Baudynamik und Zustandsanalyse

Größe: px
Ab Seite anzeigen:

Download "Baudynamik und Zustandsanalyse"

Transkript

1 Baudynamik und Zustandsanalyse Eine Einführung in die Baudynamik mit Mathematica Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOLFRAM-Research [ geschrieben und erstmals auf den Webseiten der Hochschule für Technik und Wirtschaft in Dresden (University of Applied Sciences) [ veröffentlicht. Die Schrift trägt den Charakter eines Arbeitskonzepts, so dass ich für Hinweise und Anregungen aller Art, einschließlich zu Rechtschreibung, Grammatik und Druckbild sehr dankbar bin. Mit meinem Beitrag erhebe ich keinen Anspruch auf irgendeine Vollständigkeit bzw. Allgemeingültigkeit. Ich möchte einzig und allein an exemplarischen Problemstellungen der Baumechanik logisch einfache mathematisch-physikalische Lösungsmethoden zur Diskussion stellen. Mirko Slavik, Dresden 24 Schwingungen infolge Maschinen 24.1 Allgemeines In Gebäuden aufgestellte Maschinen beanspruchen in der Regel die verschiedenen Baustrukturelemente wie Gründungen, Decken und Wände sowohl statisch als auch dynamisch. Wir wollen in diesem Kapitel nur auf einen Teil der vielfältigen Problemfelder hinweisen ohne den geringsten Anspruch auf Vollständigkeit anzustreben. Hierfür sei auf die umfangreiche Spezialliteratur wie z. B. [4][38][78][80] u. v. a. m. verwiesen, aus der im Weiteren einige uns wesentlich erscheinende Gedanken zusammengetragen worden sind Infolge Maschinen können sehr unterschiedliche Arten der dynamischen Erregung auftreten. Eine Hauptgruppe stellt die der Krafterregung dar. Deren Charakteristik wird von - der Art der Produktion, - den Betriebsbedingungen, - dem Betriebszustand und - den Entwurfsdetails einer Maschine geprägt Die mathematische Beschreibung der Kraftfunktionen wiederum hängt von der Bewegungsart der Maschinenteile ab. Primär unterscheidet man - rotierende, - oszillierende und - schlagende bzw. stoßende Maschinenelemente. Deren Zeitabläufe können periodisch oder nichtperiodisch sein (vgl. Absatz 7.3). Der Sonderfall eines periodischen Signals ist das einer harmonischen Zeitfunktion. Bei den nichtperiodischen Bewegungen unterteilt man transiente und impulsförmige Vorgänge In manchen Fällen ist die Darstellung der Kraftfunktionen als eindeutig bestimmte Zuordnung nicht mehr ausreichend. Dann muss eine Erweiterung auf die stochastische Betrachtungsweise vorgenommen werden. Beispiele hierfür sind z. B. Kohlenstaub- und Schlackenmühlen. Um deren Schwingungsprozesse analysieren zu können, ist jedoch eine sachkundige Kenntnis der Theorie der Zufallsschwingungen unabdingbar (siehe Abschnitt 2.5 und Kapitel 31) Die von Maschinen hervorgerufene Ausbreitung mechanischer Wellen in anliegende Räume oder sogar benachbarte Gebäude bedarf einer besonderen Aufmerksamkeit.

2 2 baudyn_24_maschinen.nb Nennenswerte dynamische Kräfte treten aber auch beim Anfahren bzw. beim Abschalten von Maschinen auf, da diese Vorgänge oft eine andere Charakteristik als die eigentlichen Betriebslasten haben können. Insbesondere sind unplanmäßige Abschaltungen infolge Kurzschluss oder Ausfall einzelner Teile zu beachten Maschinen mit rotierenden Teilen Wenn der Schwerpunkt einer rotierenden Masse nicht mit der Drehachse übereinstimmt, kommt es zu Unwuchterregungen (vgl. hierzu Absatz bzw ). Das Produkt von Masse und Exzentrizität stellt die statische Unwucht dar. Die Größe der Unwuchtkräfte ist von der Steifigkeit der Drehachse und deren Lagerung abhängig. Typische Beispiele für Maschinen mit Unwuchten sind: - Ventilatoren, - Zentrifugen, - Waschmaschinen, - Drehmaschinen, - Zentrifugalpumpen, - Rotationspressen, - Turbinen und Bei Unwuchterregungen treten in der Regel periodische, oft sogar fast rein harmonische Schwingungsvorgänge auf. Die Fliehkraft (Zentrifugalkraft) einer Einzelmasse ist zur Drehzahl quadratisch. Sie berechnet sich gemäß Absatz und mit: F N = m a N = m R ω 2 = m R 4 π 2 f arbeit 2 = m R 4 π n2 F N m - Zentrifugalkraft in [N] - unausgewuchtete Masse in [kg] a n - Normalbeschleunigung der Masse m in [ms -2 ] R - Exzentrizität in [m] n - Drehzahl in [Umdrehungen/Minute] f arbeit - Arbeitsfrequenz in [Hz] ω - Winkelgeschwindigkeit in [s -1 ] Mit der obigen Beziehung kann folglich in jede beliebige radiale Richtung eine harmonische Erregerkraft definiert werden, deren Erregerkreisfrequenz ω err der Winkelgeschwindigkeit ω des rotierenden Teils entspricht (vgl. hierzu das Kapitel 7): F[t] = F N Sin[ω err t + φ] = m R ω 2 Sin[ω t + φ] Wenn verschiedene unausgewuchtete Teile sich auf einer gemeinsamen Drehachse befinden, dann besitzen sie dieselbe Winkelgeschwindigkeit und unterscheiden sich nur in der Phasenverschiebung φ. Es kann somit relativ einfach eine resultierende harmonische Erregerkraft gefunden werden Wenn mehrere unausgewuchtete Massen mit unterschiedlichen Drehzahlen rotieren, ist es zweckmäßig, mittels FOURIERanalyse (Abschnitt 2.4) eine Superposition der einzelnen harmonischen

