Baudynamik und Zustandsanalyse
|
|
|
- Jutta Beck
- vor 7 Jahren
- Abrufe
Transkript
1 Baudynamik und Zustandsanalyse Eine Einführung in die Baudynamik mit Mathematica Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOFRAM-Research [ geschrieben und erstmals auf den Webseiten der Hochschule für Technik und Wirtschaft in Dresden (University of Applied Sciences) [ veröffentlicht. Die Schrift trägt den Charakter eines Arbeitskonzepts, so dass ich für Hinweise und Anregungen aller Art, einschließlich zu Rechtschreibung, Grammatik und Druckbild sehr dankbar bin. Mit meinem Beitrag erhebe ich keinen Anspruch auf irgendeine Vollständigkeit bzw. Allgemeingültigkeit. Ich möchte einzig und allein an exemplarischen Problemstellungen der Baumechanik logisch einfache mathematisch-physikalische ösungsmethoden zur Diskussion stellen. Mirko Slavik, Dresden 17 Kragarm unter bewegten asten 17.1 In Fortführung zu den Überlegungen im Kapitel 16 soll an dieser Stelle der Speziallfall eines Kragbalkens, der durch eine Gruppe konstanter Einzellasten mit gleichbleibender Geschwindigkeit belastet wird (Bild 17.1), analysiert werden. Den Ausgangspunkt für die Berechnung stellt wieder die partielle Differenzialgleichung ( ) dar: EM IM yy x,x,x,x w[x, t] μ t,t w[x, t] 2 μ ω b t w[x, t] = p[x, t] Bild 17.1: Ein Gruppe konstanter Einzellasten bewegt sich entlang eines Kragarmes 17.2 Als ösungsverfahren bedienen wir uns der modalen Analyse des Abschnittes Deshalb müssen zuerst die ungedämpften Eigenkreisfrequenzen und Eigenschwingformen bestimmt werden. Dazu nutzen wir die bereits in der iteratur aufbereiteten Ergebnisse, wie sie z. B. in [2] bzw. [24] zu finden sind (vgl. hierzu auch Absatz 11.3). Die Eigenwertgleichung bzw. Frequenzdeterminante für einen Kragarm lautet cos(λ) cosh(λ) 1 =. Als Eingabeparameter benötigt man die Kraglänge in [m], die Massebelegung μ in [kg/m], die Biegesteifigkeit B = EM IM yy in [Nm 2 ] sowie die Anzahl maxn der gewünschten Eigenformen: In[38]:= maxn = 3; = 15; μ = 13; B = ;
2 2 baudyn_17_kragarm_bewegte_lasten.nb In[39]:= Table erg[r] = FindRoot 1 Cosh[lambda] Cos[lambda], lambda, 2 r - 1 π, 2 {r, 1, maxn} ; vekλ = MatrixForm[Table[λ r = erg[r][[1, 2]], {r, 1, maxn}]]; vekω = Table ω i = λ i 2 2 B μ, {i, 1, maxn} ; "Ungedämpfte Eigenkreisfrequenzen ω i [s -1 ]: " MatrixForm[vekω] Out[42]= Ungedämpfte Eigenkreisfrequenzen ω i [s -1 ]: In[43]:= Do w j [x] = Cosh λ j x - Cos λ j x Sinh λ j - Sin λ j - x Sinh λ j Cosh λ j Cos λ j - Sin λ j x, {j, 1, maxn} ; Darstellung[{w 1 [x], w 2 [x], w 3 [x]}, x,,, "Trägerlänge in [m]", Black, " w(x) in [m]", Black, " Ersten drei Eigenformen ", Black, Black, ightgreen, {{Red, Thick}, {Blue, Thick}, {Green, Thick}, {Yellow, Thick}, {Brown, Thick}}] 2 Ersten drei Eigenformen 1 Out[44]= w(x) in [m] Trägerlänge in [m] 17.3 Eine wichtige Kontrolle für die qualitative Richtigkeit der Eigenformen ist die Bestätigung ihrer Orthogonalitätseigenschaft (siehe Absatz ): w i [x] w j [x] dx = für i j und w i [x] w j [x] dx = für i j
