Stochastische Prozesse

Größe: px
Ab Seite anzeigen:

Download "Stochastische Prozesse"

Transkript

1 INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 1 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Übungen zur Vorlesung Stochastische Prozesse Musterlösungen Aufgabe 1: (Verzweigungsprozess) Die Generation 0 einer Population bestehe aus einem Individuum, das sich mit Wahrscheinlichkeit p k in k Nachfahren teilt (k N). Jeder dieser Nachfahren der Generation 1 teilt sich wiederum unabhängig von den anderen Individuen gemäß der Verteilung (p k ) k N in eine zufällige Anzahl von Nachfahren. Die Zufallsvariable X n beschreibe die Anzahl der Individuen der n-ten Generation (n N 0 ). Zeigen Sie, dass (X n ) n N0 eine Markovkette ist, und geben Sie die zugehörige Übergangswahrscheinlichkeitsfunktion von Generation n nach Generation n + 1 an. Lösung: X n+1,j sei die Anzahl der Individuen der n + 1-ten Generation, die vom j-ten Mitglied der Generation n abstammen. Die (X n+1,j ) sind also alle unabhängig und identisch verteilt mit Verteilung (p k ) k N. Die Anzahl der Individuen der n + 1-ten Generation ist nun gegeben durch X n X n+1 X n+1,j (n N 0 ). Damit folgt j1 P (X n+1 k n+1 X 0 k 0,..., X n k n ) P ( k n j1 X n+1,j k n+1 ) P (X n+1 k n+1 X n k n ). (X n ) ist also eine Markovkette mit Übergangswahrscheinlichkeitsfunktion ( Xn ) ( k ) p n,n+1 (k, l) P (X n+1 l X n k) P X n+1,j l X n k P X n+1,j l für k 1 und l k, sonst ist p n,n+1 (k, l) 0. j1 j1 Aufgabe 2: (Success Run) Ein Basketballspieler verwandelt einen Freiwurf mit Trefferwahrscheinlichkeit p 0.7 unabhängig von früheren Versuchen. In einer Folge von Freiwürfen sei X n die Anzahl der unmittelbar vor dem (n + 1)-ten Wurf erzielten Treffer, die nicht durch einen Fehlwurf unterbrochen werden (Success Run). Zeigen Sie, dass (X n ) n N0 eine Markovkette bildet und geben Sie die zugehörige Übergangswahrscheinlichkeitsfunktion an.

2 Lösung: Sei X n die Anzahl der unmittelbar vor dem (n + 1)-ten Wurf erzielten Treffer, die nicht durch einen Fehlwurf unterbrochen wurden. Desweiteren sei Y n der Ausgang des n-ten Wurfes (n 1). Dabei ist 1, falls der n te Wurf Treffer, Y n 0, falls der n te Wurf kein Treffer. Es sei U : N 0 0, 1} N 0 und U(x, y) x + y, falls y 1, 0, falls y 0. Somit ist X 0 0 und X n U(X n 1, Y n ) für n 1 und (X n ) eine Markovkette mit Übergangswahrscheinlichkeitsfunktion p n,n+1 (k, l) P(X n+1 l X n k) 0.7, l k + 1, P(U(k, Y n+1 ) l) 0., l 0, 0, sonst. Aufgabe : Das Wetter in Karlsruhe an aufeinanderfolgenden Tagen sei beschrieben durch eine Markovkette X : (X n ) n N0 mit dem Zustandsraum E 1, 2, }, deren Zustände wir wie folgt interpretieren: 1 regnerisch, 2 bewölkt, sonnig. Heute sei es bewölkt, d.h. es sei P(X 0 2) 1. Die Übergangswahrscheinlichkeiten seien gegeben durch IP(X n+1 l X n k) l k a) Wie groß ist die Wahrscheinlichkeit, dass es übermorgen regnet? b) Wie entwickelt sich das Wetter nach n Tagen? Berechnen Sie mit einem geeigneten Programm P(X n k) für n 1,..., 100 und k E. c) Welche Vermutungen kann man den in b) gewonnenen Daten entnehmen? Lösung: Gemäß Satz 2.10 ist die Übergangswahrscheinlichkeitsfunktion p : p n,n+1 von Stufe n nach Stufe n + 1 durch die oben angegebene, von n unabhängige Matrix gegeben, also p(k, l) l k

3 a) Gesucht ist die bedingte Wahrscheinlichkeit P(X 2 1 X 0 2) P(X 0 2, X 2 1) P(X 0 2) P(X 0 2)1 k1 P(X 0 2, X 1 k, X 2 1) (2.11) P(X 0 2) p(2, k) p(k, 1) k1 b) Sei n N 0 beliebig. Wegen (2.12) aus Satz 2.10 gilt P(X n+1 l X n k) p(k, l) und damit P(X n+1 l) k E P(X n k, X n+1 l) k E P(X n k) p(k, l), l E, hier also immer ( ) P(X n+1 l) P(X n 1) p(1, l) + P(X n 2) p(2, l) + P(X n ) p(, l) für l 1, 2,. Die Wahrscheinlichkeiten P(X n k) lassen sich also gemäß ( ) leicht rekursiv berechnen. Wir erhalten mit P(X 0 2) 1 für n 0, 1,..., 15 P(X n k) k Für n 16 ändert sich an diesen auf 6 Stellen gerundeten Werten nichts mehr. Ähnliche Wahrscheinlichkeiten erhält man, wenn man mit P(X 0 1) 1 oder mit P(X 0 ) 1 startet. Unabhängig von der Startverteilung scheinen die Wahrscheinlichkeiten immer gegen die gleiche Grenzverteilung zu konvergieren. c) Man kommt daher zu der Vermutung: Egal, welche Verteilung X 0 besitzt, gilt immer lim n P(X n 1) 2 9 Später werden wir diese Vermutung verifizieren. und lim n P(X n 2) lim n P(X n ) 7 18.

