Baudynamik und Zustandsanalyse
|
|
|
- Manfred Winkler
- vor 9 Jahren
- Abrufe
Transkript
1 Baudynamik und Zustandsanalyse Eine Einführung in die Baudynamik mit Mathematica Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOLFRAM-Research [ geschrieben und erstmals auf den Webseiten der Hochschule für Technik und Wirtschaft in Dresden (University of Applied Sciences) [ veröffentlicht. Die Schrift trägt den Charakter eines Arbeitskonzepts, so dass ich für Hinweise und Anregungen aller Art, einschließlich zu Rechtschreibung, Grammatik und Druckbild sehr dankbar bin. Mit meinem Beitrag erhebe ich keinen Anspruch auf irgendeine Vollständigkeit bzw. Allgemeingültigkeit. Ich möchte einzig und allein an exemplarischen Problemstellungen der Baumechanik logisch einfache mathematisch-physikalische Lösungsmethoden zur Diskussion stellen. Mirko Slavik, Dresden 2 Definitionen, Begriffe, mathematisch-physikalische Grundlagen 2.1 Schwingungen Im Vordergrund der Betrachtungen stehen zunächst die harmonischen Schwingungen, die eine fundamentale Bedeutung für viele physikalische Berechnungsverfahren bilden. Unter einer harmonischen Schwingung (Bild 2.1.1) versteht man die harmonische Veränderung einer physikalischen Größe x über die Zeit t : x[t] A * Sin[ t + φ] /. φ t phase x[t] A Sint + t phase A - Amplitude (Größtwert) der schwingenden Größe x - Kreisfrequenz in [rad/s] oder [s -1 ] ( formal der Amplitude der Winkelgeschwindigkeit am Einheitskreis) ψ = t + φ - Phasenwinkel oder Phase φ = t Phase - Phasenverschiebung φ ψ (t = 0) t Phase - Phasenverschiebungszeit Bild 2.1.1: Beispielskizze einer harmonischen Schwingung Die Periodendauer T in [s] ist definiert als: T = 2 π
2 2 baudyn_02_1_schwingung.nb Nach einer Periode T sowie deren ganzzahligen Vielfachen wiederholt sich ein Schwingungsvorgang, dass bedeutet für x(t) x(t + nt) mit n = ±1, ±2, ±3,..., ± erhalten wir stets: y[t] FullSimplifyA Sin[ t + φ] /. t t + n T /. T -> 2 π, n > 0 && n Integers y[t] A Sin[φ + t ] Die unten angeführten zwei Beispiele harmonischer Schwingungen sind Darstellungen in der Zeitebene: x[t] = A * Sin[ t + φ], 1 = π, A 1 = 10, φ 1 = 0, 2 = π 2, A 2 = 4, φ 2 = -1.3; 10 Beispiel 1 einer harmonischen Funktion 5 0 x 1 [ t ] t in [ s ] 4 Beispiel 2 einer harmonischen Funktion 2 0 x 2 [ t ] t in [ s ] Die Definition der Frequenz f in [Hz] oder [ s -1 ] lautet unter Beachtung der Beziehung (2.1.2):