3 17.7 Es fehlt nur noch die Bestimmung der generalisierten Kräfte Q i (t). Im Falle einer einzigen Einzelbaudyn_17_kragarm_bewegte_lasten.nb Die Bestimmung der generalisierten Massen und Steifigkeiten sowie die Verifikation der ungedämpften Eigenkreisfrequenzen des Absatzes 17.2 erfolgt in Anlehnung an den Absatz : Out[45]= vekm G , vekk G Out[46]= ω i [s -1 ]: , ω i 2 [s -1 ]: Analog zum Absatz wird das gewünschte entkoppelte Differenzialgleichungssystem aufgebaut: vekef = 1 m G,1 ( w 1 [x] w 2 [x] w 3 [x] ), vekq = Q 1 Q 2 Q 3, vekq = q 1 [t] q 2 [t] q 3 [t] MatrixForm Transpose[vekEF].(μ vekef). t,t vekq dx // N MatrixForm Transpose[vekEF]. (2 μ ω b vekef). t vekq dx // N MatrixForm Transpose[vekEF].(B x,x,x,x vekef).vekq dx // N MatrixForm Transpose[vekEF].(μ vekef).vekq dx // N ; q 1 [t] q 2 [t] q 3 [t] q 1 [t] q 2 [t] q 3 [t] i q 1 [t] i q 2 [t] ( i) q 3 [t] ω b 2. q 1 [t] q 2 [t] q 3 [t] ω b q 1 [t] 2. q 2 [t] q 3 [t] ω b i q 1 [t] i q 2 [t] (2.. i) q 3 [t] 1. q 1 [t] q 2 [t] q 3 [t] i q 1 [t] 1. q 2 [t] i q 3 [t] i q 1 [t] i q 2 [t] (1.. i) q 3 [t] 1. Q Q Q Q 1 1. Q Q i Q i Q 2 (1.. i) Q Setzt man die gegenüber eins sehr kleinen Werte null, dann erhalten wir das unten angeführte Gleichungssystem, das problemlos auf beliebig viele Eigenformen erweiterbar ist: q 1 [t] q 2 [t] q 3 [t] ω b 2 q 1 [t] ω b 2 q 2 [t] ω b 2 q 3 [t] q 1 [t] q 2 [t] q 3 [t] Q 1 Q 2 Q 3
4 4 baudyn_17_kragarm_bewegte_lasten.nb last P k=1 (t) = P in [N], die mit einer konstanten Geschwindigkeit v in [m/s] den im Absatz 17.2 verwendeten Kragarm von links nach rechts überquert, gilt die Beziehung (siehe Absatz ): Q i [t] = 1 P DiracDelta[x - v t] w i [x] dx = P w i[t v] m G,i m G,i 17.8 Für das erste Berechnungsbeispiel wird eine Einheitslast P 1 = 1N gewählt. Der Ausdruck β = ω b ω i erfasst den Dämpfungsgrad das Balkens. Die frei wählbaren Eingangsparameter (blau) lauten schließlich: In[47]:= maxn = 3, β =.5, v = 5, w statisch = P 3 3 B ; 17.9 Als ösungsfunktion dient das Faltungsintegral ( ). Wir untersuchen die zeitliche Veränderung der Durchbiegungen an der freien Kragarmspitze. Dargestellt wird dies zunächst anhand der dynamischen Vergrößerungsfunktion DMF (siehe Absatz 7.33). Die dafür notwendige Bezugsgröße der statischen Durchbiegung w statisch am Kragarmende ist oben bereits ausgewiesen worden. DMF von w dynamisch Out[48]= DMF Bevor wir uns nun einem Anwendungsbeispiel aus dem Brückenbau mit einer Gruppe von Einzellasten widmen, muss noch der Fall t > T über = betrachtet werden (T über Überfahrtzeit einer v Einzellast). Im dem Augenblick, wo die Einzellast den Träger verlässt, beginnt das Ausschwingen des Balkens, das allein von den beiden Anfangsbedingungen, d. h. der Auslenkung und der Momentangeschwindigkeit zum Zeitpunkt t = T über bestimmt wird (siehe Absatz 1.11). Zum Zwecke der Vergleichbarkeit zeigen wir jetzt den unmittelbaren Funktionsverlauf der dynamischen Durchbiegungen w dynamisch (x =, t).
