Stochastische Prozesse
|
|
|
- Sylvia Pohl
- vor 9 Jahren
- Abrufe
Transkript
1 INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 1 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Übungen zur Vorlesung Stochastische Prozesse Musterlösungen Aufgabe 1: (Verzweigungsprozess) Die Generation 0 einer Population bestehe aus einem Individuum, das sich mit Wahrscheinlichkeit p k in k Nachfahren teilt (k N). Jeder dieser Nachfahren der Generation 1 teilt sich wiederum unabhängig von den anderen Individuen gemäß der Verteilung (p k ) k N in eine zufällige Anzahl von Nachfahren. Die Zufallsvariable X n beschreibe die Anzahl der Individuen der n-ten Generation (n N 0 ). Zeigen Sie, dass (X n ) n N0 eine Markovkette ist, und geben Sie die zugehörige Übergangswahrscheinlichkeitsfunktion von Generation n nach Generation n + 1 an. Lösung: X n+1,j sei die Anzahl der Individuen der n + 1-ten Generation, die vom j-ten Mitglied der Generation n abstammen. Die (X n+1,j ) sind also alle unabhängig und identisch verteilt mit Verteilung (p k ) k N. Die Anzahl der Individuen der n + 1-ten Generation ist nun gegeben durch X n X n+1 X n+1,j (n N 0 ). Damit folgt j1 P (X n+1 k n+1 X 0 k 0,..., X n k n ) P ( k n j1 X n+1,j k n+1 ) P (X n+1 k n+1 X n k n ). (X n ) ist also eine Markovkette mit Übergangswahrscheinlichkeitsfunktion ( Xn ) ( k ) p n,n+1 (k, l) P (X n+1 l X n k) P X n+1,j l X n k P X n+1,j l für k 1 und l k, sonst ist p n,n+1 (k, l) 0. j1 j1 Aufgabe 2: (Success Run) Ein Basketballspieler verwandelt einen Freiwurf mit Trefferwahrscheinlichkeit p 0.7 unabhängig von früheren Versuchen. In einer Folge von Freiwürfen sei X n die Anzahl der unmittelbar vor dem (n + 1)-ten Wurf erzielten Treffer, die nicht durch einen Fehlwurf unterbrochen werden (Success Run). Zeigen Sie, dass (X n ) n N0 eine Markovkette bildet und geben Sie die zugehörige Übergangswahrscheinlichkeitsfunktion an.
2 Lösung: Sei X n die Anzahl der unmittelbar vor dem (n + 1)-ten Wurf erzielten Treffer, die nicht durch einen Fehlwurf unterbrochen wurden. Desweiteren sei Y n der Ausgang des n-ten Wurfes (n 1). Dabei ist 1, falls der n te Wurf Treffer, Y n 0, falls der n te Wurf kein Treffer. Es sei U : N 0 0, 1} N 0 und U(x, y) x + y, falls y 1, 0, falls y 0. Somit ist X 0 0 und X n U(X n 1, Y n ) für n 1 und (X n ) eine Markovkette mit Übergangswahrscheinlichkeitsfunktion p n,n+1 (k, l) P(X n+1 l X n k) 0.7, l k + 1, P(U(k, Y n+1 ) l) 0., l 0, 0, sonst. Aufgabe : Das Wetter in Karlsruhe an aufeinanderfolgenden Tagen sei beschrieben durch eine Markovkette X : (X n ) n N0 mit dem Zustandsraum E 1, 2, }, deren Zustände wir wie folgt interpretieren: 1 regnerisch, 2 bewölkt, sonnig. Heute sei es bewölkt, d.h. es sei P(X 0 2) 1. Die Übergangswahrscheinlichkeiten seien gegeben durch IP(X n+1 l X n k) l k a) Wie groß ist die Wahrscheinlichkeit, dass es übermorgen regnet? b) Wie entwickelt sich das Wetter nach n Tagen? Berechnen Sie mit einem geeigneten Programm P(X n k) für n 1,..., 100 und k E. c) Welche Vermutungen kann man den in b) gewonnenen Daten entnehmen? Lösung: Gemäß Satz 2.10 ist die Übergangswahrscheinlichkeitsfunktion p : p n,n+1 von Stufe n nach Stufe n + 1 durch die oben angegebene, von n unabhängige Matrix gegeben, also p(k, l) l k
3 a) Gesucht ist die bedingte Wahrscheinlichkeit P(X 2 1 X 0 2) P(X 0 2, X 2 1) P(X 0 2) P(X 0 2)1 k1 P(X 0 2, X 1 k, X 2 1) (2.11) P(X 0 2) p(2, k) p(k, 1) k1 b) Sei n N 0 beliebig. Wegen (2.12) aus Satz 2.10 gilt P(X n+1 l X n k) p(k, l) und damit P(X n+1 l) k E P(X n k, X n+1 l) k E P(X n k) p(k, l), l E, hier also immer ( ) P(X n+1 l) P(X n 1) p(1, l) + P(X n 2) p(2, l) + P(X n ) p(, l) für l 1, 2,. Die Wahrscheinlichkeiten P(X n k) lassen sich also gemäß ( ) leicht rekursiv berechnen. Wir erhalten mit P(X 0 2) 1 für n 0, 1,..., 15 P(X n k) k Für n 16 ändert sich an diesen auf 6 Stellen gerundeten Werten nichts mehr. Ähnliche Wahrscheinlichkeiten erhält man, wenn man mit P(X 0 1) 1 oder mit P(X 0 ) 1 startet. Unabhängig von der Startverteilung scheinen die Wahrscheinlichkeiten immer gegen die gleiche Grenzverteilung zu konvergieren. c) Man kommt daher zu der Vermutung: Egal, welche Verteilung X 0 besitzt, gilt immer lim n P(X n 1) 2 9 Später werden wir diese Vermutung verifizieren. und lim n P(X n 2) lim n P(X n ) 7 18.
