

Matrizen: Grundbegriffe. 1-E Ma 1 Lubov Vassilevskaya

Matrizen: Grundbegriffe. 1-E Ma 1 Lubov Vassilevskaya Matrizen: Grundbegriffe -E Ma Lubov Vassilevskaya Lineares Gleichungssystem Abb. : Der Schnittpunkt P der beiden Geraden ist die graphische Lösung des linearen Gleichungssystem g : y = x, g 2 : y = 3 x,

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2015 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 7 Fortgeschrittene Datenstrukturen 8 Such-Algorithmen

Mehr

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg Lineare : Einführung Beispiele linearer a) b) c) 2x 1 3x 2 = 1 x 1 +

Mehr

a ij i - te Gleichung (Zeile), i = 1,2,3,..., m

a ij i - te Gleichung (Zeile), i = 1,2,3,..., m I) MATRIZEN Der Start: Lineare Gleichungen y ax+ a2x2 + a3x3 y2 a2x+ a22x2 + a23x3... Koeffizienten a ij i - te Gleichung (Zeile), i,2,3,..., m j - te Variable (Spalte), j,2,3,..., n Definition m x n Matrix

Mehr

Lineare Gleichungssysteme I (Matrixgleichungen)

Lineare Gleichungssysteme I (Matrixgleichungen) Lineare Gleichungssysteme I (Matrixgleichungen Eine lineare Gleichung mit einer Variablen x hat bei Zahlen a, b, x die Form ax = b. Falls hierbei der Kehrwert von a gebildet werden darf (a 0, kann eindeutig

Mehr

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung Kapitel 2: Matrizen 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung 2.1 Matrizen M = n = 3 m = 3 n = m quadratisch M ij : Eintrag von M in i-ter

Mehr

a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a 7 Lineare lgebra 7.1 Matrizen a a a k a a a a a a a a a a a a a 11 12 1 1n 21 22 2k 2n i1 i2 in m1 m2 mk mn i-te Zeile m Zeilen n Spalten k-te Spalte a : Matrixelement i 1,2,...,m k 1,2,...,n i: Zeilenindex

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg Lineare : Einführung Beispiele linearer a) b) c) 2x 1 3x 2 = 1 x 1 + x 2 =

Mehr

3 Lineare Gleichungen

3 Lineare Gleichungen Aufgabe 3. Man löse die lineare Gleichung a 2 x b 2 a a(b ax) b + b2 a = a, a b nach der Unbekannten x auf und diskutiere die möglichen Fälle. a 2 x b 2 a a(b ax) b + b2 a = a a b a 2 bx b 3 a 2 b + a

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2017 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München Programm heute 7 Fortgeschrittene Datenstrukturen 8

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 11 1. Juni 2010 Rechenregeln für Determinanten Satz 62. (Determinanten von Dreiecksmatrizen) Es sei A eine obere oder untere n n-dreiecksmatrix.

Mehr

Lineare Gleichungssysteme und Matrizen

Lineare Gleichungssysteme und Matrizen Kapitel 11 Lineare Gleichungssysteme und Matrizen Ein lineares Gleichungssystem (lgs) mit m linearen Gleichungen in den n Unbekannten x 1, x 2,..., x n hat die Gestalt: Mit a 11 x 1 + a 12 x 2 + a 13 x

Mehr

Lineare Algebra. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching October 6, 017 1 Erinnerung: Lineare Gleichungssysteme LGS Der allgemeine Fall hat m lineare Gleichungen, n

Mehr

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya Inverse Matrix -E Ma Lubov Vassilevskaya Inverse Matrix Eine n-reihige, quadratische Matrix heißt regulär, wenn ihre Determinante einen von Null verschiedenen Wert besitzt. Anderenfalls heißt sie singulär.