3 baudyn_02_1_schwingung.nb 3 f 1 T /. T -> 2 π f 2 π MERKE: Die Kreisfrequenz ist der 2π-fache Wert der Frequenz f Unter der Darstellung eines Schwingungsvorganges in einer Phasen- statt Zeitebene versteht man die Verknüpfung der Schwingungsfunktion mit ihrer ersten Ableitung, wobei die Zeit t eliminiert wird. Wenn die Schwinggröße der Weg ist, dann entspricht deren erste Ableitung nach der Zeit der Schwinggeschwindigkeit (vgl. hierzu auch den Absatz ). x 1 = x[t] /. Beispiel1; x 1 '[t] = D[x 1, t]; v 1 = x 1 '[t]; x 2 = x[t] /. Beispiel2; x 2 '[t] = D[x 2, t]; v 2 = x 2 '[t]; Phasenebene der Beispiele 1 und 2 von (2.1.4) v in [m/s] x in [ m ] Versteckte Zelle zum Beweis dafür, dass die Phasenkurven von harmonischen Schwingungen Ellipsen sein müssen Eine weitere häufig anzutreffende reelle Schreibweise für die harmonische Schwingung in Form der Gleichung (2.1.1) lautet: x[t] = A * Sin[ t + φ]; x[t] TrigExpand[ x[t] ] A1 Cos[ t] + B1 Sin[ t] A Sin[φ + t ] A Cos[t ] Sin[φ] + A Cos[φ] Sin[t ] A1 Cos[t ] + B1 Sin[t ] Vergleicht man die Parameter A1 und B1 mit dem Ausdruck (2.1.1), so ergeben sich die
4 4 baudyn_02_1_schwingung.nb nachfolgenden Zusammenhänge: A1 = A Sin[φ], B1 = A Cos[φ], AbsSimplify A1 2 + B1 2 Abs[A], Simplify A1 B1 Tan[φ] {A Sin[φ], A Cos[φ], True, True} Bei der komplexen Schreibweise einer harmonischen Schwingung mittels y(t) = A e i ( t + φ) wird die notwendige Zuordnung x(t) Im[y(t)] in der Fachliteratur hin und wieder nicht ausgewiesen. Dass beim Rechnen mit komplexen Funktionen lediglich der Imaginärteil (oder nur der Realteil) eine physikalische Bedeutung haben, ist dann leider nicht erkennbar. Die Funktion x(t) ist selbstverständlich keine komplexe Funktion, wie leicht gezeigt werden kann: Komplexe_Schreibweise:{y[t] = A Exp[i ( t + φ)], y[t] = ExpToTrig[y[t]]} Reale_Schreibweise: x[t] = ComplexExpand[Im[y[t]]], x[t] = ComplexExpand 1 (y[t] - Conjugate[y[t]]) 2 i Komplexe_Schreibweise: A e i (φ+t ), A Cos[φ + t ] + i A Sin[φ + t ] Reale_Schreibweise: {A Sin[φ + t ], A Sin[φ + t ]} Die obige Darstellung von y(t) ist es auch möglich in die Form y(t) = A e i φ e i t = B e i t umzuwandeln. Die Größe B stellt die komplexe Amplitude der Zeitfunktion dar, die in Bezug auf den Zeitpunkt t = 0 mitunter die Bezeichnung Nullzeiger erhält (vgl. Absatz ). Es gilt: B = A Exp[i φ], B = ExpToTrig[B], B = i A1 + B1, SimplifyB1 2 + A1 2 A e i φ, A Cos[φ] + i A Sin[φ], A Cos[φ] + i A Sin[φ], A Sowohl die Größen von A 1, B 1 bzw. B als auch die komplexe Funktion y(t) sind in der nach Carl Friedrich GAUSS ( ) benannten GAUSSschen Zahlenebene anschaulich ausweisbar (Bild a). Weiterhin existieren aber auch Darstellungen im Frequenzbereich, wie das Phasendiagramm, bei dem die Phasenverschiebung φ als Funktion der Kreisfrequenz erscheint, sowie das Amplituden-Frequenz-Diagramm, wo die Amplitude A zur Kreisfrequenz ins Verhältnis gesetzt wird (Bild b).