4 Aufgabe 4: Sei X wie in Aufgabe. X : (X 2 n ) n N0 ist bekanntlich wieder eine Markovkette mit Zustandsraum E. Bestimmen Sie eine Übergangswahrscheinlichkeitsfunktion für X von Stufe n nach n + 1, n N 0. Lösung: Wir lösen die Aufgabe zuerst allgemein. Wegen Korollar 2.6 ist X selbst eine Markovkette. Gesucht ist eine Übergangswahrscheinlichkeitsfunktion p n,n+1 : E 2 [0, 1] mit (2.12) P(X n+1 k n+1 X n k n ) p n,n+1(k n, k n+1 ), falls P(X n k n ) > 0, also p n,n+1(k, l) P(X 2n+2 l X 2n k) P(X 2n k, X 2n+2 l) P(X 2n k) j E P(X 2n k, X 2n+1 j, X 2n+2 l) P(X 2n k) (2.11) j E P(X 2n k) p 2n,2n+1 (k, j) p 2n+1,2n+2 (j, l) P(X 2n k) j E p 2n,2n+1 (k, j) p 2n+1,2n+2 (j, l), sobald P(X n k) P(X 2n k) > 0. Dies bedeutet aber, dass (allgemein) durch p n,n+1(k, l) : j E p 2n,2n+1 (k, j) p 2n+1,2n+2 (j, l), k, l E eine geeignete Übergangswahrscheinlichkeitsfunktion für X von Stufe n nach n + 1 definiert ist. Unter den Voraussetzungen von Aufgabe ist p n,n+1 p unabhängig von n und mit p (k, l) : p(k, j) p(j, l), k, l 1, 2, j1 gilt hier p n,n+1(k, l) p (k, l) unabhängig von n, explizit p (k, l) l k Aufgabe 5: Sei X (X n ) n N0 eine Markovkette mit Zustandsraum E und Übergangswahrscheinlichkeitsfunktionen p n,n+1 von Stufe n nach n + 1. Berechnen Sie bei bekanntem p 0 (k) : P(X 0 k), k E für beliebiges n N die Wahrscheinlichkeitsfunktion p n von X n, d.h. p n (k) : P(X n k), k E.
5 Lösung: (vergl. Beweis zu Satz 2.10.) Mit Fallunterscheidung folgt p n (k) : P(X n k) (2.11) (k 0,...,k n 1 ) E n P(X 0 k 0,..., X n 1 k n 1, X n k) n 1 P(X 0 k 0 ) p j 1,j (k j 1, k j ) p n 1,n (k n 1, k) (k 0,...,k n 1 ) E n j1 n 1 p 0 (k 0 ) p j 1,j (k j 1, k j ) p n 1,n (k n 1, k). (k 0,...,k n 1 ) E n j1 Aufgabe 6: In dieser Aufgabe soll gezeigt werden, dass Funktionen von Markovketten nicht immer Markovketten sind. Sei X (X n ) n N0 ein stochastischer Prozess mit Zustandsraum E 1, 2, }, mit P(X 0 k) 1, k 1, 2, und mit P(X n+1 k n+1 X 0 k 0,..., X n k n ) P(X n+1 k n+1 X n k n ) 1, falls k n 1, k n+1 2 oder k n 2, k n+1 oder k n, k n+1 1 0, sonst für alle n N 0, sobald P(X 0 k 0,..., X n k n ) > 0. a) Begründen Sie, dass X eine Markovkette ist. b) Bestimmen Sie P(X n k) für n N und k E. c) Sei Y n : 1, falls X n 1 0, sonst für n N 0. Begründen Sie, dass Y (Y n ) n N0 Markovkette ist. keine Lösung: a) Die Markov-Eigenschaft folgt unmittelbar aus den Voraussetzungen und Satz 2.5. b) Sei p n,n+1 : E 2 [0, 1] definiert durch p n,n+1 (k n, k n+1 ) : p(k n, k n+1 ) : 1, falls k n 1, k n+1 2 oder k n 2, k n+1 oder k n, k n+1 1 0, sonst. Dann gilt (2.10) aus Satz Insbesondere ist (ein weiterer Nachweis von a)) X eine Markovkette mit (2.12) ( ) P(X n+1 k n+1 X n k n ) p(k n, k n+1 ), falls P(X n k n ) > 0. p ist also eine Übergangswahrscheinlichkeitsfunktion von Stufe n nach n + 1 (unabhängig von n).