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom Übungsaufgaben 11. Übung: Woche vom 9. 1.-13. 1. 2017 (Numerik): Heft Ü 1: 12.28.a,b; 12.29.b,c (jeweils mit Fehlerabschätzung); 6.26; 6.27.a (auch mit Lagrange-Interpolationspolynom); 6.25; 6.28 (auch

Mehr

a ij i - te Gleichung (Zeile), i = 1, 2,3,..., m I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen

a ij i - te Gleichung (Zeile), i = 1, 2,3,..., m I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen y 1 = a 11 x 1 + a 12 x 2 + a 13 x3 y 2 = a 21 x 1 + a 22 x 2 + a 23 x3... Koeffizienten a ij i - te Gleichung

Mehr

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen y1 = a11x1+ a12x2 + a13x3 y2 = a21x1+ a22x2 + a23x3... Koeffizienten a ij i - te Gleichung (Zeile), i

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 5 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 21 Prof. Dr. Klaus Höllig (IMNG)

Mehr

Für das Allgemeine lineare Gleichungssystem mit n linearen Gleichungen und n Unbekannten

Für das Allgemeine lineare Gleichungssystem mit n linearen Gleichungen und n Unbekannten Albert Ludwigs Universität Freiburg Abteilung Empirische Forschung und Ökonometrie Mathematik für Wirtschaftswissenschaftler Dr. Sevtap Kestel Winter 008 6. Januar.009 Kapitel 6 Leontieff Modell, Lineare

Mehr

Mathematik für Wirtschaftswissenschaftler II

Mathematik für Wirtschaftswissenschaftler II Mathematik für Wirtschaftswissenschaftler II Lineare Wirtschaftsalgebra von Dr. Dietrich Ohse Professor für Betriebswirtschaftslehre, insbesondere Quantitative Methoden, an der Johann Wolfgang Goethe-Universität

Mehr

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49 Kapitel 2 Matrixalgebra Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49 Ein sehr einfaches Leontief-Modell Eine Stadt betreibt die Unternehmen ÖFFENTLICHER VERKEHR, ELEKTRIZITÄT und GAS.

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 3 und lineare Gleichungssysteme und

Mehr

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49 Kapitel 2 Matrixalgebra Josef Leydold Mathematik für VW WS 207/8 2 Matrixalgebra / 49 Ein sehr einfaches Leontief-Modell Eine Stadt betreibt die Unternehmen ÖFFENTLICHER VERKEHR, ELEKTRIZITÄT und GAS.

Mehr

Matrixalgebra. Kapitel 2. Ein sehr einfaches Leontief-Modell. Matrix. Ein sehr einfaches Leontief-Modell. Vektor. Spezielle Matrizen I

Matrixalgebra. Kapitel 2. Ein sehr einfaches Leontief-Modell. Matrix. Ein sehr einfaches Leontief-Modell. Vektor. Spezielle Matrizen I Ein sehr einfaches Leontief-Modell Eine Stadt betreibt die Unternehmen ÖFFENTLICHER VERKEHR, ELEKTRIZITÄT und GAS Kapitel 2 Matrixalgebra Technologiematrix und wöchentliche Nachfrage (in Werteinheiten):

Mehr

Inverse der Verwandtschaftsmatrix

Inverse der Verwandtschaftsmatrix Qualitas AG Inverse der Verwandtschaftsmatrix Peter von Rohr Qualitas AG Peter von Rohr Folien ZL I+II LFW C11 November 5, 2015 2 / 26 Inverse einer Matrix Definition Gegeben eine quadratische Matrix A

Mehr

Messunsicherheiten und Matrizenrechnung

Messunsicherheiten und Matrizenrechnung Physikalisch-Technische Bundesanstalt Braunschweig und Berlin Matrix Messunsicherheiten und Matrizenrechnung T. Funck Arbeitsgruppe.13 Wechsel-Gleich-Transfer, Impedanz 60. PTB Seminar am 1. Mai 011 Inhalt

Mehr

Überbestimmte Gleichungssysteme

Überbestimmte Gleichungssysteme Siebente Vorlesung, 8. Mai 2008, Inhalt Überbestimmte Gleichungssysteme Kleinste Quadrate: einfaches Beispiel, elementare Herleitung Normalengleichungen Transformation mit QR-Zerlegung und SVD Nichtlineare

Mehr

Hilfsblätter Lineare Algebra

Hilfsblätter Lineare Algebra Hilfsblätter Lineare Algebra Sebastian Suchanek unter Mithilfe von Klaus Flittner Matthias Staab c 2002 by Sebastian Suchanek Printed with L A TEX Inhaltsverzeichnis 1 Vektoren 1 11 Norm 1 12 Addition,