3 baudyn_24_maschinen.nb 3 Kraftverläufe vorzunehmen Unwuchten können aber auch planmäßig genutzt werden. So wurde zum Beispiel zwecks Schwingungserregung größerer Bauwerke (Brücken, Glockentürme) im Labor für Bauwerks- und Modellmessung der Fakultät Bauingenieurwesen/Architektur an der HTW Dresden (FH) ein Unwuchterreger entwickelt, der im Kapitel 30 beschrieben ist Maschinen mit oszillierenden Teilen Die Basisbewegung kann translatorisch aber auch rotierend mit kleinen Ausschlägen (Pendel) sein. Es ist auch eine Kombination beider Arten möglich. Beispiele von Maschinen mit überwiegend oszillierenden Anteilen sind: - Webmaschinen, - Kolbenmaschinen (Hubkolbenpumpen,Hubkolbenverdichter) - Flachdruckmaschinen, - Gattersägen, - Siebmaschinen und - Brecher Die Größe der auftretenden oszillierenden Kräfte wird in der Regel vom Hersteller der Maschinen ausgewiesen. Sowohl die translatorischen als auch die pendelartigen Kräfte gehören zum quadratischen Erregungstyp (siehe ) Maschinen mit schlagenden bzw. stoßenden Teilen Impulsförmige Krafteintragungen treten vorwiegend bei Maschinen auf, bei denen große Kraftamplituden erzeugt werden sollen. Die Entwurfsphilosophie derartiger Maschinen besteht im Bestreben, die dynamischen Kräfte geschickt innerhalb der Gestelle (Rahmen) abzufangen, um die resultierenden Kräfte so gering als möglich werden zu lassen. Beispiele sind: - Formpressen, - Stanzmaschinen, - Maschinenhämmer und - Schmiedepressen Im Kapitel 10 sind die wesentlichen Parameter impulsförmiger Belastungen als auch deren dazugehörigen mathematischen Lösungen aufgeführt Bei verschiedenen Umformtechniken hängt die Kraft-Zeit-Funktion nicht nur von den Arbeitsparametern der Maschine sondern auch von den Umformeigenschaften des zu bearbeitenden Materials ab. Man unterscheidet hierbei eine Einwirkungs- und eine Ruhephase Baudynamische Konsequenzen für die Baustrukturen Nach Möglichkeit muss eine Übereinstimmung der Grundeigenfrequenzen der Baukonstruktionen mit den Arbeitsfrequenzen der Maschinen vermieden werden. Infolge der relativ breiten Vielfalt der Baustrukturen einschließlich ihrer Substrukturen ist es im Gegensatz zum Brückenbau (vgl. z. B. Kapitel 20) nicht möglich, ein dominantes, baustrukturtypisches Eigenfrequenzspektrum auszuweisen Für näherungsweise dynamische Abschätzungen können die in Tabelle zusammengestellten Dämpfungswerte zwecks Orientierung genutzt werden (vgl. hierzu auch die Aussagen im

4 4 baudyn_24_maschinen.nb Abschnitt 2.2). Konstruktionsart Λ min Λ mittel Λ max Stahlbeton Spannbeton Stahlverbund Stahl Tabelle : Logarithmisches Dekrement Λ bei Hochbaukonstruktionen 24.6 Effekte auf Baustrukturen, Personen sowie Rückkopplungen auf die Maschinen selbst Die baudynamischen Wirkungen auf die Baustrukturen (vgl. hierzu auch Kapitel 18) sind sowohl den Grenzzuständen der Nutzungsfähigkeit, aber auch der Tragfähigkeit zuzuordnen. Klassische Beispiele sind: - Abplatzungen von Putz, Rissbildungen, Lockerungen bzw. selbsttätiges Lösen von Schrauben usw., - Ermüdungserscheinungen bei Stahl- und Stahlbetonelementen, - Verlust der Tragfähigkeit von Lagerelementen Menschen, die ständig oder zeitweise in der Nähe von Maschinen oder derer dynamisch beeinflussten Strukturen arbeiten, können auf die unterschiedlichste Art und Weise mechanischen, akustischen aber auch optischen Wirkungen ausgesetzt sein. Die Thematik der mechanischen Schwingungen wird ausführlich im Kapitel 18 behandelt. Akustische Fragestellungen sind Gegenstand der Arbeitshygiene. Die optischen Wirkungen, wie sichtbare Bewegungen von Installationen, resultieren in der Regel aus den mechanischen Schwingungen der angrenzenden Bauelemente Infolge der Kopplung der Maschinen mit entsprechenden Baustrukturen kommt es auch zu dynamischen Rückkopplungseffekten auf die Maschinen selbst. Diese können zum Beispiel zu einer Überschreitung der geforderten Herstellungstoleranzen, in Ausnahmefällen aber auch zu Schädigungen der Maschinen selbst führen Entwurfshinweise für die Aufstellung von Maschinen Die Hauptaufgabe des Bauingenieurs besteht darin, für eine sichere Ableitung der dynamischen Kräfte von der Erregungsquelle über die Maschinenauflager in die anliegende Baustruktur bzw. in den Baugrund zu sorgen Relativbewegungen in der Auflagerung infolge Kriechens und/oder Schwindens sollten nach Möglichkeit vermieden werden. Bei zu erwartenden Relativverschiebungen müssen die zulässigen Werte in der Regel vom Hersteller der Maschinen ausgewiesen werden Als bevorzugte Konstruktionssysteme für Maschinenfundamente werden heutzutage Stahlbetonkonstruktionen gewählt. Ein außerordentlich hoher Stellwert in der Planungsphase kommt den geotechnischen Untersuchungen zu. So könnte in besonderen Fällen eine baugrunddynamische Analyse unerläßlich sein [79] Eine besonders geeignete Methode zur Vermeidung von Schwingungen infolge Maschinen ist die Frequenzabstimmung (vgl. Absatz ). Unter der Abstimmung einer Schwingung der Frequenz f 1 auf die Frequenz f 2 versteht man das Frequenzverhältnis η (siehe Absatz 7.30):