6 Wir zeigen mit vollständiger Induktion über n ( ) P(X n k) 1, k 1, 2,. Für n 0 gilt dies nach Voraussetzung. Gilt ( ) für n N 0, so gilt wegen ( ) und der Formel von der totalen Wahrscheinlichkeit ([SI], Satz.12) P(X n+1 1) k E P(X n+1 1 X n k) P(X n k) P(X n+1 1 X n ) P(X n ) und genauso P(X n+1 2) P(X n+1 ) 1. Damit gilt ( ) auch für n + 1. c) Wir nehmen an, dass (Y n ) n N0 eine Markovkette ist. Wegen b) gilt stets P(Y n 0) 2 und P(Y n 1) 1. Aus Satz 2.10 (2.11) und b) folgt P(Y 0 0, Y 1 0) P(X 0 2, X 1 2) + P(X }} 0 2, X 1 ) }} 0 1/ + P(X 0, X 1 2) + P(X }} 0, X 1 ) 1 }} > und wegen P(X 0 2, X 1, X 2 2) P(X 0 2, X 1, X 2 ) 0 auch P(Y 0 0, Y 1 0, Y 2 0) 0. Daher gilt P(Y 2 0 Y 0 0, Y 1 0) P(Y 0 0, Y 1 0, Y 2 0) P(Y 0 0, Y 1 0) 0. Aber genauso wie oben folgt wegen Korollar 2.6 und P(Y 1 0, Y 2 0) 1 > 0 P(Y 2 0 Y 1 0) P(Y 1 0, Y 2 0) P(Y 1 0) 1/ 2/ (Y n ) n N0 ist also keine Markovkette im Gegensatz zur Annahme.
Stochastische Prozesse
INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 9 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Übungen zur Vorlesung Stochastische Prozesse Musterlösungen Aufgabe 40: Es sei (X t ) t 0 ein
Wahrscheinlichkeitstheorie und Statistik vom
INSTITUT FÜR STOCHASTIK SS 2007 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Dipl.-Math. oec. W. Lao Klausur (Maschineningenieure) Wahrscheinlichkeitstheorie und Statistik vom 2.9.2007 Musterlösungen
Lösungen zu Übungsblatt 10 Höhere Mathematik Master KI Diskrete Zufallsgrößen/Markov-Ketten
Lösungen zu Übungsblatt 0 Höhere Mathematik Master KI Hinweise: Die Aufgaben - beziehen sich auf das Thema Diskrete Zufallsgrößen, Ihre Verteilungen und Erwartungswerte. Siehe dazu auch das auf der Homepage
Stochastische Prozesse
INSTITUT FÜR STOCHASTIK SS 29 UNIVERSITÄT KARLSRUHE Blatt 6 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Übungen zur Vorlesung Stochastische Prozesse Musterlösungen Aufgabe 27: Sei X eine R + -wertige
Klausur zur Vorlesung
Institut für Mathematische Stochastik WS 2006/2007 Universität Karlsruhe 12. Februar 2007 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Aufgabe 1 (15 Punkte) Klausur zur Vorlesung Statistik für Biologen
Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse
Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse Zu Markov-Prozessen: Bemerkungen: 17.01.2013 Wir betrachten im Folgenden eine Markovkette (X n ) n N0, wobei jedes X n Werte in Z = {0,1,2,...,s}
Stochastische Prozesse
INSTITUT FÜR STOCHASTIK SS 009 UNIVERSITÄT KARLSRUHE Blatt 4 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 16: (Success Run, Fortsetzung)
Vertiefung NWI: 13. Vorlesung zur Wahrscheinlichkeitstheorie
Fakultät für Mathematik Prof. Dr. Barbara Gentz SS 2013 Vertiefung NWI: 13. Vorlesung zur Wahrscheinlichkeitstheorie Mittwoch, 10.7.2013 13. Markoffketten 13.1 Beispiele 1. Irrfahrt auf dem zweidimensionalen
Kapitel 5: Markovketten
Kapitel 5: Markovketten Definition 5.1 Bezeichnungen Bsp. 5.1 Definition 5.2 Eine Fam. (X i ) i I von ZV en X i : Ω E auf (Ω, F, P) mit Werten im messb. Raum (E, E) heißt Stochastischer Prozess. E Zustandsraum
Lösungen 4.Übungsblatt
Karlsruher Institut für Technology (KIT) WS 2011/2012 Institut für Analysis Priv.-Doz. Dr. Gerd Herzog Dipl.-Math.techn. Rainer Mandel Lösungen 4.Übungsblatt Aufgabe 13 (K) Bestimmen Sie sämtliche Häufungswerte
Einführung in die Theorie der Markov-Ketten. Jens Schomaker
Einführung in die Theorie der Markov-Ketten Jens Schomaker Markov-Ketten Zur Motivation der Einführung von Markov-Ketten betrachte folgendes Beispiel: 1.1 Beispiel Wir wollen die folgende Situation mathematisch