Mehr

Über- und unterbestimmte Systeme

Über- und unterbestimmte Systeme Über- und unterbestimmte Systeme Über- und unterbestimmte Systeme (verallgemeinerte Lösungen) Ax = b ist genau dann für alle b R m eindeutig lösbar, wenn m = n und rk A = n. Falls m n oder rk A < min{m,

Mehr

1 Bestimmung der inversen Matrix

1 Bestimmung der inversen Matrix Inhaltsverzeichnis 1 Bestimmung der inversen Matrix Die inverse Matrix A 1 zu einer Matrix A kann nur bestimmt werden, wenn die Determinante der Matrix A von Null verschieden ist. Im folgenden wird die

Mehr

Gleichungsbasierte Modellierung

Gleichungsbasierte Modellierung 1 Gleichungsbasierte Modellierung Die Benutzung von Gleichungen zur Geometrischen Modellierung wurde bereits von Sutherland eingeführt. Fortgeführt wurde sie durch die Arbeiten von Light und Gossard. Wie

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

Lineare Gleichungen. Mathematik-Repetitorium. 3.1 Eine Unbekannte. 3.2 Zwei oder drei Unbekannte. 3.3 Allgemeine lineare Gleichungssysteme

Lineare Gleichungen. Mathematik-Repetitorium. 3.1 Eine Unbekannte. 3.2 Zwei oder drei Unbekannte. 3.3 Allgemeine lineare Gleichungssysteme Lineare Gleichungen 3.1 Eine Unbekannte 3.2 Zwei oder drei Unbekannte 3.3 Allgemeine lineare Gleichungssysteme Lineare Gleichungen 1 Vorbemerkung zu Kapitel 1 Gleichungen (Unbekannte) (Variablen, Parameter)

Mehr

Matrizen und Determinanten, Aufgaben

Matrizen und Determinanten, Aufgaben Matrizen und Determinanten, Aufgaben Inhaltsverzeichnis 1 Multiplikation von Matrizen 1 11 Lösungen 3 2 Determinanten 6 21 Lösungen 7 3 Inverse Matrix 8 31 Lösungen 9 4 Matrizengleichungen 11 41 Lösungen

Mehr

Nur Matrizen gleicher Dimension können addiert oder subtrahiert werden. Zur Berechnung werden zwei Matrizen A und B in den Matrix-Editor eingegeben.

Nur Matrizen gleicher Dimension können addiert oder subtrahiert werden. Zur Berechnung werden zwei Matrizen A und B in den Matrix-Editor eingegeben. R. Brinkmann http://brinkmann-du.de Seite 1 14.02.2014 Casio fx-cg20 Operationen mit Matrizen Bei nachfolgend beschriebenen Matrizenoperationen wird davon ausgegangen, dass die Eingabe von Matrizen in

Mehr

Spezielle Matrixformen

Spezielle Matrixformen Definition B57 (Transposition) Eine einfache aber wichtige Operation auf Matrizen ist die Transposition, die aus einer (m n) Matrix A eine (n m) Matrix B = A T macht Hierbei gilt β i j = α j i, so daß

Mehr

Kapitel 3 Lineare Algebra

Kapitel 3 Lineare Algebra Kapitel 3 Lineare Algebra Inhaltsverzeichnis VEKTOREN... 3 VEKTORRÄUME... 3 LINEARE UNABHÄNGIGKEIT UND BASEN... 4 MATRIZEN... 6 RECHNEN MIT MATRIZEN... 6 INVERTIERBARE MATRIZEN... 6 RANG EINER MATRIX UND

Mehr

Determinanten. I. Permutationen

Determinanten. I. Permutationen Determinanten Durch Bildung der Determinante wird einer quadratischen (! Matrix eine gewisse Zahl zuordnet. Die Determinante tritt besonders bei Fragen der Flächen- bzw. Volumsberechnung auf (siehe auch

Mehr

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v.

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v. Teil I Lineare Algebra I Vorlesung Sommersemester 2011 Olga Holtz MA 378 Sprechstunde Fr 14-16 und nv holtz@mathtu-berlinde Sadegh Jokar MA 373 Sprechstunde, Do 12-14 und nv jokar@mathtu-berlinde Kapitel

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte Mathematik I Matrizen In diesem Kapitel werden wir lernen was Matrizen sind und wie man mit Matrizen rechnet. Matrizen ermöglichen eine kompakte Darstellungsform vieler mathematischer Strukturen. Zum Darstellung

Mehr

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2.

