Analyse der Gleichkanter
|
|
|
- Adam Hofmann
- vor 9 Jahren
- Abrufe
Transkript
1 Baumann Ed Gleichkanter Analyse der Gleichkanter... Enneakontaeder... 2 Exploded rhombododecahedron... 2 Exploded rhombotriakontahedron... 3 Zonish Dodekaeder [Typ Fläche]... 4 DodekaZ... 5 Dodeka2Z... 5 Dodeka3Za... 5 Dodeka3Zb... 6 Zonish Dodekaeder [Typ Ecke]... 6 EdodekaZ... 7 Edodeka2Za... 7 Edodeka2Zb... 7 Für Konstruktion benützte Ecken und Seitennummern... 7 Edodeka3Za... 8 AntiSquareSnub... 9 Analyse der Gleichkanter Gruppe der platonischen Polyeder, der archimedischen Polyeder, der Prismen und Antiprismen (mit unendlich viel Mitgliedern) und der 92 Johnson Polyeder. Es sind die konvexen mit den regelmässigen (insbesondere isogonalen) Seiten. Gruppen der NICHT isogonalen Gleichkanter. Es sind dies u.a. Rhombendodekaeder. A Rhombentriakontaeder, A Enneakontaeder, A Der Rubgyball (echt?, unsicher), A Geschehrtes, B Flachdegeneriertes wie Triagonales Antiprisma mit 2 Dächern, A Das Schiff, A Augmented Vierzehnflach (Bilunabirotunda), A Die unendliche Familie der NICHT isogonalen Prismen mit 2*n Ecken, n>3, B Rhomben, Rauten: wenigstens noch je 2 gleiche Winkel pro Seite. Platon Archim Prism John A B gleiche Seiten x gleiche Kanten x x x x x x gleiche Winkel in S x x x x konvex x x x x x x Plato-Umbau x unendlich x x Konkaves Gegenstück für diese Organisation? Fehler von mir für KubE (Vol 4. statt 3.6). Fehler von Internet für Snub. Neuer ¼ RW - -
2 Baumann Ed Gleichkanter Zu Klasse B: Verdrehen von Prismen belässt die Fazetten nicht planar (hyperbolisch) Existieren andere Flachdegenerierte? Zwei weitere übersehene Gleichkanter exploded rhombododecahedron und exploded rhombotriakontahedron Ein explodiertes Polyeder kann keineswegs wieder explodiert werden. Für das Explodieren muss folgende Bedingung erfüllt sein. Die Ecken müssen alle isogonal sein, d.h. die bei der Ecke zusammentreffenden Kanten müssen lauter gleiche Winkel einschliessen. Dies ist bei de platonischen Polyedern erfüllt und auch bei den beiden RhomboXeder, aber bei den meisten archimedischen Polyedern nicht. Enneakontaeder Das Enneakontaeder gewinnt man aus dem Dodekaeder, indem man über dessen Kanten schmale Rauten und von dessen Ecken zu einem Punkt über den Seitenmitten dicke Rauten so wählt, dass alle Kanten gleich lang sind. Es stellt sich heraus, dass die dicke Raute das Diagonalverhältnis Wurzel aus 2 und die schmale Raute jenes eines goldenen Schnittes im Quadrat hat. Exploded rhombododecahedron Volumen= Oberfläche= Raumwinkel DVVR = % Raumwinkel VVVR = 3.87 % - 2 -
3 Baumann Ed Gleichkanter Exploded rhombotriakontahedron Volumen= Oberfläche= 6.52 Raumwinkel DVVR = 4.00 % Raumwinkel VFVR = % Zwölf weitere übersehene Gleichkanter in den Zonish Polyhedra von Hart (!!); Z wie Zone. Zu ihnen gehören auch die zwei Exploded von oben. IcosiDoda2Z IcosiDoda3ZOblate IcosiDoda3ZProlate IcosiDode0Z Tetra2Z Tetra3Z Tetra4Z Icosa0Z Dodeka0Z Dodeka6Z SnubDode6Z DecagonalPrisma0Z Das in der der gleichen Familie erwähnte Triakis... ist KEIN Gleichkanter (Dreieck). Existieren KubusZ, OctaZ, KuboOktaZ? - 3 -