Vorlesung 8b. Zweistufige Zufallsexperimente. Teil 1
Vorlesung 8b Zweistufige Zufallsexperimente Teil 1 1 Stellen wir uns ein zufälliges Paar X = (X 1, X 2 ) vor, das auf zweistufige Weise zustande kommt: es gibt eine Regel, die besagt, wie X 2 verteilt
Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0
Serie 4. Aufgabe 336 Punkte) Gegeben seien zwei reelle Zahlenfolgen durch a n : 0 n, n N b n : n n, n N Bestimmen Sie die Grenzwerte a bzw. b der Folgen a n ) n N bzw. b n ) n N. Geben Sie jeweils zu gegebenem
Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente
Mehrstufige Zufallsexperimente Inhalt 6.1 6.1 Mehrstufige Experimente 6.2 6.2 Bedingte Wahrscheinlichkeiten Seite 2 6.1 Mehrstufige Experimente Grundvorstellung: Viele Viele Experimente werden der der
6. Übungsblatt zur Einführung in die Stochastik
Fachbereich Mathematik Prof. Dr. Michael Kohler Dipl.-Math. Andreas Fromkorth Dipl.-Inf. Jens Mehnert SS 9 1.6.29 6. Übungsblatt zur Einführung in die Stochastik Aufgabe 22 Sei P ein auf der Borelschen
Vorlesung 9b. Bedingte Verteilungen und bedingte Wahrscheinlichkeiten
Vorlesung 9b Bedingte Verteilungen und bedingte Wahrscheinlichkeiten 1 Voriges Mal: Aufbau der gemeinsamen Verteilung von X 1 und X 2 aus der Verteilung ρ von X 1 und Übergangswahrscheinlichkeiten P(a
Einführung in Markoff-Ketten
Einführung in Markoff-Ketten von Peter Pfaffelhuber Version: 6. Juli 200 Inhaltsverzeichnis 0 Vorbemerkung Grundlegendes 2 Stationäre Verteilungen 6 3 Markoff-Ketten-Konvergenzsatz 8 0 Vorbemerkung Die
Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK
Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über
Einführung in die Stochastik 6. Übungsblatt
Einführung in die Stochastik 6. Übungsblatt Fachbereich Mathematik SS M. Kohler 3. Mai A. Fromkorth D. Furer Gruppen und Hausübung Aufgabe (a) Die Wahrscheinlichkeit, dass eine S Bahn Verspätung hat, betrage.3.
Der Metropolis-Hastings Algorithmus
Der Algorithmus Michael Höhle Department of Statistics University of Munich Numerical Methods for Bayesian Inference WiSe2006/07 Course 30 October 2006 Markov-Chain Monte-Carlo Verfahren Übersicht 1 Einführung
16.3 Rekurrente und transiente Zustände
16.3 Rekurrente und transiente Zustände Für alle n N bezeichnen wir mit f i (n) = P(X n = i,x n 1 i,...,x 1 i,x 0 = i) die Wahrscheinlichkeit, daß nach n Schritten erstmalig wieder der Zustand i erreicht
Klausur vom
UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Dominik Faas Stochastik Wintersemester 00/0 Klausur vom 09.06.0 Aufgabe (++4=9 Punkte) Bei einer Umfrage wurden n Personen befragt, an wievielen Tagen
Lösungshinweise zu den Hausaufgaben:
P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak 14. Gruppenübung zur Vorlesung Höhere Mathematik 1 Sommersemester 009 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe
Probeklausur Statistik II
Prof. Dr. Chr. Müller PROBE-KLAUSUR 1 1 2 3 4 5 6 7 8 Gesamt: 15 8 16 16 7 8 15 15 100 Probeklausur Statistik II Name: Vorname: Fachrichtung: Matrikel-Nummer: Bitte beachten Sie folgendes: 1) Die Klausur
3.4 Anwendung bedingter Wahrscheinlichkeiten
3.4 Anwendung bedingter Wahrscheinlichkeiten Bsp. 23 Betrachtet werden mehrere Kanonen. Für i N bezeichne A i das Ereignis, daß Kanone i einen Schuß abgibt. A sei das Ereignis, daß ein Treffer erzielt
Hausaufgaben. zur Vorlesung. Vollständige Induktion. 1. Beweist folgende Formeln (zu beweisen ist nur die Gleichheit mit dem. i=1 (4 + i)!
