Extremwertaufgaben.
|
|
|
- Nadja Geisler
- vor 9 Jahren
- Abrufe
Transkript
1 Extremwertaufgaben Aufgaben 1. Von einem rechteckigen Stück Blech mit einer Länge von a = 16 cm und einer Breite von b = 10 cm werden an den Ecken kongruente Quadrate ausgeschnitten und aus dem Rest eine Schachtel gebildet. Wie muss man die Seitenlänge der auszuschneidenden Quadrate wählen, um eine Schachtel von größtem Rauminhalt zu erhalten? Wie groß ist dieser maximale Inhalt? 2. Einem gleichschenkligen Trapez (a = 6 cm, c = 2 cm, h = 4 cm) soll das flächengrößte Rechteck einbeschrieben werden, von dem eine Seite in der Basis des Trapezes liegt. Bestimme die Seitenlängen und den Flächeninhalt des Rechtecks! 3. Welcher Punkt der Hyperbel 2x 2 3y 2 = 6 hat vom Punkt P (5 0) den kleinsten Abstand? 4. Gegeben ist die Funktionsschar f t (x) = tx (1 t)x 2 mit (t 1 ; t 0). Für welchen Wert t wird der Inhalt der von der zugehörigen Kurve und der x-achse eingeschlossenen Fläche ein Extremwert. Wie groß ist er? 5. Die Zahl 60 soll so in zwei Summanden zerlegt werden, dass deren Produkt ein Maximum wird. 1
2 6. Die Fabrik F liegt abseits der geradlinigen Strasse von A nach B, wobei der Winkel β = (ABF ) ein rechter ist. (AB = 1500m ; BF = 600m) Sie soll von A aus an die Wasserleitung angeschlossen werden. Die Kosten für die Verlegung betragen auf der Strasse u = 72 Euro/m und im Gelände v = 90 Euro/m. In welcher Entfernung s von A muß die geradlinige Abzweigung von der Straße nach F erfolgen, damit es möglichst kostengünstig wird? 7. Ein rechteckiges Fenster mit aufgesetztem Rundbogen soll bei möglichst großer Fläche eine Umrahmung von nur 6 m haben. Welche Maße sind für das Fenster zu wählen? Wie groß ist die Fläche? 8. Das Fenster aus Aufgabe 7 soll eine Fläche von 250 dm 2 erhalten. Wie ist es auszuführen, damit die Kosten für den Rahmen minimal werden? 2
3 Lösungen 1. Skizze: Offensichtlich benötigt man eine Formel für das Volumen eines Quaders: V = e f g Ich wählte e, f, g, da in der Skizze a und b schon verwendet wurden. Nun werde ich für die Seitenlänge der herauszuschneidenden Quadrate die Variable x einführen. Es ergibt sich: e = a 2x f = b 2x g = x Eingesetzt in die Volumenformel bekommen wir eine Funktion, die nur noch von der Variablen x abhängt: V (x) = (a 2x)(b 2x) x = (16 2x)(10 2x) x = 4x 3 52x x (0 < x < 5) Der Definitionsbereich ergibt sich aus der Überlegung, dass x nicht größer sein darf als b 2. Die Zielfunktion wird nun abgeleitet und es wird das Maximum bestimmt: V (x) = 12x 2 104x = x x x 1,2 = 26 6 ± (26 6 ) x 1 = 2 x 2 = 20 3 entfällt, siehe D f 3
4 V (x) = 24x 104 V (2) = 56 < 0 Maximum V (2) = 144 Die Seiten der Quadrate müssen eine Länge von 2 cm besitzen, damit die Schachtel ein maximales Volumen von 144 cm 2 hat. 2. Skizze: Hier benötigen wir eine Formel zur Berechnung der Fläche: A = d e Aus der Skizze ist leicht zu erkennen, dass sich über den Winkel α (der Winkel an einem der beiden unteren Eckpunkte des Trapezes) folgende Ausdrücke ergeben: tan(α) = h 0, 5(a c) = 4 2 = 2 tan(α) = d 0, 5(a e) = 2 d = a e Es folgt die Zielfunktion: A(e) = (a e) e 4
5 Durch Differentiation bestimmt man das Maximum: A (e) = a 2e 0 = a 2e e = a 2 = 3 A(3) = 9 e = d = 3 Auf die Überprüfung der zweiten Ableitung kann man sicher verzichten, denn sie ist konstant 2. Es muss sich also um ein Maximum handeln. Für einen maximalen Flächeninhalt von 9 cm 2 muss das Rechteck ein Quadrat mit der Seitenlänge 3 cm sein. 3. Skizze: Den Abstand von zwei Punkten berechnet man folgendermaßen: d = ( x) 2 + ( y) 2 Nun müssen wir die Hyperbelgleichung nach y umstellen: Eingesetzt ergibt sich: ( d(x) = (5 x) y = ± 3 x2 2 ) x2 2 = 23 10x x2 5