4 Baumann Ed Gleichkanter Ecken Flächen Kanten Vol Oberfl Ikosidodekaeder IkosidodeZ Ikosidode2Z Ikosidode3Zoblate Ikosidode3Zprolate Tetra2Z Tetra3Z Tetra4Z Weitere Gleichkanter: Die Familie von 2-Flächern mit unendlich viel Mitgliedern. Z-zonish von o Würfel (3 Quadrate an Ecke) o gescherten Würfel (2 Quadrate an Ecke) o andere (kein Quadrat an Ecke) Der zonale Gürtel besteht in der Regel aus zwei verschieden schlanken Rauten. Zonish Dodekaeder [Typ Fläche] (Sub Dodeka6Z) : Ecken Flächen Kanten Vol Oberfl DodekaZ Dodeka2Z Dodeka3Za Dodeka3Zb Dodeka4Z... Raumwinkel (Viereck, Fünfeck, Sechseck, Raute) FFF FRR 36.9 FFRR SFR 36.9 SRFR 3.9 SSS 35 Dieser Raumwinkel von genau 35% sollte nicht überraschen. Er ist aus der Zerlegung des Rhombentriakontaeders bekannt. Bemerkenswert ist eher, dass die Längen der Diagonalen der hier bei den Zonish Dodekaeder [Typ Fläche] auftretende Raute ein goldenes Verhältnis haben
5 Baumann Ed Gleichkanter DodekaZ Dodeka2Z Es scheint, dass es nur ein Dodeka2Z hat. Es resultiert das gleiche Polyeder, wenn die beiden generierenden Flächen benachbart sind oder nicht. Dodeka3Za Die drei generierenden Flächen sind benachbart
6 Baumann Ed Gleichkanter Dodeka3Zb Die drei generierenden Flächen sind 'in Linie'. Zonish Dodekaeder [Typ Ecke] (Sub Dodeka0Z) : Ecken Flächen Kanten Vol Oberfl EdodekaZ Edodeka2Za Edodeka2Zb Edodeka3Za Edodeka3Zb Edodeka3Zc Edodeka3Zf Edodeka3Zg Raumwinkel (Viereck, Fünfeck, Sechseck, stumpfer oder spitzer Winkel in Raute: Rst, Rsp) FFF FVR FFVR SFV SVFV FV(R2sp)V V(R2st)(Rst) FF(Rsp)(R2sp)(Rsp) VRR RR2FFR SVR2VV
7 Baumann Ed Gleichkanter EdodekaZ Edodeka2Za Edodeka2Zb Für Konstruktion benützte Ecken und Seitennummern - 7 -
8 Baumann Ed Gleichkanter Do2Z 2 Do3Za 2 3 Do3Zb 2 4 (eingerahmte Zahlen) Edo3Za 0 9 Edo3Zb 0 4 Edo3Zc 0 6 Edo3Zf 9 20 Edo3Zg 9 5 Edodeka3Za Blau und Pfeil 2 mal zählen, Gelb 4 mal
9 Baumann Ed Gleichkanter AntiSquareSnub Der AntiSquareSnub ist ein ebenfalls ein bisher von mir übersehener Gleichkanter ( ) Oberfläche Volumen 3.60 RW(VDDDD) 28.25% RW(DDDDD) 9.70% Anzahl Flächen 26 Anzahl Ecken 6 Anzahl Kanten
Polyeder, Konvexität, Platonische und archimedische Körper
Unter einem Polyeder verstehen wir einen zusammenhängenden Teil des dreidimensionalen Raumes der durch Polygone begrenzt wird. Seine Oberfläche besteht also aus Punkten (Ecken genannt), Strecken (Kanten
REGULÄRE UND SEMIREGULÄRE POLYTOPE
REGULÄRE UND SEMIREGULÄRE POLYTOPE regulare und semireguläre polytope ANDREAS PAFFENHOLZ FU Berlin Germany Eulersche Polyederformel Theorem Für ein Polytop mit Ecken Eulersche Polyederformel Kanten und
Johnson Polyeder J 1 J 2
Polyeder -Polyeder sind konvexe Polyeder, welche ausschließlich regelmäßige n-ecke als Seitenflächen besitzen. Davon ausgenommen werden die 5 regelmäßigen Platonischen Körper und die 13 halbregulären Archimedischen
Über die regelmäßigen Platonischen Körper
Hermann König, Mathematisches Seminar Studieninformationstage an der Universität Kiel Über die regelmäßigen Platonischen Körper Winkelsumme im n-eck Zerlegung eines ebenen n-ecks in (n-2) Dreiecke, oben
Ein System zum Bau von geometrischen Körpern
Die Entdeckung des Prinzips der Verschränkung von geschlitzten, ebenen Kunststoffbauelementen eröffnete die Möglichkeit fast beliebig komlizierte geometrische Modelle zu bauen. Das System verwendet keinen
Platonische Körper. 1 Die fünf platonischen Körper
Platonische Körper Vortrag von Annamaria Jahn Im Proseminar Lehramt am 11.1.006 Kontakt: [email protected] 1 Die fünf platonischen Körper Ein platonischer Körper ist ein Polyeder mit zueinander
BUCH IV: RAUM MIT. 10a. Die JOHNSON
BUCH IV: RAUM MIT n-dimensionen 10a. Die JOHNSON Johnsonkörper Neben den 5 Platonischen Körpern und den 13 Archimedischen Körpern sind es die 92 aus nur regelmäßigen Vielecken aufgebaute konvexe sog. Johnson-Körper,