5 baudyn_17_kragarm_bewegte_lasten.nb 5 In[49]:= P = 1, maxt = 2 v ; w dynamisch Out[52]= w dynamisch [m] In der obigen Darstellung repräsentiert der Teil der blauen inie mit w dynamisch den Zeitbereich während dessen sich die ast auf dem Balken befindet. Der Teil des strichlierten roten inienzuges mit w dynamisch gehört zum Ausschwingungsvorgang. Bemerkenswert ist, dass die maximalen dynamischen Durchbiegungen am freien Ende des Kragarmes erst nach dem Verlassen der Einzellast auftreten Wie bereits angedeutet, wird jetzt der obige Basisalgorithmus auf die Kragkonstruktion einer Eisenbahnbrücke angewendet. Deren baudynamischen Parameter sind uns aus den vorherigen Absätzen bereits bekannt. Hinzu kommt einzig die Erweiterung auf eine fiktive astgruppe von dreißig Einzellasten mit P k=1 (1) 3 = k in [kn], die untereinander einen konstanten astabstand von Δ = 1,9 m haben. Zum Zeitpunkt t k=1 = fährt die erste ast bei x = auf den Balken. Da alle Einzellasten die gleiche Geschwindigkeit besitzen, ist die Bereitstellung ihrer Auffahrtzeitpunkte t k in [s] unproplematisch: In[53]:= {maxn = 1, maxk = 3, Δ = 1.9};
6 6 baudyn_17_kragarm_bewegte_lasten.nb Out[54]= vekp k : {195., , , , , , , , , 2637., , , , , , , , , , , , , , 2919., , , , , , } Out[55]= vekt k : {.,.38,.76,.114,.152,.19,.228,.266,.34,.342,.38,.418,.456,.494,.532,.57,.68,.646,.684,.722,.76,.798,.836,.874,.912,.95,.988, 1.26, 1.64, 1.12} Out[56]= Überfahrtzeit einer ast in [s]: Zunächst schieben wir aber noch den Sonderfalll von nur drei Einzellasten ein, um auf einen interessanten Sachverhalt aufmerksam zu machen. Gewählt werden die erste, die mittlere und die letzte Einzellast und eine Geschwindigkeit von v 169,972 m/s, damit es zu einer synchronen Überlagerung der Ausschwingungsanteile der ersten (rot) und der letzten Kraft (grün) kommt. Hingegen besitzt die zweite Kraft (blau) hinsichtlich der beiden anderen eine gegenläufige Wirkung. Für das Auffinden der dazu relevanten Zeitabstände ist die Definition der Wegkreisfrequenz Ω = 2 π [m -1 ] hilfreich, die über die Geschwindigkeit v [m/s] in die Zeitkreisfrequenz ω = v Ω [s -1 ] transformierbar ist (man vgl. hierzu u. a. auch den Absatz bzw. den Absatz ). w dynamisch.5. w dynamisch [m] Nun folgt die grafische Aufbereitung für die astgruppe des Absatzes mittels der Built-In- Funktion Manipulate des Programmsystems MATHEMATICA. Hierbei ist eine anschauliche interaktive Variation des Zeitfensters innerhalb dieser Darstellung möglich.
7 baudyn_17_kragarm_bewegte_lasten.nb 7 mint maxt w dynamisch w dynamisch [ m]
Baudynamik und Zustandsanalyse
Baudynamik und Zustandsanalyse Eine Einführung in die Baudynamik mit Mathematica Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOLFRAM-Research [http://www.wolfram.com]
Baudynamik und Zustandsanalyse
audynamik und Zustandsanalyse Eine Einführung in die audynamik mit Mathematica Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOFRAM-Research [http://www.wolfram.com] geschrieben
Baudynamik und Zustandsanalyse
Baudynamik und Zustandsanalyse Eine Einführung in die Baudynamik mit Mathematica Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOLFRAM-Research [http://www.wolfram.com]
Baudynamik und Zustandsanalyse
Baudynamik und Zustandsanalyse Eine Einführung in die Baudynamik mit Mathematica Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOLFRAM-Research [http://www.wolfram.com]
Baudynamik und Zustandsanalyse
Baudynamik und Zustandsanalyse Eine Einführung in die Baudynamik mit Mathematica Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOLFRAM-Research [http://www.wolfram.com]
Baudynamik und Zustandsanalyse
Baudynamik und Zustandsanalyse Eine Einführung in die Baudynamik mit Mathematica Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOLFRAM-Research [http://www.wolfram.com]
Baudynamik und Zustandsanalyse