6 Die Zielfunktion wird abgeleitet und auf Extrema untersucht: d (x) = 10 3 x x x2 0 = 10 3 x 10 x = 3 Eigentlich müsste man mit der zweiten Ableitung prüfen, ob es sich tatsächlich um ein Extremum handelt. Allerdings ist mir der Aufwand für den relativ geringen Nutzen zu groß. Abgesehen davon weiß ich, dass es sich um ein Minimum handelt. Setzt man das Ergebnis nun in die Hyperbelgleichung ein, so erhält man die Punkte: Q 1 (3 2) Q 2 (3 2) 4. Skizze: Um die Grenzen für die Integration zu bestimmen, werde ich als erstes die Nullstellen der Schar berechnen: f t (x) = tx (1 t)x 2 0 = x(t x + tx) x 1 = 0 x 2 = t 1 t 6
7 In diesen Grenzen werde ich die Schar nun integrieren: A = 0 t 1 t [ tx (1 t)x 2] dx A(t) = t 3 6(1 t) 2 Die Zielfunktion wird nun differenziert und auf Extrema untersucht: A (t) = 3t2 t 3 6 (1 t) 3 0 = t 2 (3 t) t 1 = 3 t 2 = 0 entfällt, da t 0 A (t) = t (1 t) 4 A (3) = 3 16 > 0 Minimum A(3) = 9 8 Für die Funktion der Schar f t, die den minimalen Flächeninhalt A = 9 8 x-achse einschließt, gilt: t = 3. FE mit der 5. Ich wähle für die beiden Summanden die Variablen a und b und für das Produkt die Variable c. So ergeben sich folgende Ausdrücke: a + b = 60 a b = c 7
8 Nach Umstellen und Einsetzen folgt: c(a) = a (60 a) Nach Differentiation wird die Zielfunktion nun auf Extrema untersucht: c (a) = 60 2a 0 = 60 2a a = 30 b = 30 c = 900 Damit das Produkt der beiden Summanden der Zahl 60 maximal wird, müssen die beiden Summanden jeweils 30 sein. Das maximale Produkt beträgt Skizze: Die folgenden Bezeichnungen sind an die Skizze angelehnt. Der Preis setzt sich folgendermaßen zusammen: P = 72 AC + 90 CF Über den Satz des Pythagoras kommt man zu folgenden Ausdrücken: CF = CB 2 + BF 2 mit CB = AB AC ( ) 2 2 CF = AB AC + BF 8
9 Durch Einsetzen ergibt sich für die Preisfunktion: P ( AC ) ( ) 2 2 = 72 AC + 90 AB AC + BF P (s) = 72 s + 90 (1500 s) Untersuchung der Zielfunktion auf Extrema durch Differentiation: P (s) = 90s (1500 s) = 90s (1500 s) s = 700 m P (700) = Euro Die zweite Ableitung habe ich mir wieder gespart. Wer will, kann sie gern prüfen. Um möglichst kostengünstig zu bauen, muss der Abzweig in einer Entfernung von s = 700 m liegen. Der minimale Preis beträgt Euro. 7. Skizze: 9
10 Für den Umfang u und die Flächen A R (Rechteckfläche) und A K (Halbkreisfläche) gelten folgende Formeln: A Ges = A R + A K A R = a b A K = 1 2 πr2 u = 2a + b + c = 6 b ist hier die Grundseite des Rechtecks. c ist die Bogenlänge des Halbkreises. Es folgt: c = rπ mit r = b 2 A Ges (b) = 1 ( 2 b 6 b 1 ) 2 πb + 1 ( ) b 2 2 π 2 Die Zielfunktion wird abgeleitet und auf Extrema untersucht: A Ges = ( 1 14 π ) b = ( 1 14 π ) b + 3 b = π c = 3π π a = π Die zweite Ableitung ist konstant 1 1 4π < 0. Es muss sich also um ein Maximum handeln. Folgendes ergibt sich für die Fläche: ( ) 3 A π 2, 52 m 2 10
11 8. Wir nehmen die Gleichungen aus Aufgabe 7: A R + A K = 250 A R = a b A K = 1 2 πr2 mit r = b 2 u = 2a + b + c mit c = π 2 b Daraus ergeben sich: 250 = a b π ( b 2 ) 2 = a b + π 8 b2 a = 250 b u(b) = 500 b π 8 b ( π ) b Differentiation und Untersuchung auf Extrema: u (b) = 500 b 2 + π = 500 b 2 + π b = 500 π
12 u (b) = 1000 b 3 ( ) u 500 π > 0 Minimum b 16, 73 a 21, 51 c 26, 29 Für den minimalen Umfang ergibt sich: u ( ) 500 π , 76 dm 12
Hilfe Beispiel 1: Lösungsskizze und Ergebnis:
Hilfe Beispiel 1: 1. Hauptbedingung erstellen (Volumen der Schachtel) 3. Nebenbedingungen finden, Grundkanten und Höhen ausdrücken, in Hauptbedingung einsetzen -> Funktion 4. 1. Ableitung, 0 setzen ->
Analysis 5.