IV. BUCH: RAUM MIT. 8b. Die ARCHIMEDISCHEN ARCHIMEDISCHE.
IV. BUCH: RAUM MIT n-dimensionen 8b. Die ARCHIMEDISCHEN ARCHIMEDISCHE http://www.polytope.de/ Übersicht mit Eckcharakterisierung 1 {4, 6, 10} beim Riesen bedeutet beispielsweise an jeder Ecke trifft ein
Eulerscher Polyedersatz
Eigenschaften als reguläre Parkettierungen der Sphäre Seien E die der Ecken, F die der Flächen und K die der Kanten eines konvexen Polyeders, dann gilt: K E = F 2 als reguläre Parkettierungen der Sphäre
Mathematische Probleme, SS 2015 Donnerstag $Id: convex.tex,v /06/18 11:41:08 hk Exp $
$Id: convex.tex,v 1.25 2015/06/18 11:41:08 hk Exp $ 3 Konvexgeometrie 3.3 Automorphismengruppen platonischer Körper Wir behandeln gerade die Symmetrien platonischer Körper, ist P ein platonischer Körper
Die Platonischen Körper
Wie viele Platonische Körper gibt es? Der griechische Philosoph Platon (427-348/347 v. Chr.) beschrieb die regelmässigen, geometrischen Körper im Dialog Timaios. Es ist leicht nachzuweisen, dass es nur
a) b) Abb. 1: Würfel und Kantenmittenkugel
Hans Walser, [0180511] Drachenkörper Anregung: Werner Blum, Braunschweig 1 Worum es geht Ausgehend vom Würfel werden mit der immer gleichen Technik zuerst das Rhombendodekaeder und anschließend der Deltoidvierundzwanzigflächner
2.4A. Reguläre Polyeder (Platonische Körper)
.A. Reguläre Polyeder (Platonische Körper) Wie schon in der Antike bekannt war, gibt es genau fünf konvexe reguläre Polyeder, d.h. solche, die von lauter kongruenten regelmäßigen Vielecken begrenzt sind:
16. Platonische Körper kombinatorisch
16. Platonische Körper kombinatorisch Ein Würfel zeigt uns, daß es Polyeder gibt, wo in jeder Ecke gleich viele Kanten zusammenlaufen, und jede Fläche von gleich vielen Kanten berandet wird. Das Tetraeder
IV. BUCH: RAUM MIT. 8a. Die ARCHIMEDISCHEN. 1
IV. BUCH: RAUM MIT n-dimensionen 8a. Die ARCHIMEDISCHEN www.udo-rehle.de 1 Archimedische Körper Zu den archimedischen Körpern gelangt man durch diverses Abschneiden der Ecken bei den platonischen Körpern.
Erforschen Polydron und Polydron Frameworks
Erforschen Polydron und Polydron Frameworks Geschrieben von Bob Ansell Kontaktinformationen Polydron Site E,Lakeside Business Park Broadway Lane South Cerney Cirencester Gloucestershire GL7 5XL Tel: +44
Abb. 1: Einfalten der Kantenmitten. Abb. 2: Ecken einfalten
Hans Walser, [20140901] Origami im Raum Anregung: G. G., B. 1 Worum geht es? Statt mit einem quadratischen Origami-Papier arbeiten wir mit entsprechenden Analoga im Raum. 2 Klassisches Origami und einige
Mathematische Probleme, SS 2013 Montag $Id: convex.tex,v /10/22 15:58:28 hk Exp $
$Id: convex.tex,v 1.12 2013/10/22 15:58:28 hk Exp $ 3 Konvexgeometrie 3.1 Konvexe Polyeder Wir hatten einen konvexen Polyeder P im R n als die konvexe Hülle von endlich vielen Punkten definiert, wobei
11b. Die
IV. BUCH RAUM MIT n-dimensionen 11b. Die www.udo-rehle.de 1 29.10.12 Auf einen Oktaeder kann man ein bis acht Tetraeder aufsetzen Eine Raumfüllung ist mit Tetra- und Oktaedern möglich www.udo-rehle.de
Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild
Mathematik Bl Darstellung dreidimensionaler Figuren in der Ebene Schrägbild Das Bild bei einer schrägen Parallelprojektion heisst Schrägbild und wird durch folgende Merkmale bestimmt: - Zur Zeichenebene
Aufgabe 1. Wie muss? richtig angeschrieben werden?