Baudynamik und Zustandsanalyse Eine Einführung in die Baudynamik mit Mathematica Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOLFRAM-Research [http://www.wolfram.com]
Baudynamik und Zustandsanalyse
Baudynamik und Zustandsanalyse Eine Einführung in die Baudynamik mit Mathematica Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOFRAM-Research [http://www.wolfram.com]
Baudynamik und Zustandsanalyse
Baudynamik und Zustandsanalyse Eine Einführung in die Baudynamik mit Mathematica Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOLFRAM-Research [http://www.wolfram.com]
3. Erzwungene Schwingungen
3. Erzwungene Schwingungen 3.1 Grundlagen 3.2 Tilger 3.3 Kragbalken 3.4 Fahrbahnanregung 3.3-1 3.1 Grundlagen Untersucht wird die Antwort des Systems auf eine Anregung mit harmonischem Zeitverlauf. Bewegungsgleichung:
Grundlagen der Stochastik
stoch_7.nb 1 Grundlagen der Stochastik Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOLFRAM-Research [http://www.wolfram.com] geschrieben und erstmals auf den Webseiten
Baudynamik und Zustandsanalyse
Baudynamik und Zustandsanalyse Eine Einführung in die Baudynamik mit Mathematica Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOLFRAM-Research [http://www.wolfram.com]
4. Transiente Analyse
4. Transiente Analyse Bei der transienten Analyse wird der zeitliche Verlauf der Antwort auf eine zeitlich veränderliche Last bestimmt. Die zu lösende Bewegungsgleichung lautet: [ M ] [ü ]+[ D ] [ u ]+
Lösung - Schnellübung 13
D-MAVT/D-MATL Analysis II FS 7 Dr. Andreas Steiger Lösung - Schnellübung 3. Gegeben sei die Differentialgleichung y + λ 4 y + λ y = 0. Für welche Werte des reellen Parameters λ gibt es eine von Null verschiedene
11.4. Lineare Differentialgleichungen höherer Ordnung
4 Lineare Differentialgleichungen höherer Ordnung Bei vielen geometrischen, physikalischen und technischen Problemen hat man nicht nur eine Funktion (in einer Variablen) und ihre Ableitung zueinander in
Grundlagen der Stochastik
stoch_00_05.nb 1 Grundlagen der Stochastik Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von OLFRAM-Research [http://www.wolfram.com] geschrieben und erstmals auf den ebseiten
3. Erzwungene gedämpfte Schwingungen
3. Erzwungene gedämpfte Schwingungen 3.1 Schwingungsgleichung 3.2 Unwuchtanregung 3.3 Weganregung 3.4 Komplexe Darstellung 2.3-1 3.1 Schwingungsgleichung F(t) m Bei einer erzwungenen gedämpften Schwingung
Probestudium der Physik 2011/12
Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion
Eigenwerte und Eigenvektoren
Vortrag Gmnasium Birkenfeld Von der mathematischen Spielerei zur technischen Anwendung Vortrag Gmnasium Birkenfeld. Vektoren und Matrizen Wir betrachten einen Punkt P (, ) in der Ebene eines rechtwinklig
Übung zu Mechanik 4 Seite 17
Übung zu Mechanik 4 Seite 17 Aufgabe 31 Gegeben sei der dargestellte, gedämpfte Schwinger. Die beiden homogenen Kreisscheiben (m B, r B und m C, r C ) sind fest miteinander verbunden und frei drehbar auf
Die Fakultät. Thomas Peters Thomas Mathe-Seiten 13. September 2003
Die Fakultät Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 3. September 2003 Dieser Artikel gibt die Definition der klassischen Fakultät und führt von dort aus zunächst zu der Anwendung in Taylor-Reihen
10 Erzwungene Schwingungen durch inhomogene Randbedingungen
63 10 Erzwungene Schwingungen durch inhomogene Randbedingungen Schwingungen eines kontinuierlichen Systems lassen sich nicht nur durch verteilte Kräfte, sondern auch durch zeitveränderliche Bindungen an
15. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS 2012/13
Prof. Dr. L. Schwachhöfer Dr. J. Horst Fakultät Mathematik TU Dortmund 15. Übungsblatt zur Höheren Mathematik III P/ET/AI/IT/IKT/MP WS 1/13 Aufgabe 1 Bestimmen Sie eine auf der Menge M := {x, y R x + y
Serie 9, Musterlösung. Klasse: 2Ub Semester: 2 Datum: 30. Mai z 3 = i z 4 = 15 Z 4 Z Re(z) z 4 = 1 e i 7π 4