Analysis 5 www.schulmathe.npage.de Aufgaben Gegeben ist die Funktion f durch f(x) = 2 e 2 x 2 (x D f ) a) Geben Sie den größtmöglichen Definitionsbereich der Funktion f an und führen Sie für die Funktion
Analysis: Extremwertaufgaben Analysis Übungsaufgaben zu Extremwertaufgaben (Optimierungsprobleme) Gymnasium J1
Analysis Übungsaufgaben zu Extremwertaufgaben (Optimierungsprobleme) Gymnasium J Alexander Schwarz www.mathe-aufgaben.com Dezember 05 Teil A: Ganzrationale Funktionen Aufgabe : Gegeben ist die Funktion
Lösung Beispiel 1: Lösung vorgerechnet: Hauptbedingung: Definitionsbereich D: Nebenbedingung: aus der Zeichnung ablesen. 1. Ableitung: 2.
Lösung Beispiel 1: Nebenbedingung: aus der Zeichnung ablesen Lösung Beispiel 2 Nebenbedingung (Strahlensatz): Zahlen einsetzen Auflösen: Lösung Beispiel 3 r... Radius, b... Bogenlänge Defintionsbereich
Quadratische Funktionen
Quadratische Funktionen Aufgabe 1 Verschieben Sie die gegebenen Parabeln so, dass ihr Scheitelpunkt in S liegt. Gesucht sind die Scheitelpunktsform und die allgemeine Form der Parabelgleichung a) y = x²,
Kapitel 1:»Rechnen« c 3 c 4 c) b 5 c 4. c 2 ) d) (2x + 3) 2 e) (2x + 0,01)(2x 0,01) f) (19,87) 2
Kapitel :»Rechnen«Übung.: Multiplizieren Sie die Terme so weit wie möglich aus. a /5 a 5 Versuchen Sie, vorteilhaft zu rechnen. Übung.2: Berechnen Sie 9% von 2573. c 3 c 4 b 5 c 4 ( b 2 c 2 ) (2x + 3)
Name, Jahr Schwierigkeit Mathematisches Thema Carola Schöttler, 2009 X Extremwertaufgaben. Zimmer im Dach
Carola Schöttler, 009 X Extremwertaufgaben Zimmer im Dach In der Skizze ist ein Querschnitt eines Dachgeschosses der Höhe 4,8m und Breite 8m dargestellt. In diesem Dachgeschoss soll ein möglichst großes
Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung),
Extremwertaufgaben x. Ein Landwirt will an einer Mauer einen rechteckigen Hühnerhof mit Maschendraht abgrenzen. 0 Meter Maschendraht stehen zur Verfügung. Wie groß müssen die Rechteckseiten gewählt werden,
Grundwissensaufgaben Klasse 10
Grundwissensaufgaben Klasse 10 1.Grundwissensaufgaben zu Potenz- und Wurzelgesetzen: [Verwendung willkürlicher Zahlen und Buchstaben; eigene Aufgabenstellung] Fasse soweit wie möglich zusammen. a) ( 1,456)
Analysis: Klausur Analysis
Analysis Klausur zu Extrempunkten, Interpretation von Graphen von Ableitungsfunktionen, Tangenten und Normalen, Extremwertaufgaben (Bearbeitungszeit: 90 Minuten) Gymnasium J Alexander Schwarz www.mathe-aufgaben.com
Weitere Anwendungen quadratischer Funktionen
Weitere Anwendungen quadratischer Funktionen 1. Auf einer Wiese soll mit einem 6 m langen Zaun eine rechteckige Fläche eingezäunt werden; dabei sollen 4 m als Einfahrt frei bleiben: 4 m l Die Funktion
Technische Berufsmaturitätsprüfung Baselland 2009 Mathematik Teil 2 (Mit Hilfsmitteln) Lösungen
Technische Berufsmaturitätsprüfung Baselland 009 Mathematik Teil (Mit Hilfsmitteln) Aufgabe Es sei ein Rechteck mit Umfang in einem Halbkreis einbeschrieben. [ Punkte] Berechnen Sie die Seitenlängen des
Lösungen zu Differentialrechnung IV-Extremalprobleme
Diff rechnung IV 12.12.2006 Lösungen 1 Lösungen zu Differentialrechnung IV-Extremalprobleme 1. Ein Kugelstösser stösst eine Kugel. Die Flugbahn der Kugel lässt sich mit dem folgenden Gesetz beschreiben:
Untersuchungen von Funktionen 1
Untersuchungen von Funktionen 1 Führen Sie für die Funktionen diese Untersuchungen durch : Untersuchen Sie den Graphen auf Symmetrie. Untersuchen Sie das Verhalten der Funktionswerte im Unendlichen. Bestimmen
Wurzelfunktionen Aufgaben
Wurzelfunktionen Aufgaben. Für jedes k (k > 0) ist die Funktion f k (x) = 8 (x k ) kx, 0 x gegeben. a) Untersuchen Sie die Funktion f k auf Nullstellen und Extrema. Ermitteln Sie lim f k(x) sowie für 0
10 Extremwerte mit Nebenbedingungen
10 Extremwerte mit Nebenbedingungen 49 10 Extremwerte mit Nebenbedingungen Wir betrachten nun Extremwertaufgaben, bei denen nach dem Extremwert einer fx 1,, x n gesucht wird, aber die Menge der zulässigen
Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt
1 7 Flächeninhalt 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt A = cm 2 und die Grundlinie a = 4 cm haben. Rechteck: h = 2,5 cm Parallelogramm:
ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke: x 2. Strecke: 4x x 4x 85 x 17