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2. Definition Die rechteckige Anordnung von m n Elementen a ij in m Zeilen und n Spalten heißt m n- Matrix. Gewöhnlich handelt es sich bei den Elementen a ij der Matrix um reelle Zahlen. Man nennt das Paar

Mehr

3 Lineare Algebra Vektorräume

3 Lineare Algebra Vektorräume 3 Lineare Algebra Vektorräume (31) Sei K ein Körper Eine kommutative Gruppe V bzgl der Operation + ist ein Vektorraum über K, wenn eine Operation : K V V (λ, v) λv existiert mit i) v,w V λ,µ K: λ (v +

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

Verarbeitung von Messdaten

Verarbeitung von Messdaten HTL Steyr Verarbeitung von Messdaten Seite von 8 Bernhard Nietrost, HTL Steyr Verarbeitung von Messdaten Mathematische / Fachliche Inhalte in Stichworten: Regression, Polynominterpolation, Extremwertberechnung,

Mehr

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Inhaltsverzeichnis Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Auf dieser Seite werden Matrizen und Vektoren fett gedruckt, um sie von Zahlen zu unterscheiden. Betrachtet wird das

Mehr

Tutorium: Analysis und Lineare Algebra

Tutorium: Analysis und Lineare Algebra Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 14.5.218 (Teil 2) 9. Mai 218 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 218 Steven Köhler 9. Mai 218 3 c 218

Mehr

Matrizen und Determinanten

Matrizen und Determinanten Matrizen und Determinanten 1 Matrizen und Determinanten 1 Einführung in den Matrizenbegriff Zur Beschreibung und Lösung vieler physikalischer Probleme ist die Vektorrechnung vonnöten Durch Verwendung von

Mehr

IV. Matrizenrechnung. Gliederung. I. Motivation. Lesen mathematischer Symbole. III. Wissenschaftliche Argumentation. i. Rechenoperationen mit Matrizen

IV. Matrizenrechnung. Gliederung. I. Motivation. Lesen mathematischer Symbole. III. Wissenschaftliche Argumentation. i. Rechenoperationen mit Matrizen Gliederung I. Motivation II. Lesen mathematischer Symbole III. Wissenschaftliche Argumentation IV. Matrizenrechnung i. Rechenoperationen mit Matrizen ii. iii. iv. Inverse einer Matrize Determinante Definitheit

Mehr

Lineare Algebra. 1. Übungsstunde. Steven Battilana

Lineare Algebra. 1. Übungsstunde. Steven Battilana Lineare Algebra 1. Übungsstunde Steven Battilana September 3, 016 1 Komplexe Zahlen In R können wir zusätzlich zur Addition eine weitere Verknüpfung einführen, die komplexe Multiplikation : R R (a, b),

Mehr

Determinanten. I. Permutationen

Determinanten. I. Permutationen Determinanten Durch Bildung der Determinante wird einer quadratischen (! Matrix eine gewisse Zahl zuordnet. Die Determinante tritt besonders bei Fragen der Flächen- bzw. Volumsberechnung auf (siehe auch

Mehr

1 Einführung Gleichungen und 2 Unbekannte Gleichungen und 3 Unbekannte... 4

1 Einführung Gleichungen und 2 Unbekannte Gleichungen und 3 Unbekannte... 4 Wirtschaftswissenschaftliches Zentrum 3 Universität Basel Mathematik 2 Dr Thomas Zehrt Lineare Gleichungssysteme Inhaltsverzeichnis Einführung 2 2 Gleichungen und 2 Unbekannte 2 2 3 Gleichungen und 3 Unbekannte

Mehr

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung D-MATH/D-PHYS Lineare Algebra I HS 06 Dr. Meike Akveld Serie : Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung. Gegeben seien die folgenden geordneten Basen B = (v, v, v, v ) und C = (w, w,

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Invertierbarkeit von Matrizen

Invertierbarkeit von Matrizen Invertierbarkeit von Matrizen Lineare Algebra I Kapitel 4 24. April 2013 Logistik Dozent: Olga Holtz, MA 417, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de