4 Aufgabe 4: Sei X wie in Aufgabe. X : (X 2 n ) n N0 ist bekanntlich wieder eine Markovkette mit Zustandsraum E. Bestimmen Sie eine Übergangswahrscheinlichkeitsfunktion für X von Stufe n nach n + 1, n N 0. Lösung: Wir lösen die Aufgabe zuerst allgemein. Wegen Korollar 2.6 ist X selbst eine Markovkette. Gesucht ist eine Übergangswahrscheinlichkeitsfunktion p n,n+1 : E 2 [0, 1] mit (2.12) P(X n+1 k n+1 X n k n ) p n,n+1(k n, k n+1 ), falls P(X n k n ) > 0, also p n,n+1(k, l) P(X 2n+2 l X 2n k) P(X 2n k, X 2n+2 l) P(X 2n k) j E P(X 2n k, X 2n+1 j, X 2n+2 l) P(X 2n k) (2.11) j E P(X 2n k) p 2n,2n+1 (k, j) p 2n+1,2n+2 (j, l) P(X 2n k) j E p 2n,2n+1 (k, j) p 2n+1,2n+2 (j, l), sobald P(X n k) P(X 2n k) > 0. Dies bedeutet aber, dass (allgemein) durch p n,n+1(k, l) : j E p 2n,2n+1 (k, j) p 2n+1,2n+2 (j, l), k, l E eine geeignete Übergangswahrscheinlichkeitsfunktion für X von Stufe n nach n + 1 definiert ist. Unter den Voraussetzungen von Aufgabe ist p n,n+1 p unabhängig von n und mit p (k, l) : p(k, j) p(j, l), k, l 1, 2, j1 gilt hier p n,n+1(k, l) p (k, l) unabhängig von n, explizit p (k, l) l k Aufgabe 5: Sei X (X n ) n N0 eine Markovkette mit Zustandsraum E und Übergangswahrscheinlichkeitsfunktionen p n,n+1 von Stufe n nach n + 1. Berechnen Sie bei bekanntem p 0 (k) : P(X 0 k), k E für beliebiges n N die Wahrscheinlichkeitsfunktion p n von X n, d.h. p n (k) : P(X n k), k E.

5 Lösung: (vergl. Beweis zu Satz 2.10.) Mit Fallunterscheidung folgt p n (k) : P(X n k) (2.11) (k 0,...,k n 1 ) E n P(X 0 k 0,..., X n 1 k n 1, X n k) n 1 P(X 0 k 0 ) p j 1,j (k j 1, k j ) p n 1,n (k n 1, k) (k 0,...,k n 1 ) E n j1 n 1 p 0 (k 0 ) p j 1,j (k j 1, k j ) p n 1,n (k n 1, k). (k 0,...,k n 1 ) E n j1 Aufgabe 6: In dieser Aufgabe soll gezeigt werden, dass Funktionen von Markovketten nicht immer Markovketten sind. Sei X (X n ) n N0 ein stochastischer Prozess mit Zustandsraum E 1, 2, }, mit P(X 0 k) 1, k 1, 2, und mit P(X n+1 k n+1 X 0 k 0,..., X n k n ) P(X n+1 k n+1 X n k n ) 1, falls k n 1, k n+1 2 oder k n 2, k n+1 oder k n, k n+1 1 0, sonst für alle n N 0, sobald P(X 0 k 0,..., X n k n ) > 0. a) Begründen Sie, dass X eine Markovkette ist. b) Bestimmen Sie P(X n k) für n N und k E. c) Sei Y n : 1, falls X n 1 0, sonst für n N 0. Begründen Sie, dass Y (Y n ) n N0 Markovkette ist. keine Lösung: a) Die Markov-Eigenschaft folgt unmittelbar aus den Voraussetzungen und Satz 2.5. b) Sei p n,n+1 : E 2 [0, 1] definiert durch p n,n+1 (k n, k n+1 ) : p(k n, k n+1 ) : 1, falls k n 1, k n+1 2 oder k n 2, k n+1 oder k n, k n+1 1 0, sonst. Dann gilt (2.10) aus Satz Insbesondere ist (ein weiterer Nachweis von a)) X eine Markovkette mit (2.12) ( ) P(X n+1 k n+1 X n k n ) p(k n, k n+1 ), falls P(X n k n ) > 0. p ist also eine Übergangswahrscheinlichkeitsfunktion von Stufe n nach n + 1 (unabhängig von n).