Aufgabe 1 Wie muss? richtig angeschrieben werden? Aufgabe 1 Wie muss? richtig angeschrieben werden? Aufgabe 2 Wie gross ist die Summe der Innenwinkel im konvexen und konkaven Viereck? Aufgabe 2 Wie gross
Hans Walser, Studie [ a] Zerlegungen des Zwölfeckes / Dissections of the Dodekagon
Hans Walser, Studie [20040320a] Zerlegungen des Zwölfeckes / Dissections of the Dodekagon 1 Spielregeln 1.1 Gleichschenklige Dreiecke Regelmäßiges Zwölfeck Das regelmäßige Zwölfeck soll in gleichschenklige
IV. BUCH RAUM MIT. 9b. STERNDELTAEDER. Titelbild:
IV. BUCH RAUM MIT n-dimensionen 9b. STERNDELTAEDER Titelbild: http://imaginary.org/gallery/polyhedron-models Sterndeltaeder Wie viele Deltaeder mit 18 Dreiecken gibt es? Viele, zu viele! Von den endlich
Lösungshinweise zu Kapitel 3
Lösungshinweise zu Kapitel 3 Aufgabe 3. Aussagen sind klar Aufgabe 3.2 Die Verkettung von 2 Achsenspiegelungen mit Achsen g und h studiert man am besten unter Verwendung eines dynamischen Geometrieprogramms
Gegenstände der Geometrie
Gegenstände der Geometrie Inhalt Quadrat Kreis Würfel Das Das Pentagramm Parkette --- --- Seite 2 1. 1. Das Quadrat Gerade Linien in in der der Natur? Lichtstrahlen, fallende Körper, Wasseroberfläche,
III.1. Symmetrien und Gruppen
50 III.1. Symmetrien und Gruppen συµµετρι α heißt so viel wie Ebenmaß, richtiges Verhältnis, Harmonie. Definition: Eine Bewegung der Ebene (des Raumes), die eine Figur (einen Körper) auf sich abbildet,
Bastelbogen platonische Körper
E s gibt in der Geometrie einige wenige Körper, die die größtmögliche Symmetrie besitzen. Sie wurden nach dem griechischen Philosophen Platon (428-348 v. Chr.) benannt und heißen deswegen platonische Körper.
Bemerkung zu den Johnsonkörpern
Bemerkung zu den Johnsonkörpern Ein Gebiet, in dem praktische Nutzanwendungen idealer Körperformen Sinn machen kann, ist die Gebäudearchitektur. Klassen idealer Körper, deren Studium dem Anwender Ideen
Die Proportionen der regelmässigen Vielecke und die
geometricdesign Die Proportionen der regelmässigen Vielecke und die Platonischen Körper Die Proportionen der regelmässigen Vielecke und die Platonischen Körper Rechtecke gebildet aus Seite und Diagonale
Wir beginnen das zweite Kapitel mit einer Faltarbeit (nach Mitchell 1997, S. 36f). Dazu benötigen wir 12 Blätter des DIN-Formates A, z.b. A 4.
47 Polyeder.1 Einstiegsproblem Wir beginnen das zweite Kapitel mit einer Faltarbeit (nach Mitchell 1997, S. 36f). Dazu benötigen wir 1 Blätter des DIN-Formates A, z.b. A 4. H.-J. Gorski, S. Müller-Philipp,
Körper zum Selberbauen Polydron
Körper zum Selberbauen Polydron Was versteht man unter Polydron? Polydron ist ein von Edward Harvey erfundenes intelligentes Spielzeug, mit dem man verschiedene geometrische Figuren bauen kann. Es ist
Polyeder in der Anorganischen Chemie
Polyeder in der Anorganischen Chemie Melanie Koschinat AC-F Seminar 28.11.2005 Gliederung Einleitung: Geschichtliches Größendimensionen Allgemein Polyeder Dualitätsprinzip Abstumpfen von Polyedern Beispiele
Klasse 9b. Mathematische Überlegungen zum Fußball
Klasse 9b Mathematische Überlegungen zum Fußball Was hat Mathe mit einem Fußball zu tun? Diese Frage beschäftigt nicht gerade viele Menschen, ausgenommen Mathelehrer und die Schüler der 9b. So zum Einstieg
SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs 7: Module 13 und :00-18:00 Uhr
SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht Kurs 7: Module 13 und 14 08.01.2015 15:00-18:00 Uhr 1 Modul 13: Vielecke (Vielecke; regelmäßige Vielecke; Orientierungsfigur:
Strategien für Aufbauspiele mit Mosaik-Polyominos. Jens-P. Bode
Strategien für Aufbauspiele mit Mosaik-Polyominos Jens-P. Bode Vom Fachbereich für Mathematik und Informatik der Technischen Universität Braunschweig genehmigte Dissertation zur Erlangung des Grades eines
Die Platonischen Körper im Sechseck
Alle Platonischen Körper weisen (auch) eine dreizählige Symmetrie auf und können deshalb in ein regelmässiges Sechseck eingezeichnet werden. In einem zweiten Schritt ist es möglich, die Durchdringungen
Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/13 14:42:55 hk Exp $
$Id: convex.tex,v.28 206/05/3 4:42:55 hk Exp $ 3 Konvexgeometrie 3. Konvexe Polyeder In der letzten Sitzung haben wir begonnen uns mit konvexen Polyedern zu befassen, diese sind die Verallgemeinerung der
Beispiellösungen zu Blatt 65
µathematischer κorrespondenz- zirkel Mathematisches Institut Georg-August-Universität Göttingen Aufgabe 1 Beispiellösungen zu Blatt 65 Welche regelmäßigen n-ecke der Seitenlänge 1 kann man in kleinere
Serie 6: Lösungen Wir erinnern uns daran, dass für die Anzahl Elemente konvexer Polyeder die folgenden dualen Beziehungen gelten: e j, f =
Serie 6: Lösungen Wir erinnern uns daran, dass für die Anzahl Elemente konvexer Polyeder die folgenden dualen Beziehungen gelten: e = e j, f = j=3 j e j = 2k = j=3 f j (1) j=3 j f j (2) j=3 e k + f = 2
Problem des Monats ( Januar 2012 )
Schülerzirkel Mathematik Problem des Monats ( Januar 2012 ) Sauff-Zahlen Eine natürliche Zahl größer als 1 heiße Sauff-Zahl, wenn sie sich als Summe aufeinander folgender natürlicher Zahlen schreiben lässt.