WS 015/1 Hausaufgaben zur Vorlesung Vollständige Induktion 1. Beweist folgende Formeln zu beweisen ist nur die Gleichheit mit dem! -Zeichen : a 5 + + 7 + 8 + + 4 + n n 4 + i! nn+9 b 1 + + 9 + + n 1 n 1
Unabhängigkeit KAPITEL 4
KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht
Pr[X t+1 = k] = Pr[X t+1 = k X t = i] Pr[X t = i], also. (q t+1 ) k = p ik (q t ) i, bzw. in Matrixschreibweise. q t+1 = q t P.
2.2 Berechnung von Übergangswahrscheinlichkeiten Wir beschreiben die Situation zum Zeitpunkt t durch einen Zustandsvektor q t (den wir als Zeilenvektor schreiben). Die i-te Komponente (q t ) i bezeichnet
Vorlesung HM2 - Master KI Melanie Kaspar, Prof. Dr. B. Grabowski 1
Melanie Kaspar, Prof. Dr. B. Grabowski 1 Melanie Kaspar, Prof. Dr. B. Grabowski 2 Melanie Kaspar, Prof. Dr. B. Grabowski 3 Markovketten Markovketten sind ein häufig verwendetes Modell zur Beschreibung
Wahrscheinlichkeitstheorie und Statistik für Studierende des Maschinenbaus vom
Institut für Stochastik WS 009/10 Karlsruher Institut für Technologie (KIT) Dr. B. Klar Klausur Wahrscheinlichkeitstheorie und Statistik für Studierende des Maschinenbaus vom 08.0.010 Musterlösungen Aufgabe
Übung Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung mit
Übung 2 24..23 Ü b u n g 2 Aufgabe Die Poissonverteilung P(λ) hat die Wahrscheinlichkeitsfunktion p(x) = λx e λ (x ) x! Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung
Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK. für Studierende der INFORMATIK
Institut für Stochastik Prof. Dr. Daniel Hug Name: Vorname: Matr.-Nr.: Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK Datum: 08. Februar 0 Dauer:
Übungen Abgabetermin: Freitag, , 10 Uhr
Universität Münster Institut für Mathematische Statistik Stochastik für Lehramtskandidaten SoSe 015, Blatt 1 Löwe/Heusel Übungen Abgabetermin: Freitag, 10.7.015, 10 Uhr Hinweis: Dies ist nur eine Beispiellösung.
13 Mehrdimensionale Zufallsvariablen Zufallsvektoren
3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem
Der Ergodensatz. Hendrik Hülsbusch
Der Ergodensatz Hendrik Hülsbusch 1..212 Inhaltsverzeichnis Einleitung 3 5 Stationäre Verteilungen 5 6 Reversible Markovketten 11 2 Einleitung In meinem Vortrag beschäftigen wir uns mit dem asymptotischen
Einführung und Grundlagen
Kapitel 1 Einführung und Grundlagen Generelle Notation: Ω, A, P sei ein W-Raum im Hintergrund nie weiter spezifiziert Die betrachteten Zufallsvariablen seien auf Ω definiert, zb X : Ω, A M, A, wobei M,
Stochastische Prozesse
INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 2 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 7: (B. Fredmans Urnenmodell)
Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten
Kapitel 2 Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten 2.1 Stochastische Unabhängigkeit von Ereignissen Gegeben sei ein W-Raum (Ω, C, P. Der Begriff der stochastischen Unabhängigkeit von
0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5
4 Verteilungen und ihre Kennzahlen 1 Kapitel 4: Verteilungen und ihre Kennzahlen A: Beispiele Beispiel 1: Eine diskrete Zufallsvariable X, die nur die Werte 1,, 3, 4, 5 mit positiver Wahrscheinlichkeit
Nachklausur zur Vorlesung
Institut für Mathematische Stochastik WS 003/004 Universität Karlsruhe 30. April 004 Priv.-Doz. Dr. D. Kadelka Nachklausur zur Vorlesung Statistik für Biologen Musterlösungen Aufgabe 1 Gemessen wurde bei
Woche 2: Zufallsvariablen
Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 17/19, 24.04.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Teil III Zufallsvariablen Wahrscheinlichkeit
7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen
7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen 7.7.1 Die Laplace-Verteilung Sei X eine gleich verteilte Zufallsvariable mit den Werten in der Menge Ω X = {x i R : i = 1,...,n}, d.h. f (x i = 1
Klausur: Diskrete Strukturen I
Universität Kassel Fachbereich 10/1 13.03.2013 Klausur: Diskrete Strukturen I Name: Vorname: Matrikelnummer: Versuch: Unterschrift: Bitte fangen Sie für jede Aufgabe ein neues Blatt an. Beschreiben Sie
p k (1 p) n k s k = (1 p + ps) n. k p(1 p) k 1 s k ((1 p)s) k 1 =
Binomialverteilung Für X Bin(n, p) gilt nach der binomischen Formel G X (s) = E[s X ] = n ( ) n p k (1 p) n k s k = (1 p + ps) n. k Geometrische Verteilung Sei X eine geometrisch verteilte Zufallsvariable