Textgleichungen Aus der Geometrie Lösungen 1. Von zwei Strecken ist die eine viermal so lang wie die andere. Zusammen ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke:
Mathematik 2 SS 2016
Mathematik 2 SS 2016 2. Übungsblatt Gruppe 1 18. Man zeige, dass die Gleichung f(x, y) = y 5 e y (2x 2 + 3) sin y + x 2 y 2 x cos x = 0 in einer Umgebung des Punktes P (0, 0) nach y aufgelöst werden kann,
Herbst b) Bestimmen Sie die Gleichung der Tangente t und Ihren Schnittpunkte A mit der x-achse. t geht durch B(1/2) und hat die Steigung m=-6 :
Herbst 24 1. Gegeben ist eine Funktion f : mit den Parametern a und b. a) Bestimmen Sie a und b so, dass der Graph von f durch den Punkt B(1/2) verläuft und die Tangente t in B parallel ist zur Geraden
Lösung - Serie 2. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger Welche der folgenden Funktionen ( 1, 1) R sind strikt monoton wachsend?
D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie.. Welche der folgenden Funktionen (, R sind strikt monoton wachsend? (a (b (c + 3 (d e (e (f arccos Keine. Auf (, 0] ist strikt monoton
1 Kurvenuntersuchung /40
00 Herbst, (Mathematik) Aufgabenvorschlag B Kurvenuntersuchung /40 Die Tragflächen des berühmten Flugzeuges Junkers Ju-5 können an der Nahtstelle zum Flugzeugrumpf mithilfe der Funktionen f und g mit 8
a Kartons möglichst groß wird? x
15 Etremwertaufgaben Eine weitere wichtige Anwendung der Differentialrechnung ist das Lösen von Etremwert-aufgaben Es handelt sich hierbei um Aufgaben aus den verschiedensten Gebieten (Geometrie, Ökonomie,
Das Prisma ==================================================================
Das Prisma ================================================================== Wird ein Körper von n Rechtecken und zwei kongruenten und senkrecht übereinander liegenden n-ecken begrenzt, dann heißt der
Mathematik Rechenfertigkeiten
2011 Mathematik Rechenfertigkeiten Übungen Donnerstag Dominik Tasnady, Mathematik Institut, Universität Zürich Winterthurerstrasse 190, 8057 Zürich Erstellt von Dr. Irmgard Bühler (Überarbeitung: Dominik
Passerelle Mathematik Frühling 2005 bis Herbst 2006
Passerelle Mathematik Frühling 2005 bis Herbst 2006 www.mathenachhilfe.ch [email protected] 079 703 72 08 Inhaltsverzeichnis 1 Algebra 3 1.1 Termumformungen..................................... 3
Extremwertaufgaben mit Nebenbedingungen
Extremwertaufgaben mit Nebenbedingungen W. Kippels 14. März 014 Inhaltsverzeichnis 1 Einleitung Vorgehensweise Übungsaufgaben 4.1 Aufgabe 1................................... 4. Aufgabe...................................
Musterlösung. für die Klausur MA2_04.4 vom 01. Oktober Labor für Mathematik und Statistik. Prof. Norbert Heldermann.
Fachbereich Produktion und Wirtschaft Musterlösung für die Klausur MA_04.4 vom 01. Oktober 004 Labor für Mathematik und Statistik Prof. Norbert Heldermann Richard Münder Bei dem vorliegenden Dokument handelt
Matur-/Abituraufgaben Analysis
Matur-/Abituraufgaben Analysis 1. Tropfen Die folgende Skizze zeigt die Kurve k mit der Gleichung y = (1 ) im Intervall 1. Die Kurve k bildet zusammen mit ihrem Spiegelbild k eine zur -Achse symmetrische
5.5. Abituraufgaben zu ganzrationalen Funktionen
.. Abituraufgaben zu ganzrationalen Funktionen Aufgabe : Kurvendiskussion, Fläche zwischen zwei Schaubildern () Untersuchen Sie f(x) x x und g(x) x auf Symmetrie, Achsenschnittpunkte, Extrempunkts sowie
Gymnasium / Realschule. Extremwertaufgaben. Klassen 8 bis 10
Überblick Die vorliegenden sind Textaufgaben, meist mit Zeichnungen versehen, bei denen die Frage gestellt wird, unter welchen Bedingungen ein Wert (z.b. Abstand, Länge, Fläche, Volumen) am größten oder
Technische Universität München Zentrum Mathematik. Übungsblatt 4
Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=
Didaktik der Mathematik der Sekundarstufe II
Didaktik der Mathematik der Sekundarstufe II Teil 9: Extremwertaufgaben Humboldt-Universität zu Berlin, Institut für Mathematik Sommersemester 2010/11 Internetseite zur Vorlesung: http://www.mathematik.hu-berlin.de/
Klasse ST13a HeSe 13/14 ungr. Serie 14 (Kurvendiskussion, Extremalprobleme)
Klasse ST1a HeSe 1/1 ungr MAE1 Serie 1 (Kurvendiskussion, Extremalprobleme) Aufgabe 1 Bestimmen Sie alle Extremal- und Wendepunkte sowie die Steigung der Wendetangenten für y = f(x) = x 5 65 x + 180x.