6 Wir zeigen mit vollständiger Induktion über n ( ) P(X n k) 1, k 1, 2,. Für n 0 gilt dies nach Voraussetzung. Gilt ( ) für n N 0, so gilt wegen ( ) und der Formel von der totalen Wahrscheinlichkeit ([SI], Satz.12) P(X n+1 1) k E P(X n+1 1 X n k) P(X n k) P(X n+1 1 X n ) P(X n ) und genauso P(X n+1 2) P(X n+1 ) 1. Damit gilt ( ) auch für n + 1. c) Wir nehmen an, dass (Y n ) n N0 eine Markovkette ist. Wegen b) gilt stets P(Y n 0) 2 und P(Y n 1) 1. Aus Satz 2.10 (2.11) und b) folgt P(Y 0 0, Y 1 0) P(X 0 2, X 1 2) + P(X }} 0 2, X 1 ) }} 0 1/ + P(X 0, X 1 2) + P(X }} 0, X 1 ) 1 }} > und wegen P(X 0 2, X 1, X 2 2) P(X 0 2, X 1, X 2 ) 0 auch P(Y 0 0, Y 1 0, Y 2 0) 0. Daher gilt P(Y 2 0 Y 0 0, Y 1 0) P(Y 0 0, Y 1 0, Y 2 0) P(Y 0 0, Y 1 0) 0. Aber genauso wie oben folgt wegen Korollar 2.6 und P(Y 1 0, Y 2 0) 1 > 0 P(Y 2 0 Y 1 0) P(Y 1 0, Y 2 0) P(Y 1 0) 1/ 2/ (Y n ) n N0 ist also keine Markovkette im Gegensatz zur Annahme.

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 9 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Übungen zur Vorlesung Stochastische Prozesse Musterlösungen Aufgabe 40: Es sei (X t ) t 0 ein

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR STOCHASTIK SS 2007 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Dipl.-Math. oec. W. Lao Klausur (Maschineningenieure) Wahrscheinlichkeitstheorie und Statistik vom 2.9.2007 Musterlösungen

Mehr

Lösungen zu Übungsblatt 10 Höhere Mathematik Master KI Diskrete Zufallsgrößen/Markov-Ketten

Lösungen zu Übungsblatt 10 Höhere Mathematik Master KI Diskrete Zufallsgrößen/Markov-Ketten Lösungen zu Übungsblatt 0 Höhere Mathematik Master KI Hinweise: Die Aufgaben - beziehen sich auf das Thema Diskrete Zufallsgrößen, Ihre Verteilungen und Erwartungswerte. Siehe dazu auch das auf der Homepage

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 29 UNIVERSITÄT KARLSRUHE Blatt 6 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Übungen zur Vorlesung Stochastische Prozesse Musterlösungen Aufgabe 27: Sei X eine R + -wertige

Mehr

Klausur zur Vorlesung

Klausur zur Vorlesung Institut für Mathematische Stochastik WS 2006/2007 Universität Karlsruhe 12. Februar 2007 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Aufgabe 1 (15 Punkte) Klausur zur Vorlesung Statistik für Biologen

Mehr

Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse

Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse Zu Markov-Prozessen: Bemerkungen: 17.01.2013 Wir betrachten im Folgenden eine Markovkette (X n ) n N0, wobei jedes X n Werte in Z = {0,1,2,...,s}

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 009 UNIVERSITÄT KARLSRUHE Blatt 4 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 16: (Success Run, Fortsetzung)

Mehr

Vertiefung NWI: 13. Vorlesung zur Wahrscheinlichkeitstheorie

Vertiefung NWI: 13. Vorlesung zur Wahrscheinlichkeitstheorie Fakultät für Mathematik Prof. Dr. Barbara Gentz SS 2013 Vertiefung NWI: 13. Vorlesung zur Wahrscheinlichkeitstheorie Mittwoch, 10.7.2013 13. Markoffketten 13.1 Beispiele 1. Irrfahrt auf dem zweidimensionalen

Mehr

Kapitel 5: Markovketten

Kapitel 5: Markovketten Kapitel 5: Markovketten Definition 5.1 Bezeichnungen Bsp. 5.1 Definition 5.2 Eine Fam. (X i ) i I von ZV en X i : Ω E auf (Ω, F, P) mit Werten im messb. Raum (E, E) heißt Stochastischer Prozess. E Zustandsraum

Mehr

Lösungen 4.Übungsblatt

Lösungen 4.Übungsblatt Karlsruher Institut für Technology (KIT) WS 2011/2012 Institut für Analysis Priv.-Doz. Dr. Gerd Herzog Dipl.-Math.techn. Rainer Mandel Lösungen 4.Übungsblatt Aufgabe 13 (K) Bestimmen Sie sämtliche Häufungswerte

Mehr

Einführung in die Theorie der Markov-Ketten. Jens Schomaker

Einführung in die Theorie der Markov-Ketten. Jens Schomaker Einführung in die Theorie der Markov-Ketten Jens Schomaker Markov-Ketten Zur Motivation der Einführung von Markov-Ketten betrachte folgendes Beispiel: 1.1 Beispiel Wir wollen die folgende Situation mathematisch

Mehr

Vorlesung 8b. Zweistufige Zufallsexperimente. Teil 1

Vorlesung 8b. Zweistufige Zufallsexperimente. Teil 1 Vorlesung 8b Zweistufige Zufallsexperimente Teil 1 1 Stellen wir uns ein zufälliges Paar X = (X 1, X 2 ) vor, das auf zweistufige Weise zustande kommt: es gibt eine Regel, die besagt, wie X 2 verteilt

Mehr

Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0

Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0 Serie 4. Aufgabe 336 Punkte) Gegeben seien zwei reelle Zahlenfolgen durch a n : 0 n, n N b n : n n, n N Bestimmen Sie die Grenzwerte a bzw. b der Folgen a n ) n N bzw. b n ) n N. Geben Sie jeweils zu gegebenem