anu [email protected] www.adams-science.com Serie 9, Musterlösung Klasse: Ub Semester: Datum: 3. Mai 17 1. Die komplee Zahlenebene Stelle die Zahlen als Punkte in der kompleen Zahlenebene dar. Berechne
Übung zu Mechanik 4 Seite 28
Übung zu Mechanik 4 Seite 28 Aufgabe 47 Auf ein Fundament (Masse m), dessen elastische Bettung durch zwei Ersatzfedern dargestellt wird, wirkt die periodische Kraft F(t) = F 0 cos (Ω t). Die seitliche
Statik. Klausur am Name: Vorname: Matrikelnummer: (bitte deutlich schreiben)
Lösung zur Diplomprüfung Frühjahr 2007 Prüfungsfach Statik Klausur am 26.02.2007 Name: Vorname: Matrikelnummer: (bitte deutlich schreiben) (9stellig!) Aufgabe 1 2 3 5 6 7 8 9 Summe mögliche Punkte 20 5
1. Eindimensionale Bewegung
1. Eindimensionale Bewegung Die Gesamtheit aller Orte, die ein Punkt während seiner Bewegung einnimmt, wird als Bahnkurve oder Bahn bezeichnet. Bei einer eindimensionalen Bewegung bewegt sich der Punkt
Formelzusammenstellung
Übung zu Mechanik 4 - ormelsammlung Seite 4 ormelzusammenstellung. Grundbegriffe Harmonische Schwingung Sinusschwingung: (t) sin ( t + ϕ) Schwingungsamplitude: Kreisfrequenz: Phasenwinkel: requenz: f Schwingungsdauer,
Eigenwerte und Fourier - Simulation von Massenschwingern mit Mathcad
Eigenwerte und Fourier - Simulation von Massenschwingern mit Mathcad Federschwinger mit zwei Federn Federmassenschwinger sind schön geeignet, um in Vorlesung der Ingenieurmathematik die Brücke zwischen
k = 1, 2,..., n (4.44) J k ϕ
236 4 Torsionsschwinger und Längsschwinger ( J1 J2) M J M J2/ J1= 02, 10 0,5 8 1 + 6 2 max 4 5 2 10 2 bezogenes Moment 0 Bild 45 1 2 5 10 relatives Spiel ctϕ S/ M10 Maximales Moment infolge Spiel im Antrieb
Berechnung des dynamischen Verhaltens von Trägern nach Sattler
Berechnung des dynamischen Verhaltens von Trägern nach Sattler Aufgabe Für den Schwingungsnachweis nach ÖNORM B 1995-1-1:2014 ist die erste Eigenfrequenz von Deckensystemen zu ermitteln. Im Fall von nachgiebig
Mathematik 1 für Naturwissenschaften
Hans Walser Mathematik 1 für Naturwissenschaften Modul 112 Lineare Differenzialgleichungen zweiter Ordnung Hans Walser: Modul 112, Lineare Differenzialgleichungen zweiter Ordnung ii Inhalt 1 Lineare Differenzialgleichungen
- 1 - angeführt. Die Beschleunigung ist die zweite Ableitung des Ortes x nach der Zeit, und das Gesetz lässt sich damit als 2.
- 1 - Gewöhnliche Differentialgleichungen Teil I: Überblick Ein großer Teil der Grundgesetze der Phsik ist in Form von Gleichungen formuliert, in denen Ableitungen phsikalischer Größen vorkommen. Als Beispiel
Musterlösungen (ohne Gewähr)
Seite /9 Frage ( Punkte) Eine Waschmaschine hat einen mit Feder und Dämpfer gelagerten Motor (Masse m), an dem ohne Unwucht die Trommel befestigt ist. Wieviel Wäsche m u kann geschleudert werden, wenn
1. Eindimensionale Bewegung
1. Eindimensionale Bewegung Die Gesamtheit aller Orte, die ein Punkt während seiner Bewegung einnimmt, wird als Bahnkurve oder Bahn bezeichnet. Bei einer eindimensionalen Bewegung bewegt sich der Punkt
Lösungen der Aufgaben zu Kapitel 10
Lösungen der Aufgaben zu Kapitel 10 Abschnitt 10.2 Aufgabe 1 (a) Die beiden Funktionen f(x) = 1 und g(y) = y sind auf R definiert und stetig. 1 + x2 Der Definitionsbereich der Differentialgleichung ist
Baudynamik und Zustandsanalyse
Baudynamik und Zustandsanalyse Eine Einführung in die Baudynamik mit Mathematica Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOLFRAM-Research [http://www.wolfram.com]
Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) =
Karlsruher Institut für Technologie Institut für theoretische Festkörperphsik www.tfp.kit.edu Lösung Klassische Theoretische Phsik I WS / Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler Besprechung...
Serie 13: Online Test
D-ERDW, D-HEST, D-USYS Mathematik I HS 13 Dr. Ana Cannas Serie 13: Online Test Einsendeschluss: 31. Januar 214 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.