Ergänzungsheft Erfolg im Mathe-Abi
Ergänzungsheft Erfolg im Mathe-Abi Hessen Prüfungsaufgaben Grundkurs 2012 Grafikfähiger Taschenrechner (GTR), Computeralgebrasystem (CAS) Dieses Heft enthält Übungsaufgaben für GTR und CAS sowie die GTR-
Ma 11b (CON) Aufgabenblatt Stereometrie (1) 2015/2016
1. Übertragen Sie aus der Formelsammlung die Skizzen und Formeln nachfolgender Körper aus dem Kapitel Stereometrie in ihr Heft: Würfel, Quader, Dreiecksprisma, Zylinder, Quadratische Pyramide, Rechteckpyramide,
Mathematik LK13 Kursarbeit Musterlösung Aufgabe I:
Mathematik LK13 Kursarbeit 1 6.11.14 Musterlösung Aufgabe I: Analysis I 1. Spaß mit natürlichen Eponentialfunktionen Gegeben sind die Funktionen f ()=e ( + ) und g ( )=5 e Untersuchen Sie beide Funktionen
1. Schularbeit Stoffgebiete:
1. Schularbeit Stoffgebiete: Grundrechnungsarten mit ganzen Zahlen Koordinatensystem a) Berechne: 6 Punkte [( 36) + ( 64)] : ( 4) + ( 144) : ( 12) 16 ( 2) = b) Löse die drei Gleichungen und mache die Probe:
Trigonometrie und Planimetrie
Trigonometrie und Planimetrie Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert (G): Grundlagen, Basiswissen einfache Aufgaben (F): Fortgeschritten mittelschwere Aufgaben (E): Experten schwere Aufgaben
Raum- und Flächenmessung bei Körpern
Raum- und Flächenmessung bei Körpern Prismen Ein Prisma ist ein Körper, dessen Grund- und Deckfläche kongruente Vielecke sind und dessen Seitenflächen Parallelogramme sind. Ist der Winkel zwischen Grund-
Differenzialrechnung
Mathe Differenzialrechnung Differenzialrechnung 1. Grenzwerte von Funktionen Idee: Gegeben eine Funktion: Gesucht: y = f(x) lim f(x) = g s = Wert gegen den die Funktion streben soll (meist 0 oder ) g =
20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.
Flächeninhalte von Vielecken Parallelogramm Übungen - 9 20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.
Tag der Mathematik 2010
Zentrum für Mathematik Tag der Mathematik 2010 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt
Inhaltsverzeichnis. Inhaltsverzeichnis
Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................
Aufgaben mit Lösungen zum Themengebiet: Geometrie bei rechtwinkligen Dreiecken
Übungsaufgaben zur Satzgruppe des Pythagoras: 1) Seiten eines rechtwinkligen Dreiecks Sind folgende Aussagen richtig oder falsch? Verbessere, wenn notwendig! Die Katheten grenzen an den rechten Winkel.
Prof. Dr. Rolf Linn
Prof. Dr. Rolf Linn 6.4.5 Übungsaufgaben zu Mathematik Analysis. Einführung. Gegeben seien die Punkte P=(;) und Q=(5;5). a) Berechnen Sie den Anstieg m der Verbindungsgeraden von P und Q. b) Berechnen
Lösungen zu ausgewählten Aufgaben der Klasse 11
Lösungen zu ausgewählten Aufgaben der Klasse 11 S. 9 Nr. a) K() = 0,001 1,9 + 600 + 1000 U() = 00.10 5..10 5 K () U ()..10 5 1.6.10 5 8.10 b) Monotonie : 0 00 00 600 800 1000 K() U() 0 1000 0 00 8800 60000
1.7 Stereometrie. 1 Repetition Der Satz von Pythagoras Die Trigonometrischen Funktionen Masseinheiten Dichte...
1.7 Stereometrie Inhaltsverzeichnis 1 Repetition 2 1.1 Der Satz von Pythagoras................................... 2 1.2 Die Trigonometrischen Funktionen.............................. 2 1.3 Masseinheiten.........................................
Mathematik Rechenfertigkeiten
2012 Mathematik Rechenfertigkeiten Übungen Donnerstag Dr. Dominik Tasnady, Mathematik Institut, Universität Zürich Winterthurerstrasse 190, 8057 Zürich Erstellt von Dr. Irmgard Bühler (Überarbeitung: Dr.
3. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12)
Technische Universität München Zentrum Mathematik PD Dr. Christian Karpfinger http://www.ma.tum.de/mathematik/g8vorkurs 3. Übung zum G8-Vorkurs Mathematik (WiSe 0/) Aufgabe 3.: Gehen Sie die Inhalte der
Kreis- und Kreisteileberechnungen
Kreis- und Kreisteileberechnungen Aufgabe 1: Berechne den Inhalt der getönten Fläche aus dem Radius r des größten Kreises und dem Radius a der beiden kleinen Halbkreise. Aufgabe 2: Wie groß ist der äußere
Gruber I Neumann. Erfolg im Mathe-Abi. Prüfungsaufgaben Hessen GTR / CAS. Übungsbuch für den Grundkurs mit Tipps und Lösungen
Gruber I Neumann Erfolg im Mathe-Abi Prüfungsaufgaben Hessen GTR / CAS Übungsbuch für den Grundkurs mit Tipps und Lösungen Vorwort Vorwort Dieses Übungsbuch ist speziell auf die Anforderungen des zentralen
Funktionen mehrerer Variabler
Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen
MATHEMATIK K1 EINSTIEGSARBEIT (OHNE GTR)
MATHEMATIK K EINSTIEGSARBEIT (OHNE GTR Einige Stichworte: Bruchrechnen: bei Addition und Subtraktion beide Brüche auf den Hauptnenner bringen Man teilt durch einen Bruch, indem man mit dessen Kehrwert
Abiturähnliche Aufgabe: Leistungskurs Teil A Lösungen
Abiturähnliche Aufgabe: Leistungskurs Teil A Lösungen 1.1 3 k 2 _ 2 1.2 f (x) = 3 ln ( 2 x + 1 ) 1.3 Der Graph einer ganzrationalen Funktion vom Grad 3 hat mindestens einen Wendepunkt. 1.4 D ( 3; 7; 2
Das isoperimetrische Problem
Das isoperimetrische Problem Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 18. Oktober 3 Das isoperimetrische Problem, auch bekannt als das Problem der Dido, ist es, unter allen geschlossenen ebenen
Pflichtteilaufgaben zur Integralrechnung
Testklausur K Integralrechnung# Pflichtteilaufgaben zur Integralrechnung Aufgabe : Gib jeweils eine Stammfunktion an: a) f () = ² + f () = Aufgabe : Ermittle eine Stammfunktion für a) f() = n Für welche
Kapitel D : Flächen- und Volumenberechnungen
Kapitel D : Flächen- und Volumenberechnungen Berechnung einfacher Flächen Bei Flächenberechnungen werden die Masse folgendermassen bezeichnet: = Fläche in m 2, dm 2, cm 2, mm 2, etc a, b, c, d = Bezeichnung
Quadratische Funktionen
Quadratische Funktionen Die einfachste quadratische Funktion besitzt die Funktionsgleichung =. Die graphische Darstellung der quadratischen Funktion ergibt eine Kurve, welche Normalparabel heisst und folgendes
Aufgabe W1b/2017. Aufgabe W2a/ ,5. Lösung: Abstand von 5,2. Gegeben sind ein rechtwinkliges Trapez ABCD und ein regelmäßiges Sechseck.
Aufgabe W1a/2017 Das rechtwinklige Dreieck ABD und das gleichschenklige Dreieck ABC haben die Seite gemeinsam. Es gilt: 7,2 3,0 42. Berechnen Sie den Abstand des Punktes von sowie den Winkel. Lösung: Abstand
Mathematik Rechenfertigkeiten
2014 Mathematik Rechenfertigkeiten Übungen Donnerstag Dr. Dominik Tasnady, Mathematik Institut, Universität Zürich Winterthurerstrasse 190, 8057 Zürich Erstellt von Dr. Irmgard Bühler (Überarbeitung: Dr.
Realschule Abschlussprüfung
Realschule Abschlussprüfung Annegret Sonntag 4. Januar 2010 Inhaltsverzeichnis 1 Strategie zur Berechnung von ebenen Figuren (Trigonometrie) 3 1.1 Skizze.................................................