5 baudyn_24_maschinen.nb 5 η = f1 f 2 = ω1 ω 2 = ferr f eigen Voraussetzung für eine wirkungsvolle Abstimmung ist die Kenntnis sowohl des gesamten Frequenzspektrums der dynamischen Erregerkräfte als auch der modalen Charakteristik der gesamten Struktur (siehe Kapitel 14) einschließlich der Maschinenlagerung mit eventuell vorhandenen Feder- Dämpfer-Elementen Wenn sich die maßgebende Basisfrequenz f 2 f eigen der separierten Tragstruktur unterhalb der Arbeitsfrequenz der Maschine f eigen < {f 1 f err } befindet, spricht man von einer niedrigen oder tiefen Abstimmung mit η > 1. Man bezeichnet diese Erregung als überkritisch und sagt, die entsprechende Maschine laufe mit einer überkritischen Geschwindigkeit Im Gegensatz dazu, ist ein System, dessen niedrigste Eigenfrequenzen weit über der höchsten Arbeitsfrequenz liegt, hochabgestimmt. Da dann ein Frequenzverhältnis η < 1 vorliegt, arbeitet die Maschine folglich mit einer unterkritischen Geschwindigkeit Die Überlegungen zur Abstimmung zwischen Maschinen und Baustrukturen stehen im Kontext mit dem Begriff der Schwingungsisolierung. Wird zum Beispiel versucht eine Weiterleitung (Ableitung) der Schwingungen in den Baugrund mittels eines Schwingungsfundamentes zu vermeiden oder wenigstens stark zu mindern, spricht man von einer Aktiv-Isolierung. Hingegen bezeichnet man die zweite Art der Isolierung (Abschirmung, Entstörung), bei der die umgekehrte Einwirkungsrichtung also das Einleiten von Bodenschwingungen in ein Gebäude verhindert bzw. minimiert werden soll, als Passiv- Isolierung (vgl. Absatz ) Um effektive Abstimmungen zu erreichen, sind für die verschieden Anwendungsgebiete die unterschiedlichsten Masse-Feder-Dämpfer-Systeme entwickelt worden. Im Bild sind einige typische kritische Frequenzbereiche von Maschinen zu denen des Baugrundes ins Verhältnis gesetzt worden. Diese Frequenzzuordnungen stellen nur grobe Anhaltswerte dar. So werden insbesondere die Eigenfrequenzbereiche des Systems Baugrund-Fundament sehr stark durch die Lagerungsbedingungen der Maschinen beeinflusst.

6 6 baudyn_24_maschinen.nb Maschinen Frequenz in [Hz] Ton Baugrund Kies Webmaschinen Pumpen Federelemente Elastomerlager Kolbenmotoren Kleine Dieselmotoren Fels Große Dieselmotoren Drehmaschinen Ventilatoren Elektromotoren Baugrund/Schwingungsisolierung Bild : Erregerfrequenzbereiche verschiedener Arten von Maschinen im Vergleich zu den Eigenfrequenzen von Baugrund und Feder-Dämpfer-Elementen(gemäß [80]) Da bei einer niedrigen Abstimmung die relativ weiche Lagerung zu größeren Einsenkungen bezüglich der statischen Lasten führt, sollten bestimmte Bedingungen erfüllt sein, um trotzdem eine ausgewogene Effektivität zu erreichen. Wir verweisen hierzu auf die in zwar knapper, doch sehr übersichtlicher Form angegebenen Empfehlungen in [80]. Dasselbe gilt auch für die an derselben Stelle getroffenen Hinweise zur Hochabstimmung.

Baudynamik und Zustandsanalyse

Baudynamik und Zustandsanalyse Baudynamik und Zustandsanalyse Eine Einführung in die Baudynamik mit Mathematica Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOLFRAM-Research [http://www.wolfram.com]

Mehr

Baudynamik und Zustandsanalyse

Baudynamik und Zustandsanalyse Baudynamik und Zustandsanalyse Eine Einführung in die Baudynamik mit Mathematica Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOLFRAM-Research [http://www.wolfram.com]

Mehr

Baudynamik und Zustandsanalyse

Baudynamik und Zustandsanalyse Baudynamik und Zustandsanalyse Eine Einführung in die Baudynamik mit Mathematica Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOLFRAM-Research [http://www.wolfram.com]

Mehr

Baudynamik und Zustandsanalyse

Baudynamik und Zustandsanalyse Baudynamik und Zustandsanalyse Eine Einführung in die Baudynamik mit Mathematica Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOLFRAM-Research [http://www.wolfram.com]

Mehr

Baudynamik und Zustandsanalyse

Baudynamik und Zustandsanalyse Baudynamik und Zustandsanalyse Eine Einführung in die Baudynamik mit Mathematica Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOLFRAM-Research [http://www.wolfram.com]

Mehr

3. Erzwungene Schwingungen

3. Erzwungene Schwingungen 3. Erzwungene Schwingungen Bei erzwungenen Schwingungen greift am schwingenden System eine zeitlich veränderliche äußere Anregung an. Kraftanregung: Am schwingenden System greift eine zeitlich veränderliche

Mehr

3. Übertragungsfunktionen

3. Übertragungsfunktionen Definitionen: Die Fourier-Transformierte der Impulsantwortfunktion heißt Übertragungsfunktion: H ( f )= h(t )e 2 π i f t dt Mithilfe der Übertragungsfunktion kann die Fourier-Transformierte der Antwort

Mehr

Baudynamik und Zustandsanalyse

Baudynamik und Zustandsanalyse Baudynamik und Zustandsanalyse Eine Einführung in die Baudynamik mit Mathematica Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOLFRAM-Research [http://www.wolfram.com]