Mehr

Mathematische Methoden in der Systembiologie WS 2017/2018

Mathematische Methoden in der Systembiologie WS 2017/2018 Mathematische Methoden in der Systembiologie WS 2017/2018 Dozent: Dr. M. V. Barbarossa (barbarossa@uni-heidelberg.de) Tutor: M.Sc. D. Danciu (dpdanciu@math.uni-heidelberg.de) /Übung: Di.+Do. 9:15-10:45Uhr,

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13

Corinne Schenka Vorkurs Mathematik WiSe 2012/13 4. Lineare Gleichungssysteme Ein lineares Gleichungssystem ist ein System aus Gleichungen mit Unbekannten, die nur linear vorkommen. Dieses kann abkürzend auch in Matrizenschreibweise 1 notiert werden:

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 12. Übung: Woche vom (Lin.Alg.

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 12. Übung: Woche vom (Lin.Alg. Übungsaufgaben 12. Übung: Woche vom 16. 1.-20. 1. 2017 (Lin.Alg. I): Heft Ü 3: 2.1.11; 2.1.8; 2.1.17; 2.2.1; 2.2.3; 1.1.1; 1.1.4; Hinweis 1: 3. Test (Integration, analyt. Geom.) ist seit 9.1. freigeschalten

Mehr

Lineare Algebra I 3. Tutorium Inverse Matrizen und Gruppen

Lineare Algebra I 3. Tutorium Inverse Matrizen und Gruppen Lineare Algebra I Tutorium Inverse Matrizen und Gruppen Fachbereich Mathematik WS / Prof Dr Kollross November Dr Le Roux Dipl-Math Susanne Kürsten Aufgaben Aufgabe G (Die zweite Variante des Gauß-Algorithmus)

Mehr

3 Matrizen und Lineare Gleichungssysteme

3 Matrizen und Lineare Gleichungssysteme 3 Matrizen und LGS Pink: Lineare Algebra HS 2014 Seite 38 3 Matrizen und Lineare Gleichungssysteme 3.1 Definitionen Sei K ein Körper, und seien m,n,l natürliche Zahlen. Definition: Eine Matrix mit m Zeilen

Mehr

Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011)

Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011) M. Sc. Frank Gimbel Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011) 1 Motivation Ziel ist es, ein gegebenes lineares Gleichungssystem der Form Ax = b (1) mit x, b R n und A R n n zu lösen.

Mehr

Ökonometrische Analyse

Ökonometrische Analyse Institut für Statistik und Ökonometrie, Freie Universität Berlin Ökonometrische Analyse Dieter Nautz, Gunda-Alexandra Detmers Rechenregeln für Matrizen Notation und Matrixeigenschaften: Eine Matrix A der

Mehr

Matrizen. Lineare Algebra I. Kapitel April 2011

Matrizen. Lineare Algebra I. Kapitel April 2011 Matrizen Lineare Algebra I Kapitel 2 26. April 2011 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/~holtz Email: holtz@math.tu-berlin.de Assistent: Sadegh

Mehr

a 21 a 22 a 21 a 22 = a 11a 22 a 21 a 12. Nun zur Denition und Berechnung von n n-determinanten: ( ) a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 A =

a 21 a 22 a 21 a 22 = a 11a 22 a 21 a 12. Nun zur Denition und Berechnung von n n-determinanten: ( ) a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 A = 3 Determinanten Man bestimmt Determinanten nur von quadratischen Matrizen Wir werden die Berechnung von Determinanten rekursiv durchfuhren, dh wir denieren wie man eine 2 2-Determinante berechnet und fuhren

Mehr

Mathematische Methoden in der Systembiologie Universität Heidelberg, Sommer 2017

Mathematische Methoden in der Systembiologie Universität Heidelberg, Sommer 2017 Mathematische Methoden in der Systembiologie Universität Heidelberg, Sommer 2017 Dozent: Dr. M. V. Barbarossa (barbarossa@uni-heidelberg.de) Vorlesung+ Übung: Mo/Mi/Fr. 8:15-9:45Uhr, SR 1, INF 205 Termin