Mehr

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente Mehrstufige Zufallsexperimente Inhalt 6.1 6.1 Mehrstufige Experimente 6.2 6.2 Bedingte Wahrscheinlichkeiten Seite 2 6.1 Mehrstufige Experimente Grundvorstellung: Viele Viele Experimente werden der der

Mehr

6. Übungsblatt zur Einführung in die Stochastik

6. Übungsblatt zur Einführung in die Stochastik Fachbereich Mathematik Prof. Dr. Michael Kohler Dipl.-Math. Andreas Fromkorth Dipl.-Inf. Jens Mehnert SS 9 1.6.29 6. Übungsblatt zur Einführung in die Stochastik Aufgabe 22 Sei P ein auf der Borelschen

Mehr

Vorlesung 9b. Bedingte Verteilungen und bedingte Wahrscheinlichkeiten

Vorlesung 9b. Bedingte Verteilungen und bedingte Wahrscheinlichkeiten Vorlesung 9b Bedingte Verteilungen und bedingte Wahrscheinlichkeiten 1 Voriges Mal: Aufbau der gemeinsamen Verteilung von X 1 und X 2 aus der Verteilung ρ von X 1 und Übergangswahrscheinlichkeiten P(a

Mehr

Einführung in Markoff-Ketten

Einführung in Markoff-Ketten Einführung in Markoff-Ketten von Peter Pfaffelhuber Version: 6. Juli 200 Inhaltsverzeichnis 0 Vorbemerkung Grundlegendes 2 Stationäre Verteilungen 6 3 Markoff-Ketten-Konvergenzsatz 8 0 Vorbemerkung Die

Mehr

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über

Mehr

Einführung in die Stochastik 6. Übungsblatt

Einführung in die Stochastik 6. Übungsblatt Einführung in die Stochastik 6. Übungsblatt Fachbereich Mathematik SS M. Kohler 3. Mai A. Fromkorth D. Furer Gruppen und Hausübung Aufgabe (a) Die Wahrscheinlichkeit, dass eine S Bahn Verspätung hat, betrage.3.

Mehr

Der Metropolis-Hastings Algorithmus

Der Metropolis-Hastings Algorithmus Der Algorithmus Michael Höhle Department of Statistics University of Munich Numerical Methods for Bayesian Inference WiSe2006/07 Course 30 October 2006 Markov-Chain Monte-Carlo Verfahren Übersicht 1 Einführung

Mehr

16.3 Rekurrente und transiente Zustände

16.3 Rekurrente und transiente Zustände 16.3 Rekurrente und transiente Zustände Für alle n N bezeichnen wir mit f i (n) = P(X n = i,x n 1 i,...,x 1 i,x 0 = i) die Wahrscheinlichkeit, daß nach n Schritten erstmalig wieder der Zustand i erreicht

Mehr

Klausur vom

Klausur vom UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Dominik Faas Stochastik Wintersemester 00/0 Klausur vom 09.06.0 Aufgabe (++4=9 Punkte) Bei einer Umfrage wurden n Personen befragt, an wievielen Tagen

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak 14. Gruppenübung zur Vorlesung Höhere Mathematik 1 Sommersemester 009 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe

Mehr

Probeklausur Statistik II

Probeklausur Statistik II Prof. Dr. Chr. Müller PROBE-KLAUSUR 1 1 2 3 4 5 6 7 8 Gesamt: 15 8 16 16 7 8 15 15 100 Probeklausur Statistik II Name: Vorname: Fachrichtung: Matrikel-Nummer: Bitte beachten Sie folgendes: 1) Die Klausur

Mehr

3.4 Anwendung bedingter Wahrscheinlichkeiten

3.4 Anwendung bedingter Wahrscheinlichkeiten 3.4 Anwendung bedingter Wahrscheinlichkeiten Bsp. 23 Betrachtet werden mehrere Kanonen. Für i N bezeichne A i das Ereignis, daß Kanone i einen Schuß abgibt. A sei das Ereignis, daß ein Treffer erzielt

Mehr

Hausaufgaben. zur Vorlesung. Vollständige Induktion. 1. Beweist folgende Formeln (zu beweisen ist nur die Gleichheit mit dem. i=1 (4 + i)!

Hausaufgaben. zur Vorlesung. Vollständige Induktion. 1. Beweist folgende Formeln (zu beweisen ist nur die Gleichheit mit dem. i=1 (4 + i)! WS 015/1 Hausaufgaben zur Vorlesung Vollständige Induktion 1. Beweist folgende Formeln zu beweisen ist nur die Gleichheit mit dem! -Zeichen : a 5 + + 7 + 8 + + 4 + n n 4 + i! nn+9 b 1 + + 9 + + n 1 n 1

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

Pr[X t+1 = k] = Pr[X t+1 = k X t = i] Pr[X t = i], also. (q t+1 ) k = p ik (q t ) i, bzw. in Matrixschreibweise. q t+1 = q t P.