UE Extremwertaufgaben 01
1. Ein Rechteck mit einem Umfang von 2m dreht sich um eine seiner Seiten. Wie müssen die Seiten des Rechtecks gewählt werden, damit (a) die Mantelfläche (b) das Volumen des entstehenden Drehzylinders möglichst
Beispielseite (Band 1) 2. Ganzrationale Funktionen 2.4 Nullstellen bei Funktionen 3. Grades
Beispielseite (Band ). Ganzrationale Funktionen.4 Nullstellen bei Funktionen. Grades Funktionen. Grades ohne Absolutglied Bei ganzrationalen Funktionen. Grades ohne Absolutglied beginnt die Nullstellenberechnung
Aufgabe S1 (4 Punkte) Wie lang ist die kürzeste Höhe in dem Dreieck mit den Seiten 5, 12 und 13? Das Dreieck ist rechtwinklig, da 13 2 =
Aufgabe S1 (4 Punkte) Wie lang ist die kürzeste Höhe in dem Dreieck mit den Seiten 5, 12 und 13? Lösung Das Dreieck ist rechtwinklig, da 13 2 = 12 2 + 5 2 Also gilt für die gesuchte Höhe auf der Hypotenuse
Neue Aufgaben, Oktober
Neue Aufgaben, Oktober 2006 2 1. Auf wie viele Nullen endet 10! und 20!? Lösung: Die Nullen ergeben sich durch Faktorenpaare, die jeweils 10 ergeben. In 10! kommt der Faktor 5 zweimal vor, der Faktor 2
Lösung zur Klausur zur Analysis II
Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes
5.3. Aufgaben zur Kurvenuntersuchung ganzrationaler Funktionen
.. Aufgaben zur Kurvenuntersuchung ganzrationaler Funktionen Aufgabe : Kurvendiskussion Untersuche die folgenden Funktionen auf Symmetrie, Achsenschnittpunkte, Extrem- und Wendepunkte und zeichne ein Schaubild
Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik
Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe
4. Mathematikschulaufgabe
Achtung! Alle Ergebnisse auf zwei Stellen nach dem Komma runden. 1 1.0 Gegeben ist die Funktion f 1 mit y = x + bx + c (b, c ). Der Graph zu f 3 1 ist die Parabel p 1, die durch die Punkte A(-/-4) und
3. Mathematikschulaufgabe
Klasse 0 / II.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 4 cm;
Abitur 2014 Mathematik Infinitesimalrechnung I
Seite http://www.abiturloesung.de/ Seite 2 Abitur 204 Mathematik Infinitesimalrechnung I Die Abbildung zeigt den Graphen einer Funktion f. Teilaufgabe Teil A (5 BE) Gegeben ist die Funktion f : x x ln
Kreise und Kreisteile. 1. Aufgabe: Berechne bei den folgenden Kreisen die fehlenden Werte: a) b) c) d) 2,45 m 8,6 cm 26,3 cm² 149 cm
Kreise und Kreisteile 1. Aufgabe: Berechne bei den folgenden Kreisen die fehlenden Werte: a) b) c) d) r 2,45 m d 8,6 cm A 26,3 cm² U 149 cm 2. Aufgabe: Berechne bei den folgenden Kreisbögen die fehlenden
Abschlussprüfung 2011 an den Realschulen in Bayern
Prüfungsdauer: 150 Minuten Abschlussprüfung 011 an den Realschulen in Bayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Haupttermin A 1.0 In Deutschland wächst derzeit mehr Holz
7.4 Bestimmung von Funktionsgleichungen aus vorgegebenen Eigenschaften
195 7.4 Bestimmung von Funktionsgleichungen aus vorgegebenen Eigenschaften In der Kurvenuntersuchung werden von einer gegebenen Funktionsgleichung ausgehend die Graphen von Funktionen auf ganz bestimmte
Mathemathik-Prüfungen
M. Arend Stand Juni 2005 Seite 1 1980: Mathemathik-Prüfungen 1980-2005 1. Eine zur y-achse symmetrische Parabel 4.Ordnung geht durch P 1 (0 4) und hat in P 2 (-1 1) einen Wendepunkt. 2. Diskutieren Sie
Gemischte Aufgaben zur Differentialund Integralrechnung
Gemischte Aufgaben zur Differentialund Integralrechnung W. Kippels 0. Mai 04 Inhaltsverzeichnis Aufgaben. Aufgabe.................................... Aufgabe.................................... Aufgabe...................................
Übungsaufgaben Repetitionen
TG TECHNOLOGISCHE GRUNDLAGEN LÖSUNGSSATZ Kapitel 3 Mathematik Kapitel 3.6 Geometrie Satz des Pythagoras Übungsaufgaben Repetitionen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut
Übungsaufgaben zur Kurvendiskussion
SZ Neustadt Mathematik Torsten Warncke FOS 12c 30.01.2008 Übungsaufgaben zur Kurvendiskussion 1. Gegeben ist die Funktion f(x) = x(x 3) 2. (a) Untersuchen Sie die Funktion auf Symmetrie. (b) Bestimmen
Liechtensteinisches Gymnasium
Schriftliche Matura 2015 Liechtensteinisches Gymnasium Prüfer: Huber Sven Klasse 7Wa Zeit: 240 Minuten Name: Klasse: Instruktionen: 1) Gib die zur Rechnung nötigen Einzelschritte an. 2) Skizzen müssen
Der Satz des Pythagoras
Der Satz des Pythagoras Das rechtwinklige Dreieck Jedes rechtwinklige Dreieck besitzt eine Hypotenuse (c), das ist die längste Seite des Dreiecks (bzw. diejenige gegenüber dem rechten Winkel). Die anderen
Vektoren, Skalarprodukt, Ortslinien
.0 Gegeben sind die Punkte A(0/-4), C(0/4), sowie die Pfeile mit α [ 90 ; 90 ]. 4cosα AB = 4sinα+ 4. Zeichne die drei Punkte B, B und B 3 mit α { 30;0;30 } in ein KOS.. Zeige: 4cosα CB =. 4sinα 4.3 Zeige,
Abiturprüfung Mathematik 2007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1
Abiturprüfung Mathematik 007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (8 Punkte) Das Schaubild einer Polynomfunktion. Grades geht durch den Punkt S(0/) und hat den 3 Wendepunkt
Realschule. 1. Schulaufgabe aus der Mathematik. Klasse 8 / I ; B 1, 1,5(
1. Schulaufgabe aus der Mathematik 1. Gegeben sind die Punkte A,, ( ; B, 0,5( und C 0,5 ( 1.1 Konstruiere den Umkreis k des Dreiecks mit Mittelpunkt M. 1. Kennzeichne die Lösungsmenge mit grüner Farbe:
Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie
Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin Geometrie Aufgabe G.1 Berechne die Innenwinkelsumme eines n-ecks. Aufgabe G.2 Zeige, dass
Übungen aus dem Buch: 65/15; 69/16; 74/8; 97/9a; 101/6c; 101/8; 106/10; 108/Beweise; 116/8a Aufgaben auf S. 151: 1; 2; 3; 4; 5; c Mc.