Mehr

3 Determinanten, Eigenwerte, Normalformen

3 Determinanten, Eigenwerte, Normalformen Determinanten, Eigenwerte, Normalformen.1 Determinanten Beispiel. Betrachte folgendes Parallelogramm in der Ebene R 2 : y (a + c, b + d) (c, d) (a, b) x Man rechnet leicht nach, dass die Fläche F dieses

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Matrizen und Vektoren, LGS, Gruppen, Vektorräume 1.1 Multiplikation von Matrizen Gegeben seien die Matrizen A := 1 1 2 0 5 1 8 7 Berechnen Sie alle möglichen

Mehr

Matrixzerlegungen. Überbestimmte Systeme

Matrixzerlegungen. Überbestimmte Systeme Matrixzerlegungen. Überbestimmte Systeme 6. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 27. März 2014 Gliederung 1 Matrixzerlegungen Links-Rechts-Zerlegung

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 6. Vorlesung 170004 Numerische Methoden I Clemens Brand 25. März 2010 Nachträge Gliederung Nachträge it Nachträge Wichtige Begriffe Eine Zusammenfassung der Folien 8 16 der letzten

Mehr

5.4 Basis, Lineare Abhängigkeit

5.4 Basis, Lineare Abhängigkeit die allgemeine Lösung des homogenen Systems. Wieder ist 2 0 L i = L h + 0 1 Wir fassen noch einmal zusammen: Ein homogenes lineares Gleichungssystem A x = 0 mit m Gleichungen und n Unbekannten hat n Rang(A)

Mehr

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung D-MATH/D-PHYS Lineare Algebra I HS 2017 Dr. Meike Akveld Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung 1. In dieser Aufgabe beweisen wir die Existenz der LR-Zerlegung einer quadratischen

Mehr

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 14: Ferienserie

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 14: Ferienserie D-MAVT Lineare Algebra I HS 7 Prof. Dr. N. Hungerbühler Lösungen Serie 4: Ferienserie . Finden Sie ein Erzeugendensystem des Lösungsraums L R 5 des Systems x + x x 3 + 3x 4 x 5 = 3x x + 4x 3 x 4 + 5x 5

Mehr

Physikalische Übungen für Pharmazeuten

Physikalische Übungen für Pharmazeuten Helmholtz-Institut für Strahlen- und Kernphysik Seminar Physikalische Übungen für Pharmazeuten Ch. Wendel Max Becker Karsten Koop Dr. Christoph Wendel Übersicht Inhalt des Seminars Praktikum - Vorbereitung

Mehr

Rechenaufwand der LR- und LDL T - Zerlegung

Rechenaufwand der LR- und LDL T - Zerlegung 6. Großübung Rechenaufwand der LR- und LDL T - Zerlegung Rückwärtseinsetzen Der Algorithmus kann der Folie 3.0 entnommen werden. Dieser kann in die folgenden Rechenoperationen aufgesplittet werden: Für

Mehr

Spezielle Matrizen. Invertierbarkeit.

Spezielle Matrizen. Invertierbarkeit. Spezielle Matrizen. Invertierbarkeit. Lineare Algebra I Kapitel 4 2. Mai 2012 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de

Mehr

Lösung (die Geraden laufen parallel) oder unendlich viele Lösungen.

Lösung (die Geraden laufen parallel) oder unendlich viele Lösungen. 1 Albert Ludwigs Universität Freiburg Abteilung Empirische Forschung und Ökonometrie Mathematik für Wirtschaftswissenschaftler Dr. Sevtap Kestel Winter 2008 Kapitel 16 Determinanten und inverse Matrizen

Mehr

Ferienkurs Mathematik für Physiker I Skript Teil 3 ( )

Ferienkurs Mathematik für Physiker I Skript Teil 3 ( ) Ferienkurs Mathematik für Physiker I WS 2016/17 Ferienkurs Mathematik für Physiker I Skript Teil 3 (29032017) 1 Lineare Gleichungssysteme Oft hat man es in der Physik mit unbekannten Größen zu tun, für

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 3 Anwendungen der Differentialrechnung 3.1 Lokale Maxima und Minima Definition 16: Sei f : D R eine Funktion von n Veränderlichen. Ein Punkt x heißt lokale oder relative Maximalstelle bzw. Minimalstelle

Mehr

( ) Lineare Gleichungssysteme

( ) Lineare Gleichungssysteme 102 III. LINEARE ALGEBRA Aufgabe 13.37 Berechne die Eigenwerte der folgenden Matrizen: ( ) 1 1 0 1 1 2 0 3 0 0, 2 1 1 1 2 1. 1 1 0 3 Aufgabe 13.38 Überprüfe, ob die folgenden symmetrischen Matrizen positiv

Mehr

Lineare Algebra und Numerische Mathematik D-BAUG. Winter 2013 Prof. H.-R. Künsch. , a R. det(a) = 0 a = 1.