5 baudyn_02_1_schwingung.nb 5 Bild a: Darstellung einer harmonischen Schwingung als Zeigerdiagramm in der GAUSSschen Zahlenebene Bild b: Darstellung einer harmonischen Schwingung im Frequenzbereich Da sie in der technischen Anwendung eine hohe Bedeutung haben, werden von der harmonischen Schwingung nochmals die erste und ergänzend die zweite Ableitung des Schwingweges x(t) nach der Zeit t ausgewiesen. Diese repräsentieren die Schwinggeschwindigkeit v(t) in [m/s] (vgl. Absatz 2.1.7) bzw. die Schwingbeschleunigung a(t) in [m/s²]. Schwingweg: Geschwindigkeit: Beschleunigung: x(t) = v(t) = a(t) = A Sin[φ + t ] A Cos[φ + t ] -A 2 Sin[φ + t ] Bei der Beschäftigung mit schwingungstechnischen Problemen, stößt man häufig auf die Dezibel-Skala. Sie hat den Vorteil der Vermeidung hoher Zehnerpotenzen sowie einer einfachen Handhabung von Verhältniszahlen [117], weshalb man sie auch als Maß einer realtiven physikalischen Größe bezeichnet. Ihr Zeichen lautet Dezibel, Kurzform db und ihre Definition in der Regel: dezibel i = 10 Log A i A rel oder 20 Log A i A rel dezibel i - Verhältniszahl der physikalischen Größe i A i A rel - physikalische Größe i - Bezugswert der physikalischen Größe i
6 6 baudyn_02_1_schwingung.nb In der Tabelle sind für einige ausgewählte Größen typische Bezugswerte A rel gemäß [117] zusammengestellt worden. Physikalische Größe A i Bezugswert A rel 20 er - Decibel - Skala Schwingweg x rel = 10-8 [mm] db x = 20 Log10, x i x rel Schwinggeschwindigkeit v rel = 10-5 [mm / s] db v = 20 Log10, v i v rel Schwingbeschleunigung a rel = 10-5 [mm / s²] db a = 20 Log10, a i a rel Druck in Gasen * p rel = [N / m²] db p = 20 Log10, p i p rel Tabelle : Bezugswerte ausgewählter Decibel-Skalen nach [117] * Anmerkung: In [117] ist bei der Festlegung des Bezugspegels für den Druck offensichtlich ein Fehler unterlaufen. In der Akustik findet man für den Bezugspegel einen Wert von p rel = 20 μ Pa N/m², ein Wert, der übrigens der Hörschwelle des Menschen bei einer Frequenz von 1 khz entspricht und der wiederum ein Schalldruck von 0 db zugeordnet wird (siehe auch die folgende versteckte Zelle). Versteckte Zelle für ein Beispiel zur Decibel-Skala.
Baudynamik und Zustandsanalyse
Baudynamik und Zustandsanalyse Eine Einführung in die Baudynamik mit Mathematica Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOLFRAM-Research [http://www.wolfram.com]
Baudynamik und Zustandsanalyse
Baudynamik und Zustandsanalyse Eine Einführung in die Baudynamik mit Mathematica Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOLFRAM-Research [http://www.wolfram.com]
Baudynamik und Zustandsanalyse
Baudynamik und Zustandsanalyse Eine Einführung in die Baudynamik mit Mathematica Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOLFRAM-Research [http://www.wolfram.com]
Baudynamik und Zustandsanalyse
Baudynamik und Zustandsanalyse Eine Einführung in die Baudynamik mit Mathematica Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOLFRAM-Research [http://www.wolfram.com]
Baudynamik und Zustandsanalyse
Baudynamik und Zustandsanalyse Eine Einführung in die Baudynamik mit Mathematica Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOFRAM-Research [http://www.wolfram.com]
Baudynamik und Zustandsanalyse
Baudynamik und Zustandsanalyse Eine Einführung in die Baudynamik mit Mathematica Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOLFRAM-Research [http://www.wolfram.com]
Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung
34 Schwingungen Im Zusammenhang mit Polardarstellungen trifft man häufig auf Funktionen, die Schwingungen beschreiben und deshalb für den Ingenieur von besonderer Wichtigkeit sind Fast alle in der Praxis
Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder
Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder Bei der Behandlung reeller elektromagnetischer Felder im Fourierraum ist man mit der Tatsache konfrontiert, dass
Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung
28. September 2016 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung Aufgabe 1. Die nachfolgende Grafik stellt das Oszillogramm zweier sinusförmiger Spannungen
Harmonische Schwingung
Harmonische Schwingung Eine harmonische Schwingung mit Amplitude c 0, Phasenverschiebung δ und Frequenz ω bzw. Periode T = 2π/ω hat die Form x x(t) = c cos(ωt δ). δ/ω c t T=2π/ω Harmonische Schwingung