Klausur zur Vorlesung
Institut für Mathematische Stochastik WS 2004/2005 Universität Karlsruhe 14. Februar 2005 Dr. Bernhard Klar Sebastian Müller Aufgabe 1: (15 Punkte) Klausur zur Vorlesung Statistik für Biologen Musterlösungen
Grundlagen und Diskrete Strukturen Aufgaben zur Vorbereitung der Klausur
Technische Universität Ilmenau WS 2008/2009 Institut für Mathematik Informatik, 1.FS Dr. Thomas Böhme Aufgabe 1 : Grundlagen und Diskrete Strukturen Aufgaben zur Vorbereitung der Klausur Gegeben sind die
Die Kopplung von Markovketten und die Irrfahrt auf dem Torus
Die Kopplung von Markovketten und die Irrfahrt auf dem Torus Verena Monschang Vortrag 20.05.20 Dieser Seminarvortrag thematisiert in erster Linie die Kopplung von Markovketten. Zu deren besseren Verständnis
Klausur zur Vorlesung Stochastik II
Institut für Mathematische Stochastik WS 24/25 Universität Karlsruhe 7. März 25 Priv-Doz. Dr. D. Kadelka Klausur zur Vorlesung Stochastik II Dauer: 9 Minuten Name: Vorname: Matrikelnummer: Diese Klausur
Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt
Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. F. Hettlich Dr. S. Schmitt Dipl.-Math. J. Kusch Karlsruhe, den 09.06.20 Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik
(8 + 2 Punkte) = = 0.75
Aufgabe 1 (8 + 2 Punkte) Von 20 Teilnehmern einer Bergwanderung geben 8 Personen an Knieschmerzen zu haben. 6 Teilnehmer leiden an Sonnenbrand. 8 Teilnehmer blieben unversehrt. a) Wie groß ist die Wahrscheinlichkeit,
Übungsaufgaben Lösungen
Übungsaufgaben Lösungen Stochastische Matrizen, Markov-Prozesse MV5.1 Eine N N-Matrix P heißt stochastisch, wenn ihre Matrixelemente nicht-negativ sind und alle Zeilensummen 1 ergeben. In Formeln: P ij
Vorlesung 8b. Bedingte Erwartung, bedingte Varianz, bedingte Verteilung, bedingte Wahrscheinlichkeiten
Vorlesung 8b Bedingte Erwartung, bedingte Varianz, bedingte Verteilung, bedingte Wahrscheinlichkeiten 1 Wie gehabt, denken wir uns ein zufälliges Paar X = (X 1,X 2 ) auf zweistufige Weise zustande gekommen:
I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...
Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................
Markov Ketten und Bonus Malus Systeme
Grund Stoch Markov Ketten Bonus Malus Probleme L 1 / 46 Markov Ketten und Bonus Malus Systeme Klaus D. Schmidt Lehrstuhl für Versicherungsmathematik Technische Universität Dresden TU Wien 19. Mai 2010
Einführung in Quantitative Methoden
Einführung in Quantitative Methoden Karin Waldherr & Pantelis Christodoulides 11. Mai 2011 Waldherr / Christodoulides Einführung in Quantitative Methoden- 8.VO 1/40 Poisson-Verteilung Diese Verteilung
Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen
Vorlesung 3a Der Erwartungswert von diskreten reellwertigen Zufallsvariablen X sei eine Zufallsvariable, deren Zielbereich R (die Menge der reellen Zahlen) (oder eine Teilmenge davon) ist. Es existiere
Kapitel XI - Die n-fache unabhängige Wiederholung eines Experiments
Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XI - Die n-fache unabhängige Wiederholung eines Experiments Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig
Probearbeit 13.1 Schuljahr 2010/11 Kernfach Mathematik
Aufgabe 3: Stochastik Vorbemerkung: Führen Sie stets geeignete Zufallsvariablen und Namen für Ereignisse ein. Machen Sie auch Angaben über die Verteilung der jeweiligen Zufallsvariablen. a) Das unten stehende
1 Übersicht Induktion
Universität Koblenz-Landau FB 4 Informatik Prof. Dr. Viorica Sofronie-Stokkermans Dipl.-Inform. Markus Bender 0.11.01 (v1.3) 1 Übersicht Induktion 1.1 Allgemeines Unter einem induktiven Vorgehen versteht
DWT 2.3 Ankunftswahrscheinlichkeiten und Übergangszeiten 400/467 Ernst W. Mayr
2. Ankunftswahrscheinlichkeiten und Übergangszeiten Bei der Analyse von Markov-Ketten treten oftmals Fragestellungen auf, die sich auf zwei bestimmte Zustände i und j beziehen: Wie wahrscheinlich ist es,
Wie groß ist die Wahrscheinlichkeit Pr[X > y + x X > x]? Da bei den ersten x Versuchen kein Erfolg eintrat, stellen wir uns vor, dass das
Sei X geometrisch verteilt mit Erfolgswahrscheinlichkeit p. Dann ist Pr[X = k] die Wahrscheinlichkeit, dass wir bei einem binären Experiment mit Erfolgswahrscheinlichkeit p genau in der k-ten unabhängigen