Pr[X t+1 = k] = Pr[X t+1 = k X t = i] Pr[X t = i], also. (q t+1 ) k = p ik (q t ) i, bzw. in Matrixschreibweise. q t+1 = q t P. 2.2 Berechnung von Übergangswahrscheinlichkeiten Wir beschreiben die Situation zum Zeitpunkt t durch einen Zustandsvektor q t (den wir als Zeilenvektor schreiben). Die i-te Komponente (q t ) i bezeichnet

Mehr

Vorlesung HM2 - Master KI Melanie Kaspar, Prof. Dr. B. Grabowski 1

Vorlesung HM2 - Master KI Melanie Kaspar, Prof. Dr. B. Grabowski 1 Melanie Kaspar, Prof. Dr. B. Grabowski 1 Melanie Kaspar, Prof. Dr. B. Grabowski 2 Melanie Kaspar, Prof. Dr. B. Grabowski 3 Markovketten Markovketten sind ein häufig verwendetes Modell zur Beschreibung

Mehr

Wahrscheinlichkeitstheorie und Statistik für Studierende des Maschinenbaus vom

Wahrscheinlichkeitstheorie und Statistik für Studierende des Maschinenbaus vom Institut für Stochastik WS 009/10 Karlsruher Institut für Technologie (KIT) Dr. B. Klar Klausur Wahrscheinlichkeitstheorie und Statistik für Studierende des Maschinenbaus vom 08.0.010 Musterlösungen Aufgabe

Mehr

Übung Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung mit

Übung Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung mit Übung 2 24..23 Ü b u n g 2 Aufgabe Die Poissonverteilung P(λ) hat die Wahrscheinlichkeitsfunktion p(x) = λx e λ (x ) x! Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung

Mehr

Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK. für Studierende der INFORMATIK

Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK. für Studierende der INFORMATIK Institut für Stochastik Prof. Dr. Daniel Hug Name: Vorname: Matr.-Nr.: Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK Datum: 08. Februar 0 Dauer:

Mehr

Übungen Abgabetermin: Freitag, , 10 Uhr

Übungen Abgabetermin: Freitag, , 10 Uhr Universität Münster Institut für Mathematische Statistik Stochastik für Lehramtskandidaten SoSe 015, Blatt 1 Löwe/Heusel Übungen Abgabetermin: Freitag, 10.7.015, 10 Uhr Hinweis: Dies ist nur eine Beispiellösung.

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Der Ergodensatz. Hendrik Hülsbusch

Der Ergodensatz. Hendrik Hülsbusch Der Ergodensatz Hendrik Hülsbusch 1..212 Inhaltsverzeichnis Einleitung 3 5 Stationäre Verteilungen 5 6 Reversible Markovketten 11 2 Einleitung In meinem Vortrag beschäftigen wir uns mit dem asymptotischen

Mehr

Einführung und Grundlagen

Einführung und Grundlagen Kapitel 1 Einführung und Grundlagen Generelle Notation: Ω, A, P sei ein W-Raum im Hintergrund nie weiter spezifiziert Die betrachteten Zufallsvariablen seien auf Ω definiert, zb X : Ω, A M, A, wobei M,

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 2 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 7: (B. Fredmans Urnenmodell)

Mehr

Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten

Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten Kapitel 2 Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten 2.1 Stochastische Unabhängigkeit von Ereignissen Gegeben sei ein W-Raum (Ω, C, P. Der Begriff der stochastischen Unabhängigkeit von

Mehr

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5 4 Verteilungen und ihre Kennzahlen 1 Kapitel 4: Verteilungen und ihre Kennzahlen A: Beispiele Beispiel 1: Eine diskrete Zufallsvariable X, die nur die Werte 1,, 3, 4, 5 mit positiver Wahrscheinlichkeit

Mehr

Nachklausur zur Vorlesung

Nachklausur zur Vorlesung Institut für Mathematische Stochastik WS 003/004 Universität Karlsruhe 30. April 004 Priv.-Doz. Dr. D. Kadelka Nachklausur zur Vorlesung Statistik für Biologen Musterlösungen Aufgabe 1 Gemessen wurde bei

Mehr

Woche 2: Zufallsvariablen

Woche 2: Zufallsvariablen Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 17/19, 24.04.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Teil III Zufallsvariablen Wahrscheinlichkeit

Mehr

7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen

7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen 7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen 7.7.1 Die Laplace-Verteilung Sei X eine gleich verteilte Zufallsvariable mit den Werten in der Menge Ω X = {x i R : i = 1,...,n}, d.h. f (x i = 1

Mehr

Klausur: Diskrete Strukturen I

Klausur: Diskrete Strukturen I Universität Kassel Fachbereich 10/1 13.03.2013 Klausur: Diskrete Strukturen I Name: Vorname: Matrikelnummer: Versuch: Unterschrift: Bitte fangen Sie für jede Aufgabe ein neues Blatt an. Beschreiben Sie

Mehr

p k (1 p) n k s k = (1 p + ps) n. k p(1 p) k 1 s k ((1 p)s) k 1 =

p k (1 p) n k s k = (1 p + ps) n. k p(1 p) k 1 s k ((1 p)s) k 1 = Binomialverteilung Für X Bin(n, p) gilt nach der binomischen Formel G X (s) = E[s X ] = n ( ) n p k (1 p) n k s k = (1 p + ps) n. k Geometrische Verteilung Sei X eine geometrisch verteilte Zufallsvariable

Mehr

Klausur zur Vorlesung

Klausur zur Vorlesung Institut für Mathematische Stochastik WS 2004/2005 Universität Karlsruhe 14. Februar 2005 Dr. Bernhard Klar Sebastian Müller Aufgabe 1: (15 Punkte) Klausur zur Vorlesung Statistik für Biologen Musterlösungen

Mehr

Grundlagen und Diskrete Strukturen Aufgaben zur Vorbereitung der Klausur

Grundlagen und Diskrete Strukturen Aufgaben zur Vorbereitung der Klausur Technische Universität Ilmenau WS 2008/2009 Institut für Mathematik Informatik, 1.FS Dr. Thomas Böhme Aufgabe 1 : Grundlagen und Diskrete Strukturen Aufgaben zur Vorbereitung der Klausur Gegeben sind die