Störungstheorie. Kapitel Motivation. 8.2 Zeitunabhängige Störungstheorie (Rayleigh-Schrödinger) nicht-entartete Störungstheorie
Kapitel 8 Störungstheorie 8.1 Motivation Die meisten quantenmechanischen Problemstellungen lassen sich (leider) nicht exakt lösen. So kommt zum Beispiel der harmonische Oszillator in der Natur in Reinform
Partielle Differentialgleichungen
Partielle Differentialgleichungen Definition. Eine partielle Differentialgleichung ist eine Dgl., in der partielle Ableitungen einer gesuchten Funktion z = z(x 1, x 2,..., x n ) mehrerer unabhängiger Variabler
Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016
Analysis D-BAUG Dr. Cornelia Busch FS 2016 Serie 13 1. Prüfungsaufgabe 4, Winter 2014. Bestimmen Sie die Funktion, für die gilt: An jeder Stelle des Definitionsbereichs ist die Steigung des Graphen der
5. Fourier-Transformation
Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf
Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators
Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Horst Laschinsky 12. Oktober 1999 Inhaltsverzeichnis 1 Gewöhnliche lineare homogene Differentialgleichungen 2. Ordnung mit konstanten
23. DIFFERENTIALRECHNUNG VON FUNKTIONEN VON MEHREREN VARIABLEN
204 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch
2. Anfangswertprobleme 2. Ordnung
Zu einem Anfangswertproblem 2. Ordnung gehören folgende Daten: Eine Differenzialgleichung 2. Ordnung: ẍ t f [ x t, ẋ t,t ] Die Anfangsbedingungen: x 0 x 0, ẋ 0 ẋ 0 Das zu untersuchende Zeitintervall: t
8. DIE ABLEITUNG EINER VEKTORFUNKTION
75 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch
7.4 Gekoppelte Schwingungen
7.4. GEKOPPELTE SCHWINGUNGEN 333 7.4 Gekoppelte Schwingungen Als Beispiel für 2 gekoppelte Schwingungen betrachten wir das Doppelpendel, das in Abb. 7.19 dargestellt ist. Zunächst vernachlässigen wir die
Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 27. Juli 2015, Uhr
KIT SS 05 Klassische Theoretische Physik II V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch Klausur Lösung 7. Juli 05, 6-8 Uhr Aufgabe : Kurzfragen (+4++3=0 Punkte) (a) Zwangsbedingungen beschreiben Einschränkungen
Kurzfassung. Diplomarbeit an der Fachhochschule Regensburg Fachbereich Bauingenieurwesen
Fachhochschule Regensburg Fachbereich Bauingenieurwesen University of Applied Sciences Department of Civil Engineering Entwicklung eines vereinfachten Berechnungsverfahrens zur Robustheitsbemessung von
Brückenkurs Mathematik. Mittwoch Freitag
Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs
2. Schwingungen eines Einmassenschwingers
Baudynamik (Master) SS 2017 2. Schwingungen eines Einmassenschwingers 2.1 Freie Schwingungen 2.1.1 Freie ungedämpfte Schwingungen 2.1.2 Federzahlen und Federschaltungen 2.1.3 Freie gedämpfte Schwingungen
Differentialgleichungen 2. Ordnung
Differentialgleichungen 2. Ordnung 1-E1 1-E2 Einführendes Beispiel Freier Fall Viele Geschichten ranken sich um den schiefen Turm von Pisa: Der Legende nach hat der aus Pisa stammende Galileo Galilei bei
4. Dämpfungsmodelle. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. Elastodynamik 3.
4. Dämpfungsmodelle 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Dabei
Einführung in die linearen Funktionen. Autor: Benedikt Menne
Einführung in die linearen Funktionen Autor: Benedikt Menne Inhaltsverzeichnis Vorwort... 3 Allgemeine Definition... 3 3 Bestimmung der Steigung einer linearen Funktion... 4 3. Bestimmung der Steigung
D-BAUG Analysis I/II Winter 2015 Dr. Meike Akveld
D-BAUG Analysis I/II Winter 5 Dr. Meike Akveld Lösung. [ Punkte] Es sei das Gebiet B {z C } z + Im(z) gegeben. a) Skizzieren Sie das Gebiet B in der komplexen Ebene. Für z x + iy gilt z + Im(z) x + y +
Versuch P1-20 Pendel Vorbereitung
Versuch P1-0 Pendel Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 9. Januar 01 Inhaltsverzeichnis Aufgabe 1 1.1 Reduzierte Pendellänge............................. 1. Fallbeschleunigung
4 Plattenschwingungen
Elastodynamik Bewegungsgleichung Die Bewegungsgleichung für die homogene Kirchhoff-Platte lautet w x w x y w y h w B t = p B Dabei ist wx, y,t die Verschiebung in z- Richtung, p x, y,t der auf die Platte
ε δ Definition der Stetigkeit.
ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x
F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder
6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung
4. Ausblick. 4.1 Lineare dynamische Analysen 4.2 Nichtlineare Analysen 4.3 Weitere Anwendungen Höhere Festigkeitslehre 3.
4. Ausblick 4.1 Lineare dynamische Analysen 4.2 Nichtlineare Analysen 4.3 Weitere Anwendungen 3.4-1 4.1 Lineare dynamische Analysen Beschleunigungen: Bei linearen dynamischen Analysen hängen die Knotenpunktsverschiebungen
2. Freie Schwingungen
2. Freie Schwingungen Die einfachsten schwingungsfähigen Systeme sind lineare Systeme: Die Rückstellkräfte sind proportional zur Auslenkung. Die Dämpfungskräfte sind proportional zur Geschwindigkeit. Bei
Baudynamik und Zustandsanalyse
baudyn_21_10_wind_divergenz_et_al.nb 1 Baudynamik und Zustandsanalyse Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOLFRAM-Research [http://www.wolfram.com] geschrieben
Ausblick. 1. Lineare dynamische Analysen 2. Nichtlineare Analysen 3. Weitere Anwendungen. Prof. Dr. Wandinger 5. Ausblick FEM 5-1
Ausblick 1. Lineare dynamische Analysen 2. Nichtlineare Analysen 3. Weitere Anwendungen Prof. Dr. Wandinger 5. Ausblick FEM 5-1 1. Lineare dynamische Analysen Beschleunigungen: Bei linearen dynamischen
Praktikum. Modellbildung und Simulation. Stichworte: Modellbildung Analoge Simulation Digitale Simulation
Praktikum Stichworte: Modellbildung Analoge Simulation Digitale Simulation Aufgabenstellung und Lösungsidee - Kennenlernen verschiedener Methoden zur Modellbildung eines mechanisches Schwingers - Abbildung
Name Vorname Fachrichtg. Matrikelnr. Punkte Klausur Aufgabe max. Punkte Punkte. Bitte beachten!
Fakultät für Mathematik Institut für Algebra und Geometrie Prof. Dr. Martin Henk, Dr. Michael Höding Modulprüfung Mathematik III Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik,
4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3.
4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 4. Dämpfungsmodelle 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische
Aufgabe 1: (18 Punkte)
MODULPRÜFUNG TECHNISCHE MECHANIK IV (PO 2004) VOM 26.07.2011 Seite 1 Aufgabe 1: (18 Punkte) Zwei Massenpunkte m 1 = 5 kg und m 2 = 2 kg sind durch ein dehnstarres und massenloses Seil über eine reibungsfrei
6 Systeme mit mehreren Freiheitsgraden
6 Systeme mit mehreren Freiheitsgraden 6.. Steifigkeitsformulierung 6. Formulierung der Bewegungsgleichung 6.. Gleichgewichtsformulierung Die Freiheitsgrade sind die horizontalen Verschiebungen und u auf
TP2: Elektrodynamik WS Arbeitsblatt 10 21/ Dipole und Multipole in stationären Feldern
TP2: Elektrodynamik WS 2017-2018 Arbeitsblatt 10 21/22.12. 2017 Dipole und Multipole in stationären Feldern Die Multipolentwicklung ist eine hilfreiche Näherung zur Lösung der Poisson Gleichung, wenn eine
Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS
Dämpfung. Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung 5. Dämpfung 5-1 1. Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische Energie
1. Grundlagen der ebenen Kinematik
Lage: Die Lage eines starren Körpers in der Ebene ist durch die Angabe von zwei Punkten A und P eindeutig festgelegt. Die Lage eines beliebigen Punktes P wird durch Polarkoordinaten bezüglich des Bezugspunktes
Praktikum I PP Physikalisches Pendel
Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische
Lineare Differenzen- und Differenzialgleichungen
Lineare Differenzen- und Differenzialgleichungen Fakultät Grundlagen April 2011 Fakultät Grundlagen Lineare Differenzen- und Differenzialgleichungen Übersicht 1 Beispiele Anwendung auf Fragen der dynamischen
3.2 Das physikalische Pendel (Körperpendel)