Kapitel 6. Irrfahrten und Bernoullischemata
Kapitel 6 Irrfahrten und Bernoullischemata Ausgangspunkt dieses Kapitels ist das in den Abschnitten 2.5 und 3.3 vorgestellte mathematische Modell des mehrmals Werfens einer Münze. Die dort definierten
Zeitstetige Markov-Prozesse: Einführung und Beispiele
Zeitstetige Markov-Prozesse: Einführung und Beispiele Simone Wielart 08.12.10 Inhalt Q-Matrizen und ihre Exponentiale Inhalt Q-Matrizen und ihre Exponentiale Zeitstetige stochastische Prozesse Inhalt Q-Matrizen
Zentralübung Diskrete Wahrscheinlichkeitstheorie (zur Vorlesung Prof. Esparza)
SS 2013 Zentralübung Diskrete Wahrscheinlichkeitstheorie (zur Vorlesung Prof. Esparza) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2013ss/dwt/uebung/ 10. Mai 2013
Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen
Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen David Geier und Sven Middelberg RWTH Aachen, Sommersemester 27 Inhaltsverzeichnis Information 2 Aufgabe 4 Aufgabe 2 6 4 Aufgabe
In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)
34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)
Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK)
Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) für Studierende des Maschinenbaus vom 7. Juli (Dauer: 8 Minuten) Übersicht über die
Stochastik Praktikum Markov Chain Monte Carlo Methoden
Stochastik Praktikum Markov Chain Monte Carlo Methoden Humboldt-Universität zu Berlin 14.10.2010 Problemstellung Wie kann eine Zufallsstichprobe am Computer simuliert werden, deren Verteilung aus einem
Grundlagen der Wahrscheinlichkeitstheorie
Priv.-Doz. Dr. H. Steinacker Wintersemester 2013/2014 Grundlagen der Wahrscheinlichkeitstheorie betrachte Wiederholungen eines Experimentes, gleicher Vorbereitung (z.b. Würfeln, Dart werfen, Doppelspaltexperiment,...)
2 Zufallsvariable, Verteilungen, Erwartungswert
2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments
Scheinklausur zur Vorlesung Stochastik II
Institut für Mathematische Stochastik WS 2007/2008 Universität Karlsruhe 25. 02. 2008 Dr. B. Klar Scheinklausur zur Vorlesung Stochastik II Muster-Lösung Dauer: 90 Minuten Name: Vorname: Matrikelnummer:
Proseminarvortrag. Markov-Ketten in der Biologie (Anwendungen)
Proseminarvortrag Markov-Ketten in der Biologie (Anwendungen) von Peter Drössler 20.01.2010 2 Markov-Ketten in der Biologie (Peter Drössler, KIT 2010) Inhalt 1. Das Wright-Fisher Modell... 3 1.1. Notwendige
Beispiel 6 (Einige Aufgaben zur Gleichverteilung)
Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Aufgabe (Anwendung der Chebyshev-Ungleichung) Sei X eine Zufallsvariable mit E(X) = µ und var(x) = σ a) Schätzen Sie die Wahrscheinlichkeit dafür, daß
MafI I: Logik & Diskrete Mathematik (Autor: Gerrit (-Arthur) Gruben)
Musterlösung zum. Aufgabenblatt zur Vorlesung MafI I: Logik & Diskrete Mathematik (Autor: Gerrit (-Arthur Gruben. Wahrscheinlichkeiten I ( Punkte Die Seiten von zwei Würfeln sind mit den folgenden Zahlen
KAPITEL 5. Erwartungswert
KAPITEL 5 Erwartungswert Wir betrachten einen diskreten Wahrscheinlichkeitsraum (Ω, P) und eine Zufallsvariable X : Ω R auf diesem Wahrscheinlichkeitsraum. Die Grundmenge Ω hat also nur endlich oder abzählbar
Kapitel 16. Aufgaben. Verständnisfragen. Rechenaufgaben
Kapitel 16 Aufgaben Verständnisfragen Aufgabe 16.1 Ist das Produkt quadratischer oberer bzw. unterer Dreiecksmatrizen wieder eine obere bzw. untere Dreiecksmatrix? Aufgabe 16.2 Bekanntlich gilt im Allgemeinen
Einführung in die Algebra
Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 23 Die Gradformel Satz 1. Seien K L und L M endliche Körperweiterungen. Dann ist auch K M eine endliche Körpererweiterung und
Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen
Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind
Klausur zur Vorlesung,,Algorithmische Mathematik II
Institut für angewandte Mathematik, Institut für numerische Simulation Sommersemester 2015 Prof. Dr. Anton Bovier, Prof. Dr. Martin Rumpf Klausur zur Vorlesung,,Algorithmische Mathematik II Bitte diese
3 Bedingte Wahrscheinlichkeit, Unabhängigkeit
3 Bedingte Wahrscheinlichkeit, Unabhängigkeit Bisher : (Ω, A, P) zur Beschreibung eines Zufallsexperiments Jetzt : Zusatzinformation über den Ausgang des Experiments, etwa (das Ereignis) B ist eingetreten.