Mehr

3. Erzwungene Schwingungen

3. Erzwungene Schwingungen 3. Erzwungene Schwingungen 3.1 Grundlagen 3.2 Tilger 3.3 Kragbalken 3.4 Fahrbahnanregung 3.3-1 3.1 Grundlagen Untersucht wird die Antwort des Systems auf eine Anregung mit harmonischem Zeitverlauf. Bewegungsgleichung:

Mehr

5. Mechanische Schwingungen und Wellen. 5.1 Mechanische Schwingungen

5. Mechanische Schwingungen und Wellen. 5.1 Mechanische Schwingungen 5. Mechanische Schwingungen und Wellen Der Themenbereich mechanische Schwingungen und Wellen ist ein Teilbereich der klassischen Mechanik, der sich mit den physikalischen Eigenschaften von Wellen und den

Mehr

Die Phasenkonstante ) 2. Loslassen nach Auslenkung. Anstoßen in Ruhelage: -0,500,00 5,00 10,00 15,00 2,00 1,50 1,00 0,50 0,00.

Die Phasenkonstante ) 2. Loslassen nach Auslenkung. Anstoßen in Ruhelage: -0,500,00 5,00 10,00 15,00 2,00 1,50 1,00 0,50 0,00. Die Phasenkonstante Auslenkung 2,50 2,00 1,50 1,00 0,50 0,00-0,500,00 5,00 10,00 15,00-1,00-1,50-2,00-2,50 Zeit Loslassen nach Auslenkung. y y0 sin( t ) 2 2 Auslenkung 2,50 2,00 1,50 1,00 0,50 0,00-0,500,00

Mehr

Beurteilung des Schwingungsverhaltens eines Glockenturmes in Sachsen (Glockenturm I) 1 Anlass der Untersuchung. 2 Zielstellung

Beurteilung des Schwingungsverhaltens eines Glockenturmes in Sachsen (Glockenturm I) 1 Anlass der Untersuchung. 2 Zielstellung Beurteilung des Schwingungsverhaltens eines Glockenturmes in Sachsen (Glockenturm I) Von Olaf Kempe, Karin Müller, Mirko Slavik 1 Anlass der Untersuchung Im Zusammenhang mit der Zustandsbewertung des romanischen

Mehr

Baudynamik und Zustandsanalyse

Baudynamik und Zustandsanalyse Baudynamik und Zustandsanalyse Eine Einführung in die Baudynamik mit Mathematica Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOLFRAM-Research [http://www.wolfram.com]

Mehr

2.5 Ausgleichswellen im Verbrennungsmotor

2.5 Ausgleichswellen im Verbrennungsmotor 78 2 Dnamik der starren Maschine 2.5 Ausgleichswellen im Verbrennungsmotor Die periodische Hubbewegung der Kolben in Verbrennungsmotoren verursacht Massenkräfte in Zlinderachsenrichtung. Die periodischen

Mehr

1. Einführung. Baudynamik (Master) SS 2017

1. Einführung. Baudynamik (Master) SS 2017 Baudynamik (Master) SS 2017 1. Einführung 1.1 Bedeutungen der Baudynamik 1.2 Grundbegriffe und Klassifizierung 1.3 Modellierung der Bauwerksschwingungen LEHRSTUHL FÜR BAUSTATIK 1 Baudynamik (Master) SS

Mehr

Einführung in die Physik I. Schwingungen und Wellen 1

Einführung in die Physik I. Schwingungen und Wellen 1 Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten

Mehr

2. Schwingungen eines Einmassenschwingers

2. Schwingungen eines Einmassenschwingers Baudynamik (Master) SS 2017 2. Schwingungen eines Einmassenschwingers 2.1 Freie Schwingungen 2.1.1 Freie ungedämpfte Schwingungen 2.1.2 Federzahlen und Federschaltungen 2.1.3 Freie gedämpfte Schwingungen

Mehr

5. Kritische Drehzahl

5. Kritische Drehzahl Aufgabenstellung: 5. Kritische Drehzahl y y Ω c/4 c/4 m c/4 e z O O S c/4 x Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.5-1 Der starre Körper mit der Masse m dreht sich mit der konstanten Winkelgeschwindigkeit

Mehr

2.5 Ausgleichswellen im Verbrennungsmotor

2.5 Ausgleichswellen im Verbrennungsmotor 90 2 Dynamik der starren Maschine 2.5 Ausgleichswellen im Verbrennungsmotor Die periodische Hubbewegung der Kolben in Verbrennungsmotoren verursacht Massenkräfte in Zylinderachsenrichtung. Die periodischen

Mehr

Grundlagen der Stochastik

Grundlagen der Stochastik stoch_7.nb 1 Grundlagen der Stochastik Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOLFRAM-Research [http://www.wolfram.com] geschrieben und erstmals auf den Webseiten

Mehr

Beurteilung des Schwingungsverhaltens eines Glockenturmes in Dresden (Glockenturm II) 1 Anlass der Untersuchung. 2 Zielstellung

Beurteilung des Schwingungsverhaltens eines Glockenturmes in Dresden (Glockenturm II) 1 Anlass der Untersuchung. 2 Zielstellung Beurteilung des Schwingungsverhaltens eines Glockenturmes in Dresden (Glockenturm II) Von Olaf Kempe, Karin Müller, Mirko Slavik 1 Anlass der Untersuchung Im Zusammenhang mit der gegenwärtigen Zustandsbewertung

Mehr

Grundlagen der Stochastik

Grundlagen der Stochastik stoch_00_05.nb 1 Grundlagen der Stochastik Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von OLFRAM-Research [http://www.wolfram.com] geschrieben und erstmals auf den ebseiten

Mehr

ÜBUNGSAUFGABEN PHYSIK SCHWINGUNGEN KAPITEL S ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl UND WELLEN.