Die historische Betrachtung der Platonischen Körper
Die historische Betrachtung der Platonischen Körper Prof. Dr. Herbert Henning, Christian Hartfeldt Otto-von-Guericke-Universität Magdeburg Fakultät für Mathematik Institut für Algebra und Geometrie email:
Hans Walser Rhombenkörper
Hans Walser Rhombenkörper Braunschweig, 8. Mai 2018 Zusammenfassung: Wir besprechen konvexe Körper, welche von kongruenten Rhomben begrenzt sind. Mit einigen von ihnen lässt sich der Raum lückenlos und
Elementare Mathematik
Elementare Mathematik Skript zum Workshop Platonische Körper -1- 1 Einleitung Das Thema des vorliegenden Workshops hat einen Schwerpunkt in der Geometrie des dreidimensionalen Raums, genauer: in der Mathematik
Die Abbildung 2 zeigt die Anordnung in einer Pyramide. Die Seitenflächen der Pyramide haben gegenüber der Grundfläche einen Neigungswinkel 45.
Hans Walser, [20180201] Mehrfarbige Packungen 1 Worum geht es? Die gängigen räumlichen Packungen werden bezüglich der Minimalzahl der benötigten Farben untersucht. Wenn zwei Füller-Elemente eine Fläche
Elementare Mathematik
Elementare Mathematik Skript zum Workshop Platonische Körper - 1 - RF + KP 1/2012 1 Einleitung Das Thema des vorliegenden Workshops hat einen Schwerpunkt in der Geometrie des dreidimensionalen Raums, genauer:
Lösungen. ga47ua Lösungen. ga47ua. Name: Klasse: Datum:
Lösungen Lösungen Name: Klasse: Datum: 1) Bringe die Arbeitsschritte bei der Konstruktion eines Rechtecks in die richtige Reihenfolge. 2) Entscheide, ob folgende Aussagen wahr oder falsch sind. wahr falsch
Der Bewegungsweg des Vector equilibrium (Jitterbug)
Der Bewegungsweg des Vector equilibrium (Jitterbug) D. Junker im März 2009 1 Im Folgenden soll versucht werden, die Konstruktion des Bewegungs-Wegs des Vector equilibrium (VE) von Oktaeder zu Kuboktaeder
Tag der Mathematik 2007
Tag der Mathematik 2007 Gruppenwettbewerb Einzelwettbewerb Speed-Wettbewerb Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind
Polyeder. Baumann Ed Polyeder
Polyeder Einleitung Polyeder, das heisst durch flache Seiten begrenzte geschlossene Körper, gibt es unendlich viele. Um zu einer endlichen Sammlung zu kommen, die wir hier präsentieren wollen, machen wir
Das Innere eines Oktaeders. Michael Hofer, Workshop: Origami im Geometrieunterricht
Das Innere eines Oktaeders Michael Hofer, Workshop: Origami im Geometrieunterricht Schritt 1 Halbiere das Quadrat über die Seiten (2x) und öffne die Faltungen wieder. Schritt 2 Drehe das Blatt um und halbiere
Das Hyperdodekaeder. Einleitung
geometricdesign Einleitung Die fünf Platonischen Körper können nach ihren Proportionen in zwei Gruppen eingeteilt werden: 1. Die Vertreter der mineralischen Natur sind Würfel, Oktaeder und Tetraeder. An
Sicheres, vernetztes Wissen zu geometrischen Formen
Sicheres, vernetztes Wissen zu geometrischen Formen SINUS Veranstaltung Grundschule Egelsbach 08.12. 2011, 14:30-17:30 Uhr Renate Rasch, Universität Koblenz-Landau, Campus Landau [email protected]
Die historische Betrachtung der Platonischen Körper
Die historische Betrachtung der Platonischen Körper Christian Hartfeldt Otto-von-Guericke Universität Magdeburg Fakultät für Mathematik Institut für Algebra und Geometrie [email protected]
Körper. Körper. Kompetenztest. Name: Klasse: Datum:
Testen und Fördern Name: Klasse: Datum: 1) Welche idealisierten Grundformen entsprechen den Bildern? Ordne die Bezeichnungen den Bildern zu. vierseitiges Prisma regelmäßige dreiseitige Pyramide regelmäßiges
Mathematische Probleme, SS 2016 Dienstag $Id: convex.tex,v /05/24 15:01:13 hk Exp $