(a) Motivation zur Definition komplexer Zahlen
1 Anhang B (a) Motivation zur Definition komplexer Zahlen Neue Zahlen wurden stets dann definiert, wenn die Anwendung von Rechenoperationen auf bekannte Zahlen innerhalb der Menge letzterer keine Lösung
Baudynamik und Zustandsanalyse
Baudynamik und Zustandsanalyse Eine Einführung in die Baudynamik mit Mathematica Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOLFRAM-Research [http://www.wolfram.com]
Komplexe Zahlen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden
Komplexe Zahlen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden [email protected] Körper sind nullteilerfrei Für Elemente a, b eines Körpers gilt stets: Aus a b = 0 folgt a
4. Gleichungen im Frequenzbereich
Stationäre Geräusche: In der technischen Akustik werden überwiegend stationäre Geräusche untersucht. Stationäre Geräusche sind zusammengesetzt aus harmonischen Schallfeldern p x,t = p x cos t x Im Folgenden
Baudynamik und Zustandsanalyse
Baudynamik und Zustandsanalyse Eine Einführung in die Baudynamik mit Mathematica Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOLFRAM-Research [http://www.wolfram.com]
Körper sind nullteilerfrei
Mathematik I für Informatiker Komplexe Zahlen p. 1 Körper sind nullteilerfrei Für Elemente a, b eines Körpers gilt stets: Aus a b = 0 folgt a = 0 oder b = 0. Beweis: Aus a b = 0 und a 0 folgt also b =
Formelsammlung: Physik I für Naturwissenschaftler
Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]
Serie 3 - Komplexe Zahlen II
Analysis D-BAUG Dr. Meike Akveld HS 2015 Serie - Komplexe Zahlen II 1. Wir betrachten die komplexe Gleichung z 6 = 4 4i. a) Bestimmen Sie alle en z C dieser Gleichung. b) Zeichnen Sie die en in die komplexe
Serie 9, Musterlösung. Klasse: 2Ub Semester: 2 Datum: 30. Mai z 3 = i z 4 = 15 Z 4 Z Re(z) z 4 = 1 e i 7π 4
anu [email protected] www.adams-science.com Serie 9, Musterlösung Klasse: Ub Semester: Datum: 3. Mai 17 1. Die komplee Zahlenebene Stelle die Zahlen als Punkte in der kompleen Zahlenebene dar. Berechne
Vorlesung. Komplexe Zahlen
Vorlesung Komplexe Zahlen Motivation In den reellen Zahlen haben nicht alle Polynome Nullstellen. Der einfachste Fall einer solchen Nullstellen-Gleichung ist x 2 + 1 = 0. Die komplexen Zahlen ("C") sind
Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik
Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 4 Fourier-Transformation 3
Als Summendarstellung der komplexen Zahl bezeichnen wir den bekannten Ausdruck
A.1 MATHEMATISCHE GRUNDLAGEN In diesem Abschnitt werden die mathematischen Grundlagen zusammengestellt, die für die Behandlung von Übertragungssystemen erforderlich sind. Unter anderem sind dies die komplexen
Aufgabe1 EStrich ist Lennard Jones Potential mit Exponentialfunktion
Aufgabe EStrich ist Lennard Jones Potential mit Exponentialfunktion Ansatz: Exponentialfunktion mit 3 Variablen einführen: a: Amplitude b:stauchung c:verschiebung_entlang_x_achse EStrich r_, ro_, _ : a
2. Fourier-Transformation
2. Fourier-Transformation Die Fourier-Transformation ist ein wichtiges Hilfsmittel für die dynamische Analyse linearer Systeme: Die Fourier-Transformierte der Antwort ist gleich dem Produkt der Fourier-Transformierten
Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II
Physik Schwingungen II Ort, Geschwindigkeit, Beschleunigung x(t) = cos! 0 t v(t) =ẋ(t) =! 0 sin! 0 t t a(t) =ẍ(t) =! 2 0 cos! 0 t Energie In einem mechanischen System ist die Gesamtenergie immer gleich
Körper der komplexen Zahlen (1)
Die komplexen Zahlen Körper der komplexen Zahlen (1) Da in angeordneten Körpern stets x 2 0 gilt, kann die Gleichung x 2 = 1 in R keine Lösung haben. Wir werden nun einen Körper konstruieren, der die reellen
Grundlagen der Stochastik
stoch_7.nb 1 Grundlagen der Stochastik Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOLFRAM-Research [http://www.wolfram.com] geschrieben und erstmals auf den Webseiten
Die komplexen Zahlen. 1. Einführung. A) Erweiterung des Zahlenkörpers. Def. 1 (imaginäre Einheit)
Die komplexen Zahlen 1. Einführung A) Erweiterung des Zahlenkörpers Def. 1 (imaginäre Einheit) Die Gl. x 2 + 1 = 0 hat zwei Lösungen, nämlich i und - i. Es soll also gelten: i 2 = -1 und ( - i ) 2 = -1.