ÜBUNGSAUFGABEN PHYSIK SCHWINGUNGEN KAPITEL S ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl UND WELLEN. ÜBUNGSAUFGABEN ZUR PHYSIK KAPITEL S SCHWINGUNGEN UND WELLEN Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl IEUT 10/05 Kohl 1. Schwingungen 10/2005-koh 1. Welche Auslenkung hat ein schwingender

Mehr

Praktikum I PP Physikalisches Pendel

Praktikum I PP Physikalisches Pendel Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische

Mehr

2. Einmassenschwinger. Inhalt:

2. Einmassenschwinger. Inhalt: . Einmassenschwinger Inhalt:.1 Bewegungsdifferentialgleichung. Eigenschwingung.3 Harmonische Anregung.4 Schwingungsisolation.5 Stossartige Belastung.6 Allgemeine Belastung.7 Nichtlineare Systeme.8 Dämpfungsarten

Mehr

4. Dämpfungsmodelle. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. Elastodynamik 3.

4. Dämpfungsmodelle. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. Elastodynamik 3. 4. Dämpfungsmodelle 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Dabei

Mehr

k = 1, 2,..., n (4.44) J k ϕ

k = 1, 2,..., n (4.44) J k ϕ 236 4 Torsionsschwinger und Längsschwinger ( J1 J2) M J M J2/ J1= 02, 10 0,5 8 1 + 6 2 max 4 5 2 10 2 bezogenes Moment 0 Bild 45 1 2 5 10 relatives Spiel ctϕ S/ M10 Maximales Moment infolge Spiel im Antrieb

Mehr

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder 6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung

Mehr

Technische Beschreibung der akustischen Signalkette

Technische Beschreibung der akustischen Signalkette Technische Beschreibung der akustischen Signalkette Wichtige Aufgabe: Vielfältige Medien Gestaltung akustischer Kommunikationsketten (Sprache, Geräusche, Musik, CD, Radio, mp3,...) Unterschiedlichste Information

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Massenpunkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf

Mehr

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3.

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 4. Dämpfungsmodelle 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische

Mehr

Schwingungen und Wellen

Schwingungen und Wellen Aufgaben 1 Schwingungen und Wellen Lernziel - Problemstellungen zu Schwingungen und Wellen analysieren und lösen können. Aufgaben 1.1 a) Erdbeben können sich in der Erdkruste sowohl durch Longitudinalwellen

Mehr

Übung zu Mechanik 4 Seite 28

Übung zu Mechanik 4 Seite 28 Übung zu Mechanik 4 Seite 28 Aufgabe 47 Auf ein Fundament (Masse m), dessen elastische Bettung durch zwei Ersatzfedern dargestellt wird, wirkt die periodische Kraft F(t) = F 0 cos (Ω t). Die seitliche

Mehr

Dynamische Lasten. 1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten

Dynamische Lasten. 1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten Dynamische Lasten 1. Kraft- und Weganregung 2. Deterministische Lasten 2.1 Allgemeine zeitabhängige Lasten 2.2 Periodische Lasten 2.3 Harmonische Lasten 3. Stochastische Lasten 3.1 Instationäre stochastische

Mehr

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS Dämpfung. Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung 5. Dämpfung 5-1 1. Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische Energie

Mehr

Übungsaufgaben Physik II

Übungsaufgaben Physik II Fachhochschule Dortmund Blatt 1 1. Ein Auto hat leer die Masse 740 kg. Eine Nutzlast von 300 kg senkt den Wagen in den Radfedern um 6 cm ab. Welche Periodendauer hat die vertikale Schwingung, die der Wagen

Mehr

Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung

Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung 28. September 2016 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung Aufgabe 1. Die nachfolgende Grafik stellt das Oszillogramm zweier sinusförmiger Spannungen

Mehr

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung 34 Schwingungen Im Zusammenhang mit Polardarstellungen trifft man häufig auf Funktionen, die Schwingungen beschreiben und deshalb für den Ingenieur von besonderer Wichtigkeit sind Fast alle in der Praxis

Mehr

9 Periodische Bewegungen

9 Periodische Bewegungen Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum

Mehr

1. Bestimmen Sie die Phasengeschwindigkeit von Ultraschallwellen in Wasser durch Messung der Wellenlänge und Frequenz stehender Wellen.

1. Bestimmen Sie die Phasengeschwindigkeit von Ultraschallwellen in Wasser durch Messung der Wellenlänge und Frequenz stehender Wellen. Universität Potsdam Institut für Physik und Astronomie Grundpraktikum 10/015 M Schallwellen Am Beispiel von Ultraschallwellen in Wasser werden Eigenschaften von Longitudinalwellen betrachtet. Im ersten

Mehr

Differentialgleichungen 2. Ordnung

Differentialgleichungen 2. Ordnung Differentialgleichungen 2. Ordnung 1-E1 1-E2 Einführendes Beispiel Freier Fall Viele Geschichten ranken sich um den schiefen Turm von Pisa: Der Legende nach hat der aus Pisa stammende Galileo Galilei bei

Mehr

14. Mechanische Schwingungen und Wellen

14. Mechanische Schwingungen und Wellen 14. Mechanische Schwingungen und Wellen Schwingungen treten in der Technik in vielen Vorgängen auf mit positiven und negativen Effekten (z. B. Haarrisse, Achsbrüche etc.). Deshalb ist es eine wichtige

Mehr

Lineare Systeme mit einem Freiheitsgrad

Lineare Systeme mit einem Freiheitsgrad Höhere Technische Mechanik Lineare Systeme mit einem Freiheitsgrad Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/200 Übersicht. Grundlagen der Analytischen

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Vortrag Gmnasium Birkenfeld Von der mathematischen Spielerei zur technischen Anwendung Vortrag Gmnasium Birkenfeld. Vektoren und Matrizen Wir betrachten einen Punkt P (, ) in der Ebene eines rechtwinklig