$Id: convex.tex,v 1.29 2016/05/24 15:01:13 hk Exp $ 3 Konvexgeometrie 3.2 Die platonischen Körper Am Ende der letzten Sitzung hatten wir die sogenannten platonische Körper eingeführt, ein platonischer
Symmetrien und Pflasterungen. Alessandra Sarti Universität Mainz
Symmetrien und Pflasterungen Alessandra Sarti Universität Mainz Symmetrien Schneeflocken und Sonnenblumen haben viele Symmetrien. Die Gesamtheit aller Transformationen, die eine Schneeflocke (oder eine
Musteraufgaben zum Mathematikwettbewerb der Einführungsphase 2013 am
MW-E Mathematikwettbewerb der Einführungsphase 0. Februar 03 Musteraufgaben zum Mathematikwettbewerb der Einführungsphase 03 am 0.0.03 Hinweis: Beim Mathematikwettbewerb MW-E der Eingangsstufe werden Aufgaben
Das Bastelbogenproblem
Das Bastelbogenproblem JProf. Dr. Petra Schwer Tag der Mathematik, 7. März 2015, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu
Figuren und Körper Lösungen
1) Bringe die Arbeitsschritte bei der Konstruktion eines Rechtecks in die richtige Reihenfolge. 2 3 4 1 2) Entscheide, ob folgende Aussagen wahr oder falsch sind. wahr falsch Ein Rechteck hat einen Umkreis.
Mathe mit Mieze Mia. Mathe mit Mieze Mia. Mia zeichnet mit dem Lineal - 1. Mia zeichnet mit dem Lineal - 1. Ein Heft von.
Mathe mit Mieze Mia Mia zeichnet mit dem Lineal - 1 Ein Heft von Mathe mit Mieze Mia Mia zeichnet mit dem Lineal - 1 Ein Heft von 1 Mia hat neue Freunde Ich bin ein Quadrat! Ich habe Ecken und Seiten.
Gundlagen Klasse 5/6 Geometrie. nach oben. Inhaltsverzeichnis
Inhaltsverzeichnis Grundbegriffe der Geometrie Geometrische Abbildungen Das Koordinatensystem Schnittpunkt von Geraden Symmetrien Orthogonale Geraden Abstände Parallele Geraden Vierecke Diagonalen in Vielecken
Das Problem der Museumswächter
Das Problem der Museumswächter Laura Wartschinski November 15, 2015 Definition Gegeben sei eine polygonale Fläche G mit Rand G, interpretiert als Grundriss eines Museums. Wähle nun möglichst wenige Punkte
S T E R N E U N D P O L Y G O N E
Ornament Stern und Polygon (S. 1 von 11) / www.kunstbrowser.de S T E R N E U N D P O L Y G O N E Polygone und Sterne in regelmäßiger Form sind ein wichtiges Grundmotiv in der Ornamentik, da sie v ielf
Winkeldefizite bei konvexen Polyedern
44 Hans Walser Winkeldefizite bei konvexen Polyedern Die Summe der ebenen Winkel an einer konvexen Polyederecke ist kleiner als 360. Zu jeder Polyederecke gibt es also ein Winkeldefizit als Ergänzung auf
Universität Bielefeld. Elementare Geometrie. Sommersemester Elemente, Buch I. Stefan Witzel
Universität Bielefeld Elementare Geometrie Sommersemester 2018 Elemente, Buch I Stefan Witzel Vierecke Vier Punkte P, Q, R, S bilden ein Viereck PQRS, wenn sich weder die Segmente PQ und RS noch die Segmente
3. Die pythagoräische Geometrie.
II. Geometrie. 3. Die pythagoräische Geometrie. Neben der Zahlenlehre haben sich die Pythagoräer auch mit Geometrie beschäftigt. Schließlich ist ja der bekannte Satz des Pythagoras eng mit ihrem Namen
Begegnungen mit Mathematik
Markus Stroppel Begegnungen mit Mathematik Regeln im Unregelmäßigen Rational im Angesicht des Irrationalen Häufiges Umsteigen: Der Weg ist das Ziel In alle Richtungen gleich dicktlst das ein Kreis? Logik,
Philipps-Universität Marburg Fachbereich 12: Mathematik und Informatik Platonische Körper
Philipps-Universität Marburg Fachbereich 12: Mathematik und Informatik PS: Klassische Probleme der Mathematik Leitung: Prof. Harald Upmeier, Benjamin Schwarz Referentin: Irina Kaiser WS 2009/2010 Platonische
1 Blasencluster und Polyeder
1 Blasencluster und Polyeder John M. Sullivan Technische Universität Berlin Abbildung 1.1. Eine Seifenblase ist deswegen eine Sphäre (eine runde Kugel), weil diese Form den geringsten Flächeninhalt hat.