AB 25, Seite 1 Satz von Thales 8e 08.03.2012 Aus alten Klassenarbeiten: 1) Trapez: Gegeben ist ein Trapez mit den gegenüber liegenden Seiten a und c und der Höhe h a auf a. Erläutere mit einer Skizze,
Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK
Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK 1. In einem kartesischen Koordinatensystem sind der Punkt C(4 4, die Ebene E 1 : x 1 x +x 3 + = und die Gerade g: x = ( + λ( 1 gegeben. a Zeigen Sie,
Differential- und Integralrechnung
Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik
Aufgabe 3: In einem gleichschenkligen Dreieck ist die Basis 8,7 cm lang und die Schenkel jeweils 4,8 cm. Wie lang ist die Höhe auf die Basis?
Aufgabe 1: Berechne die Länge der fehlenden Seite. Aufgabe : Peter hat sich eine Leiter gekauft, die er beim Anstreichen seiner Hauswand benötigt. Diese Leiter ist 5,60 m lang. Damit sie nicht umkippt,
Zeichnet man nun über die Seiten des Dreiecks die Quadrate der jeweiligen Seiten, dann ergibt sich folgendes Bild:
9. Lehrsatz von Pythagoras Pythagoras von Samos war ein griechischer Philosoph und Mathematiker, der von ca. 570 v.chr. bis 510 n.chr lebte. Obwohl es über seine gesallschaftliche Stellung verschiedene
1.9 Stereometrie. 1 Repetition Der Satz von Pythagoras Die Trigonometrischen Funktionen Masseinheiten Dichte...
1.9 Stereometrie Inhaltsverzeichnis 1 Repetition 2 1.1 Der Satz von Pythagoras................................... 2 1.2 Die Trigonometrischen Funktionen.............................. 2 1.3 Masseinheiten.........................................
ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter
Berufsmaturitätsschule GIB Bern Aufnahmeprüfung 2005 Mathematik Teil A Zeit: 45 Minuten Name / Vorname:... ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese
Die Anzahl der Keime in 1 cm 3 Milch wird im zeitlichen Abstand von 1 h bestimmt.
7. Anwendungen ================================================================== 7.1 Exponentielles Wachstum ------------------------------------------------------------------------------------------------------------------
Übungsaufgabe z. Th. lineare Funktionen und Parabeln
Übungsaufgabe z. Th. lineare Funktionen und Parabeln Gegeben sind die Parabeln: h(x) = 8 x + 3 x - 1 9 und k(x) = - 8 x - 1 1 8 x + 11 a) Bestimmen Sie die Koordinaten der Schnittpunkte A und C der Graphen
1. Kreis. Umfang: u=2 π r Fläche: A=π r 2. Grosses Quadrat: Umfang: u=8 Fläche: A=4. Kleines Quadrat: Umfang: u=4 2 Fläche: A=2. Mittelwerte Umfang:
1. Kreis Umfang: u= π r Fläche: A=π r Grosses Quadrat: Umfang: u=8 Fläche: A=4 Kleines Quadrat: Umfang: u=4 Fläche: A= Mittelwerte Umfang: u=4+ =6.884 Fläche: A=3 Auszählen der Quadrate: aussen: 88 innen:
Übungsaufgaben Geometrie und lineare Algebra - Serie 1
Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß
Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005
Einführung in die Integralrechnung Mag. Mone Denninger. November 5 INHALTSVERZEICHNIS 8. Klasse Inhaltsverzeichnis Einleitung Berechnung einfacher Stammfunktionen. Integrationsregeln.........................
Oktaeder. Bernhard Möller. 22. Dezember 2010
Oktaeder Bernhard Möller. Dezember 00 Ein Oktaeder ist ein regelmäßiges Polyeder, dessen Oberfläche aus acht kongruenten, gleichseitigen Dreiecken besteht. Jedes Oktaeder kann einem Würfel so einbeschrieben