Mehr

Durchbiegungsmessung am EÜ km 56,170 BD über das Moränenende S-Bahn Pirna-Dresden*

Durchbiegungsmessung am EÜ km 56,170 BD über das Moränenende S-Bahn Pirna-Dresden* Veröffentlichung_39.nb 1 Durchbiegungsmessung am Ü km 56,17 BD über das Moränenende S-Bahn Pirna-Dresden* von Mirko Slavik Hochschule für Technik und Wirtschaft Dresden (FH), Fachbereich Bauingenieurwesen

Mehr

1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten

1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten Dynamische Lasten 1. Kraft- und Weganregung 2. Deterministische Lasten 2.1 Periodische Lasten 2.2 Allgemeine zeitabhängige Lasten 2.3 Harmonische Lasten 3. Stochastische Lasten 3.1 Instationäre stochastische

Mehr

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern WS 12/13, 13.02.2013 1. Aufgabe: (TM III) Um vom Boden aufzustehen, rutscht ein Mensch mit konstanter Geschwindigkeitv

Mehr

Das führt zu einer periodischen Hin- und Herbewegung (Schwingung) Applet Federpendel (http://www.walter-fendt.de)

Das führt zu einer periodischen Hin- und Herbewegung (Schwingung) Applet Federpendel (http://www.walter-fendt.de) Elastische SCHWINGUNGEN (harmonische Bewegung) Eine Masse sei reibungsfrei durch elastische Kräfte in einer Ruhelage fixiert Wenn aus der Ruhelage entfernt wirkt eine rücktreibende Kraft Abb. 7.1 Biologische

Mehr

Tutorium Physik 2. Schwingungen

Tutorium Physik 2. Schwingungen 1 Tutorium Physik 2. Schwingungen SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 9. SCHWINGUNGEN 9.1 Bestimmen der

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion

Mehr

Blatt Musterlösung Seite 1. Aufgabe 1: Schwingender Stab

Blatt Musterlösung Seite 1. Aufgabe 1: Schwingender Stab Seite 1 Aufgabe 1: Schwingender Stab Ein Stahlstab der Länge l = 1 m wird an beiden Enden fest eingespannt. Durch Reiben erzeugt man Eigenschwingungen. Die Frequenz der Grundschwingung betrage f 0 = 250

Mehr

Drehpendel. Praktikumsversuch am Gruppe: 3. Thomas Himmelbauer Daniel Weiss

Drehpendel. Praktikumsversuch am Gruppe: 3. Thomas Himmelbauer Daniel Weiss Drehpendel Praktikumsversuch am 10.11.2010 Gruppe: 3 Thomas Himmelbauer Daniel Weiss Abgegeben am: 17.11.2010 Inhaltsverzeichnis 1 Einleitung 2 2 Versuchsaufbau 2 3 Eigenfrequenzbestimmung 2 4 Dämpfungsdekrementbestimmung

Mehr

Vorbereitung. (1) bzw. diskreten Wellenzahlen. λ n = 2L n. k n = nπ L

Vorbereitung. (1) bzw. diskreten Wellenzahlen. λ n = 2L n. k n = nπ L Physikalisches Fortgeschrittenenpraktikum Gitterschwingungen Vorbereitung Armin Burgmeier Robert Schittny 1 Theoretische Grundlagen Im Versuch Gitterschwingungen werden die Schwingungen von Atomen in einem

Mehr

Schwingungen und Wellen

Schwingungen und Wellen Übung 1 Schwingungen und Wellen Lernziel - Problemstellungen zu Schwingungen und Wellen analysieren und lösen können. Aufgaben 1. Ein U-förmiger Schlauch ist etwa zur Hälfte mit Wasser gefüllt. Wenn man

Mehr

120 Gekoppelte Pendel

120 Gekoppelte Pendel 120 Gekoppelte Pendel 1. Aufgaben 1.1 Messen Sie die Schwingungsdauer zweier gekoppelter Pendel bei gleichsinniger und gegensinniger Schwingung. 1.2 Messen Sie die Schwingungs- und Schwebungsdauer bei

Mehr

Kontinuierliche Fourier-Transformation. Laplace-Transformation

Kontinuierliche Fourier-Transformation. Laplace-Transformation Kontinuierliche Fourier-Transformation. Laplace-Transformation Jörn Loviscach Versionsstand: 16. Juni 2010, 17:56 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu:

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Punkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf einem

Mehr

1.Torsion # Frage Antw. P.

1.Torsion # Frage Antw. P. 1.Torsion # Frage Antw. P. 1 Der skizzierte Schalthebel mit Schaltwelle wird durch die Kraft F = 1 kn belastet. Die zulässigen Spannungen beträgt für eine Torsion 20 N/mm 2. a b 2 3 4 Bestimmen Sie das

Mehr

Klausur 3 Kurs 11Ph1e Physik

Klausur 3 Kurs 11Ph1e Physik 2011-03-16 Klausur 3 Kurs 11Ph1e Physik Lösung 1 An einem Masse-Feder-Pendel und an einem Fadenpendel hängt jeweils eine magnetisierbare Masse. urch einen mit jeweils konstanter (aber möglicherweise unterschiedlicher)

Mehr

6. Erzwungene Schwingungen

6. Erzwungene Schwingungen 6. Erzwungene Schwingungen Ein durch zeitveränderliche äußere Einwirkung zum Schwingen angeregtes (gezwungenes) System führt erzwungene Schwingungen durch. Bedeutsam sind vor allem periodische Erregungen

Mehr

Bei gekoppelten Pendeln breitet sich die Schwingung von einem zum nächsten aus

Bei gekoppelten Pendeln breitet sich die Schwingung von einem zum nächsten aus 7. Wellen Ausbreitung von Schwingungen -> Wellen Bei gekoppelten Pendeln breitet sich die Schwingung von einem zum nächsten aus Welle entsteht durch lokale Anregung oder Störung eine Mediums, die sich