Kongruenz, Vierecke und Prismen
Kongruenz, Vierecke und Prismen Kongruente Figuren Ziele: Begriff: Kongruenz, Kongruenzsätze für Dreiecke Schrittfolgen für Konstruktionen beschreiben, über Eindeutigkeit entscheiden kongruente Teilfiguren
Hans Walser, [ ] Dodekaeder-Würfel 1 About Ein Papiermodell (Abb. 1) eines Würfels hat enge Beziehungen zu Dodekaeder und Ikosaeder.
Hans Walser, [20161008] Dodekaeder-Würfel 1 About Ein Papiermodell (Abb. 1) eines Würfels hat enge Beziehungen zu Dodekaeder und Ikosaeder. Abb. 1: Dodekaeder-Würfel 2 Bauteile Das Modell besteht aus sechs
TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG MATHEMATIK
TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG TEST IM FACH MATHEMATIK FÜR STUDIENBEWERBER MIT BERUFSQUALIFIKATION NAME : VORNAME : Bearbeitungszeit : 180 Minuten Hilfsmittel : Formelsammlung, Taschenrechner.
Polygone - Bausteine der Computergrafik
Polygone - Bausteine der Computergrafik Schülerseminar Florian Buchegger Johannes Kepler Universität Linz Dez 12, 2014 Wo werden Polygone verwendet? Welche wichtige Algorithmen gibt es? Outline Wo werden
Eulerscher Polyedersatz
Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Eulerscher Polyedersatz Beweis durch planare Graphen und Anwendung auf platonische Körper Die oben abgebildete Briefmarke wurde
Fußbälle, platonische und archimedische Körper
Fußbälle, platonische und archimedische Körper Prof. Dr. Wolfram Koepf http://www.mathematik.uni-kassel.de/~koepf Was ist ein Fußball? Sepp Herberger: Der Ball ist rund. Ist also ein Fußball eine Kugel?
KARL-FRANZENS-UNIVERSITÄT GRAZ. Seminar aus Reiner Mathematik. Die Museumswächter. Krupic Mustafa Wintersemester 2013/14
KARL-FRANZENS-UNIVERSITÄT GRAZ Seminar aus Reiner Mathematik Die Museumswächter Krupic Mustafa Wintersemester 2013/14 Inhaltsverzeichnis 2 Inhaltsverzeichnis 1 Einleitung 3 2 Museumswächter-Satz 6 2.1
Dodekaeder Simum als Sphäre
Eine Gemeinschaftsarbeit von Schülerinnen und Schülern der 12. und 11. Klassen der Atelierschule Zürich im September 2009 Im Grundlagen-Wahlfach haben wir mit 11.- und 12.-KlässlerInnen einen luftigen,
Valence Shell Electron Pair Repulsion
Das VSEPR-Modell der Molekularen Struktur Valence Shell Electron Pair Repulsion Vorhersage der Molekülstruktur basierend auf der Anordnung von Elektronen-Paaren in der Valenz-Schale R. J. Gillespie, 1963
Körper Lösungen. 1) Welche idealisierten Grundformen entsprechen den Bildern? Ordne die Bezeichnungen den Bildern zu. vierseitiges Prisma
1) Welche idealisierten Grundformen entsprechen den Bildern? Ordne die Bezeichnungen den Bildern zu. vierseitiges Prisma regelmäßige dreiseitige Pyramide regelmäßiges sechsseitiges Prisma regelmäßige vierseitige
Polyeder und Platonische Körper
Polyeder und Platonische Körper Ausarbeitung zum 30.11.2016 Linus Leopold Boes Matrikelnummer: 2446248 Algorithmen für planare Graphen Institut für Informatik HHU Düsseldorf Inhaltsverzeichnis 1 Einleitung
Hans Walser Kantenmodelle Kantenmodelle der platonischen Körper.
Hans Walser Kantenmodelle Kantenmodelle der platonischen Körper. Würfelmodell 1 Würfelmodell 1.1 Bauteil Wir bauen ein Kantenmodell mit einem Bauteil pro Kante, insgesamt also 12 Bauteilen. In der folgenden
Sekundarschulabschluss für Erwachsene
SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60
Teilgebiete der Abbildungsgeometrie
Teilgebiete der Abbildungsgeometrie In der Abbildungsgeometrie wird zur Klassifizierung von Eigenschaften des Raumes (bzw. der Ebene) und der in ihm enthaltenen Objekte (Geraden, Kreise, Polytope, usw.)
Vorwort und Einführung
Vorwort und Einführung Geometrische Körper Die intensive Beschäftigung mit der Geometrie der Platonischen Körper verdanke ich einer Kindergärtnerin, der ich eine Schokoladekugel elegant verpackt, schenken
4.22 Buch XI der Elemente
4.22 Buch XI der Elemente In Buch XI werden die Grundbegriffe der räumlichen Geometrie eingeführt und für viele Propositionen aus den Büchern I und VI die entsprechende dreidimensionale Aussagen bewiesen.