Lineare Algebra und Numerische Mathematik D-BAUG. Winter 2013 Prof. H.-R. Künsch. , a R. det(a) = 0 a = 1. b Musterlösung Lineare Algebra und Numerische Mathematik D-BAUG. Multiple Choice) Gegeben sei die folgende Matrix Winter 3 Prof. H.-R. Künsch A = a a) deta) = genau dann wenn gilt x a =. a =. ), a R. x

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Matrixzerlegungen. 6. Vorlesung Numerische Methoden I. Clemens Brand. 2. April Nachträge und Wiederholung. Links-Rechts- Zerlegung

Matrixzerlegungen. 6. Vorlesung Numerische Methoden I. Clemens Brand. 2. April Nachträge und Wiederholung. Links-Rechts- Zerlegung Matrixzerlegungen. 6. Vorlesung 170004 Numerische Methoden I Clemens Brand QR- QR- 2. April 2009 Gliederung Elimination faktorisiert A = L R QR- QR- QR- QR- Eine Zusammenfassung der Folien 6 14 der letzten

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 12 8. Juni 2010 Kapitel 10. Lineare Gleichungssysteme (Fortsetzung) Umformung auf obere Dreiecksgestalt Determinantenberechnung mit dem Gauß-Verfahren

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R. Käppeli L. Herrmann W. Wu Herbstsemester 2016 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 6 Aufgabe 6.1 Berechnen Sie die Determinanten der beiden

Mehr

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.2 Determinanten

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.2 Determinanten Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.2 Determinanten www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Aufwand und Komplexität Vorlesung vom Komplexität und Effizienz

Aufwand und Komplexität Vorlesung vom Komplexität und Effizienz Aufwand und Komplexität Vorlesung vom 15.12.17 Komplexität und Effizienz Aufwand: Anzahl dominanter Operationen (worst-case). Beispiel. Landau-Symbol O(n). Beispiel. Definition: Aufwand eines Algorithmus.

Mehr

Prozedurales Programmieren und Problemlösungsstrategien

Prozedurales Programmieren und Problemlösungsstrategien Prozedurales Programmieren und Problemlösungsstrategien Bachelorstudiengänge Umwelttechnik und Maschinenbau Prof. Dr. Thomas Hoch Problemlösungsstrategien Prozedurales Programmieren und Problemlösungsstrategien

Mehr

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Mustererkennung Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Optimierung: Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen Optimierungsprobleme Optimierung Suche nach dem Maximum oder Minimum

Mehr

Skript EXCEL Matrizenrechnung/Lineare Gleichungssysteme

Skript EXCEL Matrizenrechnung/Lineare Gleichungssysteme Skript EXCEL 2010 Matrizenrechnung/Lineare Gleichungssysteme 1. Einleitung Eine Matrixformel kann mehrere Berechnungen durchführen und dann entweder ein einzelnes Ergebnis oder mehrere Ergebnisse liefern.

Mehr

Mathematische Werkzeuge R. Neubecker, WS 2018 / 2019 Optimierung Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen

Mathematische Werkzeuge R. Neubecker, WS 2018 / 2019 Optimierung Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen Mustererkennung Mathematische Werkzeuge R. Neubecker, WS 018 / 019 Optimierung Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen 1 Optimierung Optimierungsprobleme Suche nach dem Maximum oder Minimum

Mehr

D-CHAB Frühlingssemester 2018 A I = 1 2 A.

D-CHAB Frühlingssemester 2018 A I = 1 2 A. D-CHAB Frühlingssemester 08 Grundlagen der Mathematik II Dr. Marcel Dettling Lösung 5 ) Das Invertierungsverfahren für die Matrix A ergibt A I 0 0 0 0 0 0 0 0 und damit Für die Matrix B erhalten wir A

Mehr