Physik 1 für Ingenieure
Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm [email protected] Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#
Einiges über komplexe Zahlen
Lineare Algebra und Analytische Geometrie I für LB WS 2001/2002 Dr. Bruno Riedmüller Einiges über komplexe Zahlen Es muss davon ausgegangen werden, dass der Leser mit komplexen Zahlen wenig oder nicht
Systemtheorie. Vorlesung 20: Eigenschaften der Fourier-Transformation. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann
Systemtheorie Vorlesung 2: Eigenschaften der Fourier-Transformation Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Fourier-Transformation Eigenschaften der Fourier-Transformation Definitionsgleichungen
Vorkurs Mathematik-Physik, Teil 8 c 2016 A. Kersch
Aufgaben Dynamik Vorkurs Mathematik-Physik, Teil 8 c 6 A. Kersch. Ein D-Zug (Masse 4t) fährt mit einer Geschwindigkeit von 8km/h. Er wird auf einer Strecke von 36m mit konstanter Verzögerung zum Stehen
Die komplexen Zahlen
Die komplexen Zahlen Wir haben gesehen, dass die Menge R der reellen Zahlen einen angeordneten Körper bildet und dass für die Menge Q der rationalen Zahlen entsprechendes gilt. In beiden Körpern sind Gleichungen
3 Der Körper der komplexen Zahlen
3 Der Körper der kompleen Zahlen Nicht jede quadratische Gleichung hat eine reelle Lösung + p + q = (p, q R) Beispiel: Für alle R ist und daher + 1 Abhilfe: Man erweitert R zu einem größerem Körper C,
Konvergenz und Stetigkeit
Mathematik I für Biologen, Geowissenschaftler und Geoökologen 10. Dezember 2008 Konvergenz Definition Fourierreihen Obertöne Geometrische Reihe Definition: Eine Funktion f : D R d heißt beschränkt, wenn
Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen
Physik Schwingungen Zusammenfassung Mechanik Physik Mathe Einheiten Bewegung Bewegung 3d Newtons Gesetze Energie Gravitation Rotation Impuls Ableitung, Integration Vektoren Skalarprodukt Gradient Kreuzprodukt
02. Komplexe Zahlen. a = Re z ist der Realteil von z, b = Im z der Imaginärteil von z.
0. Komplexe Zahlen Da für alle x R gilt dass x 0, hat die Gleichung x +1 = 0 offenbar keine reellen Lösungen. Rein formal würden wir x = ± 1 erhalten, aber dies sind keine reellen Zahlen. Um das Problem
9.5 Graphen der trigonometrischen Funktionen
9.5 Graphen der trigonometrischen Funktionen 9.5 Graphen der trigonometrischen Funktionen. Unter dem Bogenmass eines Winkels versteht man die Länge des Winkelbogens von auf dem Kreis mit Radius (Einheitskreis).