Mehr

Die Kopplung von Markovketten und die Irrfahrt auf dem Torus

Die Kopplung von Markovketten und die Irrfahrt auf dem Torus Die Kopplung von Markovketten und die Irrfahrt auf dem Torus Verena Monschang Vortrag 20.05.20 Dieser Seminarvortrag thematisiert in erster Linie die Kopplung von Markovketten. Zu deren besseren Verständnis

Mehr

Klausur zur Vorlesung Stochastik II

Klausur zur Vorlesung Stochastik II Institut für Mathematische Stochastik WS 24/25 Universität Karlsruhe 7. März 25 Priv-Doz. Dr. D. Kadelka Klausur zur Vorlesung Stochastik II Dauer: 9 Minuten Name: Vorname: Matrikelnummer: Diese Klausur

Mehr

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. F. Hettlich Dr. S. Schmitt Dipl.-Math. J. Kusch Karlsruhe, den 09.06.20 Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik

Mehr

(8 + 2 Punkte) = = 0.75

(8 + 2 Punkte) = = 0.75 Aufgabe 1 (8 + 2 Punkte) Von 20 Teilnehmern einer Bergwanderung geben 8 Personen an Knieschmerzen zu haben. 6 Teilnehmer leiden an Sonnenbrand. 8 Teilnehmer blieben unversehrt. a) Wie groß ist die Wahrscheinlichkeit,

Mehr

Übungsaufgaben Lösungen

Übungsaufgaben Lösungen Übungsaufgaben Lösungen Stochastische Matrizen, Markov-Prozesse MV5.1 Eine N N-Matrix P heißt stochastisch, wenn ihre Matrixelemente nicht-negativ sind und alle Zeilensummen 1 ergeben. In Formeln: P ij

Mehr

Vorlesung 8b. Bedingte Erwartung, bedingte Varianz, bedingte Verteilung, bedingte Wahrscheinlichkeiten

Vorlesung 8b. Bedingte Erwartung, bedingte Varianz, bedingte Verteilung, bedingte Wahrscheinlichkeiten Vorlesung 8b Bedingte Erwartung, bedingte Varianz, bedingte Verteilung, bedingte Wahrscheinlichkeiten 1 Wie gehabt, denken wir uns ein zufälliges Paar X = (X 1,X 2 ) auf zweistufige Weise zustande gekommen:

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Markov Ketten und Bonus Malus Systeme

Markov Ketten und Bonus Malus Systeme Grund Stoch Markov Ketten Bonus Malus Probleme L 1 / 46 Markov Ketten und Bonus Malus Systeme Klaus D. Schmidt Lehrstuhl für Versicherungsmathematik Technische Universität Dresden TU Wien 19. Mai 2010

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Karin Waldherr & Pantelis Christodoulides 11. Mai 2011 Waldherr / Christodoulides Einführung in Quantitative Methoden- 8.VO 1/40 Poisson-Verteilung Diese Verteilung

Mehr

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen Vorlesung 3a Der Erwartungswert von diskreten reellwertigen Zufallsvariablen X sei eine Zufallsvariable, deren Zielbereich R (die Menge der reellen Zahlen) (oder eine Teilmenge davon) ist. Es existiere

Mehr

Kapitel XI - Die n-fache unabhängige Wiederholung eines Experiments

Kapitel XI - Die n-fache unabhängige Wiederholung eines Experiments Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XI - Die n-fache unabhängige Wiederholung eines Experiments Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig

Mehr

Probearbeit 13.1 Schuljahr 2010/11 Kernfach Mathematik

Probearbeit 13.1 Schuljahr 2010/11 Kernfach Mathematik Aufgabe 3: Stochastik Vorbemerkung: Führen Sie stets geeignete Zufallsvariablen und Namen für Ereignisse ein. Machen Sie auch Angaben über die Verteilung der jeweiligen Zufallsvariablen. a) Das unten stehende

Mehr

1 Übersicht Induktion

1 Übersicht Induktion Universität Koblenz-Landau FB 4 Informatik Prof. Dr. Viorica Sofronie-Stokkermans Dipl.-Inform. Markus Bender 0.11.01 (v1.3) 1 Übersicht Induktion 1.1 Allgemeines Unter einem induktiven Vorgehen versteht

Mehr

DWT 2.3 Ankunftswahrscheinlichkeiten und Übergangszeiten 400/467 Ernst W. Mayr

DWT 2.3 Ankunftswahrscheinlichkeiten und Übergangszeiten 400/467 Ernst W. Mayr 2. Ankunftswahrscheinlichkeiten und Übergangszeiten Bei der Analyse von Markov-Ketten treten oftmals Fragestellungen auf, die sich auf zwei bestimmte Zustände i und j beziehen: Wie wahrscheinlich ist es,

Mehr

Wie groß ist die Wahrscheinlichkeit Pr[X > y + x X > x]? Da bei den ersten x Versuchen kein Erfolg eintrat, stellen wir uns vor, dass das

Wie groß ist die Wahrscheinlichkeit Pr[X > y + x X > x]? Da bei den ersten x Versuchen kein Erfolg eintrat, stellen wir uns vor, dass das Sei X geometrisch verteilt mit Erfolgswahrscheinlichkeit p. Dann ist Pr[X = k] die Wahrscheinlichkeit, dass wir bei einem binären Experiment mit Erfolgswahrscheinlichkeit p genau in der k-ten unabhängigen