PRAKTIKUM KÜNSTLICHE INTELLIGENZ Ausarbeitung zum 1. Meilenstein
PRAKTIKUM KÜNSTLICHE INTELLIGENZ Ausarbeitung zum 1. Meilenstein Bayes'sche Netze Andreas Bahcecioglu Marcel Bergmann Ertan Samgam Sven Schebitz Jan Seewald Fachhochschule Köln Wintersemester 2014 / 2015
Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 4. Übungsblatt
KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 0/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 4. Übungsblatt Aufgabe
Statistik für Ingenieure Vorlesung 4
Statistik für Ingenieure Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 21. November 2017 3.3 Wichtige diskrete Wahrscheinlichkeitsverteilungen 3.3.1 Diskrete
Kapitel 4: Irreduzible und aperiodische Markov Ketten 1
Matrielnummer: 1152750 Projetseminar zur Stochasti Kapitel 4: Irreduzible und aperiodische Marov Ketten 1 Für einige besonders interessante Ergebnisse der Marov Theorie, werden zunächst bestimmte Annnahme
5 Binomial- und Poissonverteilung
45 5 Binomial- und Poissonverteilung In diesem Kapitel untersuchen wir zwei wichtige diskrete Verteilungen d.h. Verteilungen von diskreten Zufallsvariablen): die Binomial- und die Poissonverteilung. 5.1
Basiswissen Daten und Zufall Seite 1 von 8 1 Zufallsexperiment Ein Zufallsexperiment ist ein Versuchsaufbau mit zufälligem Ausgang, d. h. das Ergebnis kann nicht vorhergesagt werden. 2 Ergebnis (auch Ausgang)
13 Grenzwertsätze Das Gesetz der großen Zahlen
13 Grenzwertsätze 13.1 Das Gesetz der großen Zahlen Der Erwartungswert einer zufälligen Variablen X ist in der Praxis meist nicht bekannt. Um ihn zu bestimmen, sammelt man Beobachtungen X 1,X 2,...,X n
Statistik für Ingenieure Vorlesung 2
Statistik für Ingenieure Vorlesung 2 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 24. Oktober 2016 2.4 Bedingte Wahrscheinlichkeiten Häufig ist es nützlich, Bedingungen
Institut für Stochastik, SoSe K L A U S U R , 13:
Institut für Stochastik, SoSe 2014 Mathematische Statistik Paravicini/Heusel 1. K L A U S U R 12.7.2014, 13:00-16.00 Name: Geburtsdatum: Vorname: Matrikelnummer: Übungsgruppe bei: Studiengang & angestrebter
Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme
Binomialverteilung Wahrscheinlichkeitsfunktion Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder
DIPLOMARBEIT. Abschätzungen der Konvergenzgeschwindigkeit von Markov-Ketten gegen die Gleichgewichtsverteilung
Studiengang Diplom-Mathematik mit Schwerpunkt Biowissenschaften DIPLOMARBEIT Abschätzungen der Konvergenzgeschwindigkeit von Markov-Ketten gegen die Gleichgewichtsverteilung von: Christina Boll geb. Wolf
15. September 2010 Prof. Dr. W. Bley. Universität Kassel Klausur SS 2010 Diskrete Strukturen I (Informatik) Name:... Matr.-Nr.:... Viel Erfolg!
15. September 010 Prof. Dr. W. Bley Universität Kassel Klausur SS 010 Diskrete Strukturen I (Informatik) 1 3 4 5 6 Name:................................................ Matr.-Nr.:............................................
Weihnachtsaufgaben. a) Welche Urnenmodelle gibt es? Stelle zu jedem Modell ein konkretes Beispiel auf, welches durch dieses Modell beschrieben wird.
Weihnachtsaufgaben Diese Aufgaben dienen dazu die in der Vorlesung und den Übungen eingeführten Begriffe zu verstehen und zu vertiefen, die Bearbeitung ist freiwillig Das Blatt wurde von den Übungsleitern