Der Goldene Schnitt! Hans Walser!
Der Goldene Schnitt! Hans Walser! www.walser-h-m.ch/hans! 1! Drohne:!! Mutti, wie bin ich auf die Welt gekommen?! 1 1 2! Eine männliche Biene (Drohne)! hat nur eine Mutter (Königin)!! Unbefruchtetes Ei!
Körper kennen lernen Station 1
Körper kennen lernen Station 1 Aufgabe 1.1) Der kleine Lars hat mit Bauklötzen eine Stadt nachgebaut. Welche Teile (geometrische Körper) hat er dabei verwendet? Fertigt eine Liste an. Aufgabe 1.2) Viele
4.13 Euklid (um 300 v.chr.) und seine Werke
4.13 Euklid (um 300 v.chr.) und seine Werke wurde (vermutlich nach Studium in Athen) von einem frühen Vertreter der Dynastie der Ptolemäer nach Alexandria berufen, wo er die dortige mathematische Schule
WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten
WER WIRD MATHESTAR? Lehrplaneinheit Berufsrelevantes Rechnen - Leitidee Kompetenzen Sozialform, Methode Ziel, Erwartungshorizont Zeitlicher Umfang Didaktische Hinweise Raum und Form Mathematisch argumentieren
MONTESSORI einfach klar!
Wilhelm Weinhäupl Margit Gruber Ingrid Laube MONTESSORI einfach klar! Handreichung für die Arbeit mit Montessori-Materialien Übungen des praktischen Lebens Schulung der Sinne BEIBLÄTTER Hinweis: Nur für
Aufgaben Fibonacci-Folgen 7. April 2006 B. Werner SoSe 06
19. April 2006 Aufgaben Fibonacci-Folgen 7. April 2006 B. Werner SoSe 06 Präsenzaufgaben: Aufgabe P1: Eine spezielle Lucasfolge (L n ) ist durch L n = L n 1 + L n 2, L 0 = 2, L 1 = 1 definiert. Berechnen
und mehrdimensionale Würfel
Originäre wissenschaftliche Arbeit Angenommen am 22.12.2005. Reguläre Körper und mehrdimensionale Würfel LÁSZLÓ VÖRÖS Regular Bodies and Hypercubes ABSTRACT The paper gives useful connections between regular
Meisterklasse Dresden 2014 Olaf Schimmel
Meisterklasse Dresden 2014 Olaf Schimmel 1 Was sind Parkettierungen? 2 Warum Winkel wichtig sind 3 Platonische Parkette 4 Archimedische Parkette 5 Welche Kombination von Vielecken erfüllen die Winkelbedingung?
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Genial! Mathematik Spielerische Mathematik mit Miwin'schen Würfeln
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Genial! Mathematik 1-4 - Spielerische Mathematik mit Miwin'schen Würfeln Das komplette Material finden Sie hier: School-Scout.de Eine
Symmetrie im Raum An Hand der platonischen Körper
Symmetrie im Raum An Hand der platonischen Körper Simon Steurer 25.6.2013 Historisches Platonische Körper Vorüberlegungen Oktaeder Hexaeder Tetraeder Dodekaeder & Ikosaeder Historisches benannt nach Platon
Einfache Parkettierungen
Einfache Definitionen: Unter einer Parkettierung (auch Pflasterung oder Parkett genannt) verstehen wir eine überlappungsfreie Überdeckung der Ebene durch Polygone. Ein Polygon (auch Vieleck oder n-eck
Vierecke Kurzfragen. 2. Juli 2012
Vierecke Kurzfragen 2. Juli 2012 Vierecke Kurzfrage 1 Wie werden Vierecke angeschrieben? Vierecke Kurzfrage 1 Wie werden Vierecke angeschrieben? Ecken: Vierecke Kurzfrage 1 Wie werden Vierecke angeschrieben?
A B. Geometrische Grundbegriffe zuordnen. Geometrische Grundbegriffe zuordnen.
Hinweis: Dieses Geometrieheft wurde im Zuge einer ergänzenden Lernbegleitung für die Jahrgangsstufe 4 erstellt und erhebt keinen Anspruch auf Vollständigkeit, bzw. wird fortlaufend weiterentwickelt Das
Euklides: Stoicheia. (Die Elemente des Euklid) Buch XV. XV.1. Einem gegebenen Würfel ein Tetraeder einbeschreiben.
Euklides: Stoicheia (Die Elemente des Euklid) Buch XV. XV.1. Einem gegebenen Würfel ein Tetraeder einbeschreiben. Dem gegebenen Würfel ABCDEFGH ist ein Tetraeder einzubeschreiben. Es sind AC, AE, CE, AG,
Problem des Monats Februar 2019
Problem des Monats Februar 09 Bei welcher Lage ist die Fläche maximal? In ein regelmäßiges n-eck soll ein möglichst großes regelmäßiges m-eck gezeichnet werden. ie bbildungen zeigen die eingeschlossenen