Mehr

Ingenieurbüro Ohligschläger und Ribarek

Ingenieurbüro Ohligschläger und Ribarek Ingenieurbüro Ohligschläger und Ribarek Seit 1985 haben wir bereits über 800 Maschinenfundamente mit und ohne Schwingungsisolierung geplant und das Weltweit! Ingenieurbüro Ohligschläger und Ribarek Tätigkeitsschwerpunkte

Mehr

1 Trägheitstensor (Fortsetzung)

1 Trägheitstensor (Fortsetzung) 1 Trägheitstensor (Fortsetzung) Wir verallgemeinern den in der letzten Stunde gefundenen Trägheitstensor auf den Fall einer kontinuierlichen Massenverteilung durch die Einführung der Integration über das

Mehr

METALLGUMMI. Berechnungsgrundlagen

METALLGUMMI. Berechnungsgrundlagen METLLGUMMI Berechnungsgrundlagen Formelzeichen Die verwendeten Formelzeichen entsprechen der DIN 1304. Dort nicht aufgeführte Formelzeichen sind in diesem Programm mit den üblichen Buchstaben bezeichnet.

Mehr

wir-sind-klasse.jimdo.com

wir-sind-klasse.jimdo.com 1. Einführung und Begriffe Eine vom Erreger (periodische Anregung) wegwandernde Störung heißt fortschreitende Welle. Die Ausbreitung mechanischer Wellen erfordert einen Träger, in dem sich schwingungsfähige

Mehr

Baudynamik. Jan Höffgen 18. Februar Koordinatensysteme 2

Baudynamik. Jan Höffgen 18. Februar Koordinatensysteme 2 Baudynamik Jan Höffgen 8. Februar 204 Inhaltsverzeichnis Koordinatensysteme 2 2 Bewegungsgleichungen 2 2. Allgemeines................................................ 2 2.2 Synthetische Methode nach d Alembert................................

Mehr

Schwingungen. Antonia Blachnik und Jörg Laubersheimer. Wintersemester 2008/2009,

Schwingungen. Antonia Blachnik und Jörg Laubersheimer. Wintersemester 2008/2009, Universität Heidelberg Proseminar Analysis Leitung: PD Dr. Gudrun Thäter Wintersemester 2008/2009, 09.12.2008 Inhaltsverzeichnis 1 Einführung 2 ohne Reibung mit Reibung 3 4 Einführung Denition Eine Schwingung

Mehr

Elektrische Schwingungen und Wellen

Elektrische Schwingungen und Wellen Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #4 am 0.07.2007 Vladimir Dyakonov Elektrische Schwingungen und Wellen Wechselströme Wechselstromgrößen

Mehr

Leichte Masse- Feder-Systeme

Leichte Masse- Feder-Systeme Regupol on your wavelength 69 Leichte Masse- Feder-Systeme Zuverlässiger Schutz vor Erschütterungen Regupol Schwingungstechnik Zuverlässiger Schutz vor Erschütterungen Straßen- und Stadtbahnen erzeugen

Mehr

Grundbegriffe zur Beschreibung von Kreisbewegungen

Grundbegriffe zur Beschreibung von Kreisbewegungen Arbeitsanleitung I Kreisbewegung Grundbegriffe zur Beschreibung von Kreisbewegungen Beschreibung der Kreisbewegung 1 1.1 Das Bogenmass 1.2 Begriffe zur Kreisbewegung 1.3 Die Bewegung auf dem Kreis Lösungen

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

Klausur Schwingungstechnik 20. September Name Vorname Matr. - Nr. Punkte

Klausur Schwingungstechnik 20. September Name Vorname Matr. - Nr. Punkte 1 Aufgaben FB Maschinenbau Institut für Mechanik FG Maschinendynamik Prof. Dr.-Ing. H. Irretier Dipl.-Ing. A. Stein Klausur Schwingungstechnik 0. September 011 Name Vorname Matr. - Nr. Punkte =50 Aufgabe

Mehr

1.2 Schwingungen von gekoppelten Pendeln

1.2 Schwingungen von gekoppelten Pendeln 0 1. Schwingungen von gekoppelten Pendeln Aufgaben In diesem Experiment werden die Schwingungen von zwei Pendeln untersucht, die durch eine Feder miteinander gekoppelt sind. Für verschiedene Kopplungsstärken

Mehr

M13. Gekoppeltes Pendel

M13. Gekoppeltes Pendel M3 Gekoppeltes Pendel In diesem Versuch werden die Schwingungen von zwei Pendeln untersucht, die durch eine Feder miteinander gekoppelt sind. Für verschiedene Kopplungsstärken werden die Schwingungsdauern

Mehr

UNIVERSITÄT DUISBURG - ESSEN Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau, Professur für Steuerung, Regelung und Systemdynamik

UNIVERSITÄT DUISBURG - ESSEN Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau, Professur für Steuerung, Regelung und Systemdynamik Regelungstechnik I (PO95), Regelungstechnik (PO02 Schiffstechnik), Regelungstechnik (Bachelor Wi.-Ing.) (180 Minuten) Seite 1 NAME VORNAME MATRIKEL-NR. Aufgabe 1 (je 2 Punkte) a) Erläutern Sie anhand eines

Mehr

HS D. V 101 : Pohlsches Pendel. Gruppe : Versuchstag: Namen, Matrikel Nr.: Vorgelegt: Hochschule Düsseldorf Fachbereich EI.