18 3 Pendelschwingungen 32 Das physikalische Pendel (Körperpendel) Ein starrer Körper (Masse m, Schwerpunkt S, Massenträgheitsmoment J 0 ) ist um eine horizontale Achse durch 0 frei drehbar gelagert (Bild
Beurteilung der dynamischen Beanspruchung von Brücken infolge eines Straßenbahnzuges
Veröffentlichung_33.nb Beurteilung der dynamischen Beanspruchung von Brücken infolge eines Straßenbahnzuges von Mirko Slavik é Allgemeines, Vorgehensweise Die dynamische Untersuchung von Brückentragwerken
Übungsblatt
Übungsblatt 3 3.5.27 ) Die folgenden vier Matrizen bilden eine Darstellung der Gruppe C 4 : E =, A =, B =, C = Zeigen Sie einige Gruppeneigenschaften: a) Abgeschlossenheit: Berechnen Sie alle möglichen
Analysis I Lösung von Serie 9
FS 07 9.. MC Fragen: Ableitungen (a) Die Figur zeigt den Graphen einer zweimal differenzierbaren Funktion f. Was lässt sich über f, f und f sagen? Nichts Die Funktion f ist positiv. Die Funktion f ist
Inhalt der Vorlesung A1
PHYSIK Physik A/B1 A WS SS 17 13/14 Inhalt der Vorlesung A1 1. Einführung Methode der Physik Physikalische Größen Übersicht über die vorgesehenen Themenbereiche. Teilchen A. Einzelne Teilchen Beschreibung
Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen
Prof. Dr.-Ing. Prof. E.h. P. Eberhard / Prof. Dr.-Ing. M. Hanss SS 17 Ü1 Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss Aufgabensammlung mit Kurzlösungen Sommersemester 017 Prof. Dr.-Ing.
Probeklausur. 1 Stetigkeit [7 Punkte] 2 Differenzierbarkeit [10 Punkte] Ferienkurs Analysis 2 für Physiker SS Karolina Stoiber Aileen Wolf
Karolina Stoiber Aileen Wolf Ferienkurs Analysis 2 für Physiker SS 26 A Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar
Prüfung zur Vorlesung Mathematik I/II
Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit
Musterlösung Serie 2
D-ITET Analysis III WS 13 Prof. Dr. H. Knörrer Musterlösung Serie 1. Wir wenden die Methode der Separation der Variablen an. Wir schreiben u(x, t = X(xT (t und erhalten Daraus ergeben sich die Gleichungen
Lösung zur Übung für Analysis einer Variablen WS 2016/17. f 1(x) = ln x + 1 (1) k=0. dx ee ln x = x xx (x x 1 + x x (1 + ln x) ln x) (3)
Blatt Nr. Prof. F. Merkl Lösung zur Übung für Analysis einer Variablen WS 06/7 Aufgabe Die Ableitungen der Funktionen in Frage sind: a): b): c): d): f () ln + () f () d n k0 k d n! n! ( k) () n n l0 k0
6. Erzwungene Schwingungen
6. Erzwungene Schwingungen Ein durch zeitveränderliche äußere Einwirkung zum Schwingen angeregtes (gezwungenes) System führt erzwungene Schwingungen durch. Bedeutsam sind vor allem periodische Erregungen
Statik. Klausur am Name: Vorname: Matrikelnummer: (bitte deutlich schreiben)
Diplomprüfung Frühjahr 2009 Prüfungsfach Statik Klausur am 23.02.2009 Name: Vorname: Matrikelnummer: (bitte deutlich schreiben) (9stellig) Aufgabe 1 2 3 4 5 6 7 8 9 Summe mögliche Punkte 20 5 5 25 25 30
Differentialrechnung
Kapitel 7 Differentialrechnung Josef Leydold Auffrischungskurs Mathematik WS 2017/18 7 Differentialrechnung 1 / 75 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f = f ( 0 + ) f ( 0 ) = f
Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient
Differenzenquotient Sei f : R R eine Funktion. Der Quotient Kapitel 7 Differentialrechnung f = f 0 + f 0 = f 0 0 heißt Differenzenquotient an der Stelle 0., Sekante 0, f 0 f 0 Josef Leydold Auffrischungskurs
Lösung - Serie 24. D-MAVT/D-MATL Analysis II FS 2018 Dr. Andreas Steiger. 1. Welche der folgenden Differenzialgleichungen ist linear? (y 2) 2 = y.
D-MAVT/D-MATL Analysis II FS 018 Dr. Andreas Steiger Lösung - Serie 4 1. Welche der folgenden Differenzialgleichungen ist linear? (a) (y ) = y (b) y + y 1 x + y 1 + x = 1 x (c) y = xy x y (d) y + y + y