Wechselstromkreis E 31
E 3 kreis kreis E 3 Aufgabenstellung. Bestimmung von Phasenverschiebungen zwischen Strom und Spannung im kreis.2 Aufbau und ntersuchung einer Siebkette 2 Physikalische Grundlagen n einem kreis (Abb.) befinde
Hochschule Düsseldorf University of Applied Sciences. 12. Januar 2017 HSD. Physik. Schwingungen III
Physik Schwingungen III Wiederholung Komplexe Zahlen Harmonischer Oszillator DGL Getrieben Gedämpft Komplexe Zahlen Eulersche Formel e i' = cos ' + i sin ' Komplexe Schwingung e i!t = cos!t + i sin!t Schwingung
Inhalt der Vorlesung A1
PHYSIK Physik A/B1 A WS SS 17 13/14 Inhalt der Vorlesung A1 1. Einführung Methode der Physik Physikalische Größen Übersicht über die vorgesehenen Themenbereiche. Teilchen A. Einzelne Teilchen Beschreibung
Mathematik 1 für Naturwissenschaften
Hans Walser Mathematik 1 für Naturwissenschaften Modul 112 Lineare Differenzialgleichungen zweiter Ordnung Hans Walser: Modul 112, Lineare Differenzialgleichungen zweiter Ordnung ii Inhalt 1 Lineare Differenzialgleichungen
(2 π f C ) I eff Z = 25 V
Physik Induktion, Selbstinduktion, Wechselstrom, mechanische Schwingung ösungen 1. Eine Spule mit der Induktivität = 0,20 mh und ein Kondensator der Kapazität C = 30 µf werden in Reihe an eine Wechselspannung
3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor
3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Punkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf einem
Tutorium Physik 2. Schwingungen
1 Tutorium Physik 2. Schwingungen SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 9. SCHWINGUNGEN 9.1 Bestimmen der
Komplexe Zahlen. (a, b) + (c, d) := (a + c, b + d) (a, b) (c, d) := (a c b d, a d + b c)
Komplexe Zahlen Wir betrachten Zahlenpaare (a, b, (c, d R und definieren eine Addition und eine Multiplikation wie folgt: (a, b + (c, d := (a + c, b + d (a, b (c, d := (a c b d, a d + b c Satz: R mit dieser
4 Komplexe Zahlen. 4.1 Notwendigkeit und Darstellung Einführung
Komplexe Zahlen 4 4 Komplexe Zahlen Die komplexen Zahlen sind eine Erweiterung der reellen Zahlen. Die Konstruktion erfolgt durchc=r R. 4.1 Notwendigkeit und Darstellung 4.1.1 Einführung Hat die Gleichung
F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder
6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung
Grundlagen der Stochastik
stoch_00_05.nb 1 Grundlagen der Stochastik Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von OLFRAM-Research [http://www.wolfram.com] geschrieben und erstmals auf den ebseiten
Physik 1 für Ingenieure
Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm [email protected] Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#
Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen
Prof. Dr.-Ing. Prof. E.h. P. Eberhard / Prof. Dr.-Ing. M. Hanss SS 17 Ü1 Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss Aufgabensammlung mit Kurzlösungen Sommersemester 017 Prof. Dr.-Ing.
Lösung zu Serie 2. D-ERDW, D-HEST, D-USYS Dr. Ana Cannas. Mathematik II FS März 2016
Mathematik II FS 6. März 6 Lösung zu Serie Bemerkung: Die Aufgaben der Serie sind der Fokus der Übungsstunden vom./3. März.. a y = x und es wird die ganze Parabel einmal durchlaufen, denn x nimmt alle
PP Physikalisches Pendel
PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung
Stefan Ruzika. 24. April 2016
Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 24. April 2016 Stefan Ruzika 2: Körper 24. April 2016 1 / 21 Gliederung 1 1 Schulstoff 2 Körper Definition eines Körpers
Crash-Kurs Komplexe Zahlen
1 Definitionen: j, C, z Im Körper R der reellen Zahlen besitzt die lineare Gleichung ax + b = 0 (a, bεr; a 0) stets eine Lösung. Die quadratische Gleichung ax 2 + bx + c = 0 führt zu der Lösungsformel
Musterlösung zur Aufgabe A1.1
Abschnitt: 1.1 Prinzip der Nachrichtenübertragung Musterlösung zur Aufgabe A1.1 a) Im markierten Bereich (20 Millisekunden) sind ca 10 Schwingungen zu erkennen. Daraus folgt für die Signalfrequenz näherungsweise
Floquet-Theorie IV. 1 Hills Gleichung
Vortrag zum Seminar Gewöhnliche Differentialgleichungen, 08.11.2011 Tobias Roidl Dieser Vortrag befasst sich mit der Hills Gleichung und gibt eine Einführung in die Periodischen Orbits von linearen Systemen.