Mehr

Kapitel 6. Irrfahrten und Bernoullischemata

Kapitel 6. Irrfahrten und Bernoullischemata Kapitel 6 Irrfahrten und Bernoullischemata Ausgangspunkt dieses Kapitels ist das in den Abschnitten 2.5 und 3.3 vorgestellte mathematische Modell des mehrmals Werfens einer Münze. Die dort definierten

Mehr

Zeitstetige Markov-Prozesse: Einführung und Beispiele

Zeitstetige Markov-Prozesse: Einführung und Beispiele Zeitstetige Markov-Prozesse: Einführung und Beispiele Simone Wielart 08.12.10 Inhalt Q-Matrizen und ihre Exponentiale Inhalt Q-Matrizen und ihre Exponentiale Zeitstetige stochastische Prozesse Inhalt Q-Matrizen

Mehr

Zentralübung Diskrete Wahrscheinlichkeitstheorie (zur Vorlesung Prof. Esparza)

Zentralübung Diskrete Wahrscheinlichkeitstheorie (zur Vorlesung Prof. Esparza) SS 2013 Zentralübung Diskrete Wahrscheinlichkeitstheorie (zur Vorlesung Prof. Esparza) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2013ss/dwt/uebung/ 10. Mai 2013

Mehr

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen David Geier und Sven Middelberg RWTH Aachen, Sommersemester 27 Inhaltsverzeichnis Information 2 Aufgabe 4 Aufgabe 2 6 4 Aufgabe

Mehr

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1) 34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)

Mehr

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK)

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) für Studierende des Maschinenbaus vom 7. Juli (Dauer: 8 Minuten) Übersicht über die

Mehr

Stochastik Praktikum Markov Chain Monte Carlo Methoden

Stochastik Praktikum Markov Chain Monte Carlo Methoden Stochastik Praktikum Markov Chain Monte Carlo Methoden Humboldt-Universität zu Berlin 14.10.2010 Problemstellung Wie kann eine Zufallsstichprobe am Computer simuliert werden, deren Verteilung aus einem

Mehr

Grundlagen der Wahrscheinlichkeitstheorie

Grundlagen der Wahrscheinlichkeitstheorie Priv.-Doz. Dr. H. Steinacker Wintersemester 2013/2014 Grundlagen der Wahrscheinlichkeitstheorie betrachte Wiederholungen eines Experimentes, gleicher Vorbereitung (z.b. Würfeln, Dart werfen, Doppelspaltexperiment,...)

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

Scheinklausur zur Vorlesung Stochastik II

Scheinklausur zur Vorlesung Stochastik II Institut für Mathematische Stochastik WS 2007/2008 Universität Karlsruhe 25. 02. 2008 Dr. B. Klar Scheinklausur zur Vorlesung Stochastik II Muster-Lösung Dauer: 90 Minuten Name: Vorname: Matrikelnummer:

Mehr

Proseminarvortrag. Markov-Ketten in der Biologie (Anwendungen)

Proseminarvortrag. Markov-Ketten in der Biologie (Anwendungen) Proseminarvortrag Markov-Ketten in der Biologie (Anwendungen) von Peter Drössler 20.01.2010 2 Markov-Ketten in der Biologie (Peter Drössler, KIT 2010) Inhalt 1. Das Wright-Fisher Modell... 3 1.1. Notwendige

Mehr

Beispiel 6 (Einige Aufgaben zur Gleichverteilung)

Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Aufgabe (Anwendung der Chebyshev-Ungleichung) Sei X eine Zufallsvariable mit E(X) = µ und var(x) = σ a) Schätzen Sie die Wahrscheinlichkeit dafür, daß

Mehr

MafI I: Logik & Diskrete Mathematik (Autor: Gerrit (-Arthur) Gruben)

MafI I: Logik & Diskrete Mathematik (Autor: Gerrit (-Arthur) Gruben) Musterlösung zum. Aufgabenblatt zur Vorlesung MafI I: Logik & Diskrete Mathematik (Autor: Gerrit (-Arthur Gruben. Wahrscheinlichkeiten I ( Punkte Die Seiten von zwei Würfeln sind mit den folgenden Zahlen

Mehr

KAPITEL 5. Erwartungswert

KAPITEL 5. Erwartungswert KAPITEL 5 Erwartungswert Wir betrachten einen diskreten Wahrscheinlichkeitsraum (Ω, P) und eine Zufallsvariable X : Ω R auf diesem Wahrscheinlichkeitsraum. Die Grundmenge Ω hat also nur endlich oder abzählbar

Mehr

Kapitel 16. Aufgaben. Verständnisfragen. Rechenaufgaben

Kapitel 16. Aufgaben. Verständnisfragen. Rechenaufgaben Kapitel 16 Aufgaben Verständnisfragen Aufgabe 16.1 Ist das Produkt quadratischer oberer bzw. unterer Dreiecksmatrizen wieder eine obere bzw. untere Dreiecksmatrix? Aufgabe 16.2 Bekanntlich gilt im Allgemeinen

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 23 Die Gradformel Satz 1. Seien K L und L M endliche Körperweiterungen. Dann ist auch K M eine endliche Körpererweiterung und

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Klausur zur Vorlesung,,Algorithmische Mathematik II

Klausur zur Vorlesung,,Algorithmische Mathematik II Institut für angewandte Mathematik, Institut für numerische Simulation Sommersemester 2015 Prof. Dr. Anton Bovier, Prof. Dr. Martin Rumpf Klausur zur Vorlesung,,Algorithmische Mathematik II Bitte diese

Mehr

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit 3 Bedingte Wahrscheinlichkeit, Unabhängigkeit Bisher : (Ω, A, P) zur Beschreibung eines Zufallsexperiments Jetzt : Zusatzinformation über den Ausgang des Experiments, etwa (das Ereignis) B ist eingetreten.