HS D. V 101 : Pohlsches Pendel. Gruppe : Versuchstag: Namen, Matrikel Nr.: Vorgelegt: Hochschule Düsseldorf Fachbereich EI. Gruppe : Nmen, Mtrikel Nr.: HS D Hochschule Düsseldorf Versuchstg: Vorgelegt: Testt : V 11 : Pohlsches Pendel Zusmmenfssung: 12.3.215 Versuch: Pohlsches Pendel Seite 1 von 8 Gruppe : HS D Korrigiert m:

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

Zuverlässigkeit tragender Baukonstruktionen

Zuverlässigkeit tragender Baukonstruktionen zuver_allgemeines.nb 1 Zuverlässigkeit tragender Baukonstruktionen Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOLFRAM-Research [http://www.wolfram.com] geschrieben

Mehr

zum Thema Lissajous-Figuren

zum Thema Lissajous-Figuren Ratsgymnasium Rotenburg Gerberstraße 14 27356 Rotenburg Wümme Facharbeit im Leistungskurs Physik zum Thema Lissajous-Figuren Verfasser: Christoph Siemsen Fachlehrer: Herr Konrad Abgabetermin: 24.05.04

Mehr

Simulation und Optimierung des dynamischen Verhaltens eines Riemenspanners für den Keilrippen-Riementrieb am Pkw-Triebwerk. V.

Simulation und Optimierung des dynamischen Verhaltens eines Riemenspanners für den Keilrippen-Riementrieb am Pkw-Triebwerk. V. Simulation und Optimierung des dynamischen Verhaltens eines Riemenspanners für den Keilrippen-Riementrieb am Pkw-Triebwerk V.Kobelev Simulation und Optimierung des dynamischen Verhaltens eines Riemenspanners

Mehr

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler.

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler. Geozentrisches und heliozentrisches Weltbild Geozentrisches Weltbild: Vertreter Aristoteles, Ptolemäus, Kirche (im Mittelalter) Heliozentrisches Weltbild: Vertreter Aristarch von Samos, Kopernikus, Galilei

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 3 Tautologien In der letzten Vorlesung haben wir erklärt, wie man ausgehend von einer Wahrheitsbelegung λ der Aussagevariablen

Mehr

Die Darstellung nichtlinearer Bewegungsabläufe

Die Darstellung nichtlinearer Bewegungsabläufe Die Darstellung nichtlinearer Bewegungsabläufe Die Darstellung linearer Bewegungsabläufe Manchmal sind die Dinge mehr, als sie auf den ersten Blick zu sein scheinen. Auch chaotische Systeme offenbaren

Mehr

Mechanische Schwingungen und Wellen

Mechanische Schwingungen und Wellen Mechanische und Wellen Inhalt 1. 2.Überlagerung von 3.Entstehung und Ausbreitung von Wellen 4.Wechselwirkungen von Wellen 2 Voraussetzungen Schwingfähige Teilchen Energiezufuhr Auslenkung Rücktreibende

Mehr

Gekoppelte Schwingung

Gekoppelte Schwingung Versuch: GS Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: C. Blockwitz am 01. 07. 000 Bearbeitet: E. Hieckmann J. Kelling F. Lemke S. Majewsky i.a. Dr. Escher Aktualisiert: am 16. 09. 009

Mehr

Wellenlehre. Theorieschub

Wellenlehre. Theorieschub Wellenlehre Theorieschub Gliederung 1. Lehrbuchanalyse 2. Schulbuchanalyse 3. Kinematik vs. Dynamik 4. Zusammenfassend Theorie von Wellen 5. Offene ungeklärte Fragen 6.??? Lehrbuchanalyse Pohl: Einführung

Mehr

18 Kontinuierliche Fourier-Transformation. Laplace-Transformation

18 Kontinuierliche Fourier-Transformation. Laplace-Transformation 18 Kontinuierliche Fourier-Transformation. Laplace-Transformation Jörn Loviscach Versionsstand: 28. März 2015, 21:30 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos:

Mehr

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie (Physik) (aus Wikipedia, der freien Enzyklopädie) Symmetrie ist ein grundlegendes Konzept der

Mehr

Übungsblatt 6 ( ) mit Lösungen

Übungsblatt 6 ( ) mit Lösungen 1) Wellengleichung Experimentalphysik für Naturwissenschaftler 1 Universität Erlangen Nürnberg WS 014/15 Übungsblatt 6 (09.01.015) mit Lösungen Eine Welle, die sich in positiver x-richtung mit der Geschwindigkeit

Mehr

Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder

Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder Bei der Behandlung reeller elektromagnetischer Felder im Fourierraum ist man mit der Tatsache konfrontiert, dass

Mehr

P1-12,22 AUSWERTUNG VERSUCH RESONANZ

P1-12,22 AUSWERTUNG VERSUCH RESONANZ P1-12,22 AUSWERTUNG VERSUCH RESONANZ GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 0.1. Drehpendel - Harmonischer Oszillator. Bei dem Drehpendel handelt es sich um einen harmonischen Oszillator. Das Trägheitsmoment,

Mehr

TECHNISCHE MECHANIK III (DYNAMIK)

TECHNISCHE MECHANIK III (DYNAMIK) Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

Versuch P1-20 Pendel Vorbereitung

Versuch P1-20 Pendel Vorbereitung Versuch P1-0 Pendel Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 9. Januar 01 Inhaltsverzeichnis Aufgabe 1 1.1 Reduzierte Pendellänge............................. 1. Fallbeschleunigung

Mehr

Musterlösung zur Aufgabe A1.1

Musterlösung zur Aufgabe A1.1 Abschnitt: 1.1 Prinzip der Nachrichtenübertragung Musterlösung zur Aufgabe A1.1 a) Im markierten Bereich (20 Millisekunden) sind ca 10 Schwingungen zu erkennen. Daraus folgt für die Signalfrequenz näherungsweise

Mehr

Elektromagnetische Schwingkreise

Elektromagnetische Schwingkreise Grundpraktikum der Physik Versuch Nr. 28 Elektromagnetische Schwingkreise Versuchsziel: Bestimmung der Kenngrößen der Elemente im Schwingkreis 1 1. Einführung Ein elektromagnetischer Schwingkreis entsteht

Mehr