:. (engl.: first harmonic frequency)
5 Fourier-Reihen 5.1 Schwingungsüberlagerung 5.2 "Oberschwingungen" f 0 :. (engl.: fundamental frequency) :. (engl.: first harmonic frequency) Jede ganzzahlige (n) vielfache Frequenz von f 0 nennt man
Komplexe Zahlen (Seite 1)
(Seite 1) (i) Motivation: + 5 = 3 hat in N keine Lösung Erweiterung zu Z = 2 3 = 2 hat in Z keine Lösung Erweiterung zu Q = 2 / 3 ² = 2 hat in Q keine Lösung Erweiterung zu R = ± 2 ² + 1 = 0 hat in R keine
Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ):
Komplexe Zahlen Definition 1. Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen (a, b). Wir nennen a den Realteil von z und b den Imaginärteil von z, geschrieben a = Re z, b = Im z. Komplexe
HM an der HWS 2. Hj 2018/19 Dr. Timo Essig, Dr. Marinela Wong Harmonische Schwingungen und komplexe Zahlen
HM an der HWS 2. Hj 208/9 Dr. Timo Essig, Dr. Marinela Wong [email protected], [email protected] Beispielblatt 7 Harmonische Schwingungen und komplexe Zahlen Achtung: Auf diesem Blatt wird die komplexe
Differentialgleichungen 2. Ordnung
Differentialgleichungen 2. Ordnung 1-E1 1-E2 Einführendes Beispiel Freier Fall Viele Geschichten ranken sich um den schiefen Turm von Pisa: Der Legende nach hat der aus Pisa stammende Galileo Galilei bei
Harmonische Schwingungen und komplexe Zeiger
Harmonische Schwingungen und komplexe Zeiger Eine harmonische Schwingung wird durch eine allgemeine sinusartige Funktion beschrieben (Grafik siehe unten: y = y (t = sin (ω t + ϕ Dabei ist die mplitude,
A Die Menge C der komplexen Zahlen
A Die Menge C der komplexen Zahlen (Vgl. auch Abschnitt C) A.1 Definition Wir erweitern R um eine Zahl i / R (genannt imaginäre Einheit) mit der Eigenschaft i 2 i i = 1. (653) Unter einer komplexen Zahl
FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK
FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK Sommersemester 006 Zahl der Blätter: 5 Blatt 1 s. unten Hilfsmittel: Literatur, Manuskript, keine Taschenrechner und sonstige elektronische Rechner Zeit:
Cauchys Integralsatz und Cauchys Integralformel
Kapitel 23 Cauchys Integralsatz und Cauchys Integralformel 23. Der Cauchysche Integralsatz (einfach zusammenhängend; einfache geschlossene Kurven; Fresnelsche Integrale) Wird die Voraussetzung f habe eine
1. Unterteilung von allgemeinen Dreiecken in rechtwinklige
Trigonometrie am allgemeinen Dreieck Wir können auch die Seiten und Winkel von allgemeinen Dreiecken mit Hilfe der Trigonometrie berechnen. Die einfachste Variante besteht darin, ein beliebiges Dreieck
Brückenkurs Mathematik. Freitag Freitag
Brückenkurs Mathematik Freitag 9.09. - Freitag 13.10.017 Vorlesung 10 Komplexe Zahlen Kai Rothe Technische Universität Hamburg-Harburg Freitag 13.10.017 0 Brückenkurs Mathematik, K.Rothe, Vorlesung 10
Zeitfunktionen. Kapitel Elementarfunktionen
Kapitel Zeitfunktionen Systeme werden durch Eingangsgrößen (Ursache, Eingangssignal, Erregung) angeregt und man interessiert sich für die Ausgangsgrößen (Wirkung, Ausgangssignal, Antwort). Die praktisch
Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1
TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 Komplexe Zahlen Das Auffinden aller Nullstellen von algebraischen Gleichungen ist ein Grundproblem, das in der Physik
2 Harmonische Bewegung und Fourier-Analyse periodischer Schwingungen
2 Harmonische Bewegung und Fourier-Analyse periodischer Schwingungen 2.1 Darstellung und Eigenschaften harmonischer Schwingungen Wegen der elementaren Bedeutung der harmonischen Funktionen werden sowohl