Mehr

PRAKTIKUM KÜNSTLICHE INTELLIGENZ Ausarbeitung zum 1. Meilenstein

PRAKTIKUM KÜNSTLICHE INTELLIGENZ Ausarbeitung zum 1. Meilenstein PRAKTIKUM KÜNSTLICHE INTELLIGENZ Ausarbeitung zum 1. Meilenstein Bayes'sche Netze Andreas Bahcecioglu Marcel Bergmann Ertan Samgam Sven Schebitz Jan Seewald Fachhochschule Köln Wintersemester 2014 / 2015

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 4. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 4. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 0/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 4. Übungsblatt Aufgabe

Mehr

Statistik für Ingenieure Vorlesung 4

Statistik für Ingenieure Vorlesung 4 Statistik für Ingenieure Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 21. November 2017 3.3 Wichtige diskrete Wahrscheinlichkeitsverteilungen 3.3.1 Diskrete

Mehr

Kapitel 4: Irreduzible und aperiodische Markov Ketten 1

Kapitel 4: Irreduzible und aperiodische Markov Ketten 1 Matrielnummer: 1152750 Projetseminar zur Stochasti Kapitel 4: Irreduzible und aperiodische Marov Ketten 1 Für einige besonders interessante Ergebnisse der Marov Theorie, werden zunächst bestimmte Annnahme

Mehr

5 Binomial- und Poissonverteilung

5 Binomial- und Poissonverteilung 45 5 Binomial- und Poissonverteilung In diesem Kapitel untersuchen wir zwei wichtige diskrete Verteilungen d.h. Verteilungen von diskreten Zufallsvariablen): die Binomial- und die Poissonverteilung. 5.1

Mehr

Basiswissen Daten und Zufall Seite 1 von 8 1 Zufallsexperiment Ein Zufallsexperiment ist ein Versuchsaufbau mit zufälligem Ausgang, d. h. das Ergebnis kann nicht vorhergesagt werden. 2 Ergebnis (auch Ausgang)

Mehr

13 Grenzwertsätze Das Gesetz der großen Zahlen

13 Grenzwertsätze Das Gesetz der großen Zahlen 13 Grenzwertsätze 13.1 Das Gesetz der großen Zahlen Der Erwartungswert einer zufälligen Variablen X ist in der Praxis meist nicht bekannt. Um ihn zu bestimmen, sammelt man Beobachtungen X 1,X 2,...,X n

Mehr

Statistik für Ingenieure Vorlesung 2

Statistik für Ingenieure Vorlesung 2 Statistik für Ingenieure Vorlesung 2 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 24. Oktober 2016 2.4 Bedingte Wahrscheinlichkeiten Häufig ist es nützlich, Bedingungen

Mehr

Institut für Stochastik, SoSe K L A U S U R , 13:

Institut für Stochastik, SoSe K L A U S U R , 13: Institut für Stochastik, SoSe 2014 Mathematische Statistik Paravicini/Heusel 1. K L A U S U R 12.7.2014, 13:00-16.00 Name: Geburtsdatum: Vorname: Matrikelnummer: Übungsgruppe bei: Studiengang & angestrebter

Mehr

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme Binomialverteilung Wahrscheinlichkeitsfunktion Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder

Mehr

DIPLOMARBEIT. Abschätzungen der Konvergenzgeschwindigkeit von Markov-Ketten gegen die Gleichgewichtsverteilung

DIPLOMARBEIT. Abschätzungen der Konvergenzgeschwindigkeit von Markov-Ketten gegen die Gleichgewichtsverteilung Studiengang Diplom-Mathematik mit Schwerpunkt Biowissenschaften DIPLOMARBEIT Abschätzungen der Konvergenzgeschwindigkeit von Markov-Ketten gegen die Gleichgewichtsverteilung von: Christina Boll geb. Wolf

Mehr

15. September 2010 Prof. Dr. W. Bley. Universität Kassel Klausur SS 2010 Diskrete Strukturen I (Informatik) Name:... Matr.-Nr.:... Viel Erfolg!

15. September 2010 Prof. Dr. W. Bley. Universität Kassel Klausur SS 2010 Diskrete Strukturen I (Informatik) Name:... Matr.-Nr.:... Viel Erfolg! 15. September 010 Prof. Dr. W. Bley Universität Kassel Klausur SS 010 Diskrete Strukturen I (Informatik) 1 3 4 5 6 Name:................................................ Matr.-Nr.:............................................

Mehr

Weihnachtsaufgaben. a) Welche Urnenmodelle gibt es? Stelle zu jedem Modell ein konkretes Beispiel auf, welches durch dieses Modell beschrieben wird.

Weihnachtsaufgaben. a) Welche Urnenmodelle gibt es? Stelle zu jedem Modell ein konkretes Beispiel auf, welches durch dieses Modell beschrieben wird. Weihnachtsaufgaben Diese Aufgaben dienen dazu die in der Vorlesung und den Übungen eingeführten Begriffe zu verstehen und zu vertiefen, die Bearbeitung ist freiwillig Das Blatt wurde von den Übungsleitern

Mehr