5 Schwingungen und Wellen
5 Schwingungen und Wellen Schwingung: Regelmäßige Bewegung, die zwischen zwei Grenzen hin- & zurückführt Zeitlich periodische Zustandsänderung mit Periode T ψ ψ(t) [ ψ(t-τ)] Wellen: Periodische Zustandsänderung
Komplexe Funktionen. Freitag Vorlesung 1. Kai Rothe. Sommersemester Technische Universität Hamburg-Harburg
Komplexe Funktionen Freitag 13.04.018 Vorlesung 1 Kai Rothe Sommersemester 018 Technische Universität Hamburg-Harburg K.Rothe, komplexe Funktionen, Vorlesung 1 Nullstellen quadratischer Gleichungen Beispiel
Serie 5 Musterlösung
Serie 5 Musterlösung Lineare Algebra www.adams-science.org Klasse: 1Ea, 1Eb, 1Sb Datum: HS 17 1. Winkelfrequenz, Periodendauer 5IYBKE Berechnen Sie die fehlenden Grössen. (a) T = 4π (b) ω = (c) T = π/
1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten
Dynamische Lasten 1. Kraft- und Weganregung 2. Deterministische Lasten 2.1 Periodische Lasten 2.2 Allgemeine zeitabhängige Lasten 2.3 Harmonische Lasten 3. Stochastische Lasten 3.1 Instationäre stochastische
Primzahlen Darstellung als harmonische Schwingung
Primzahlen Darstellung als harmonische Schwingung Die natürliche Sinusschwingung wird hier in Zusammenhang mit der Zahlentheorie gebracht um einen weiteren theoretischen Ansatz für die Untersuchung der
Trignonometrische Funktionen 6a
Schuljahr 2015/16 [email protected] Institute for Mathematics and Scientific Computing Karl-Franzens-Universität Graz Graz, November 23, 2015 Winkelmaße Winkelmaß bis 6. Klasse: Grad (0 360 )
10 Komplexe Zahlen. 2. Februar Komplexe Multiplikation: Für zwei Vektoren. z 1 =
2. Februar 2009 66 0 Komplexe Zahlen 0. Komplexe Multiplikation: Für zwei Vektoren [ [ a a2 z =, z 2 = in R 2 wird neben der üblichen Addition die komplexe Multiplikation [ a a z z 2 := 2 b b 2 a b 2 +
4.2 Der Harmonische Oszillator
Dieter Suter - 208 - Physik B3, SS03 4.2 Der Harmonische Oszillator 4.2.1 Harmonische Schwingungen Die Zeitabhängigkeit einer allgemeinen Schwingung ist beliebig, abgesehen von der Periodizität. Die mathematische
LINEARE ALGEBRA UND ANALYSIS FÜR FUNKTIONEN EINER VARIABLEN
Fakultät Mathematik Institut für Numerische Mathematik LINEARE ALGEBRA UND ANALYSIS FÜR FUNKTIONEN EINER VARIABLEN 6. Komplexe Zahlen Prof. Dr. Gunar Matthies Wintersemester 2017/18 G. Matthies Lineare
BERUFSAKADEMIE S T U T T G A R T University of Cooperative Education. Höhere Mathematik II. Übungen. Komplexe Zahlen. i e π + 1=
BERUFSAKADEMIE S T U T T G A R T University of Cooperative Education Höhere Mathematik II Übungen Komplexe Zahlen i e π + 0 8 R. Mohr FK Blatt Komplexe Zahlen I WS 004/ Aufgabe : Gegeben sind die komplexen
Einführung in die Physik I. Schwingungen und Wellen 1
Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten
Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn
Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am 4.11. werden sie von Herrn Hofstaetter in den Übungen vorgerechnet. Vom Weg zu
Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner
Systemtheorie Teil A - Zeitkontinuierliche Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt 6 Musterlösungen Spektrum von Signalen 6. Approximation eines periodischen Signals
Serie 8 - Parametrisierte Kurven
Analysis D-BAUG Dr Meike Akveld HS 05 Serie 8 - Parametrisierte Kurven Geben Sie für die folgenden Bewegungen eines Punktes jeweils eine parametrisierte Darstellung I [0, ] R xt, t yt an Lösung a Geradlinige
