Repetitionsaufgaben Bruchterme
|
|
|
- Hajo Knopp
- vor 8 Jahren
- Abrufe
Transkript
1 Kantonale Fahshaft Mathematik Repetitionsaufgaben Bruhterme Zusammengestellt von der Fahshaft Mathematik der Kantonsshule Willisau Inhaltsverzeihnis A) Vorbemerkung... 1 B) Lernziel... 1 C) Theorie... D) Aufgaben... 4 E) Musterlösungen... 5 A) Vorbemerkung Als Voraussetzungen für diese Repetitionsaufgaben sind insbesondere folgende Repetitionsaufgaben zwingend: Negative Zahlen/Brühe/Prozentrehnen, v.a. der Teil über Brühe, auf dem hier wesentlih aufgebaut wird Termumformungen B) Lernziel Bruhterme vereinfahen können
2 C) Theorie Erweitern: Ein Bruhterm kann erweitert werden, indem Zähler und Nenner mit demselben Term 0 multipliziert werden. Dabei ändert sih der Wert des Bruhterms niht, die Bruhterme sind äquivalent bzw. gleihwertig. Beispiel: a a, da der Bruhterm mit erweitert wurde. b b Kürzen: Ein Bruhterm kann gekürzt werden, indem Zähler und Nenner durh denselben Term 0 dividiert werden. Kürzen ist also die Umkehroperation zum Erweitern. Es wird in der Regel immer verlangt, dass Resultate mit einem komplett gekürzten Bruhterm angegeben werden. Beispiel: 45ab 18a b 5 5 ab 3, da der Bruhterm mit 9ab gekürzt werden konnte. Aus Differenzen und Summen kürzen nur die Dummen. lautet die Merkregel. Es dürfen ausshliesslih Faktoren gekürzt werden. Beispiele: a) ab a (b kann niht gekürzt werden, weil b im Zähler kein Faktor ist, sondern ein b Summand.) b) mnm m(n1) m (Der Faktor (n 1) kann gekürzt werden.) n n1 (n1) n1 Addition/Subtraktion: Zwei Bruhterme werden folgendermassen addiert bzw. subtrahiert: 1. Zähler und Nenner werden wenn möglih faktorisiert. Es wird wenn möglih gekürzt.. Die Bruhterme werden gleihnennrig gemaht, indem geeignet erweitert wird. Es wird der kleinste/einfahste gemeinsame Nenner (GN) verwendet. 3. Die Zähler werden addiert bzw. subtrahiert, der Nenner wird beibehalten. 4. Der Zähler wird wenn möglih faktorisiert. Es wird wenn möglih gekürzt. Beispiele: a) 6z5 5z 3z z 1 z 4z4 GN4(z1)(z1) b) 6z5 5z (z1)(z1) (z1) 4(6z5) 4(z1)(z1) (z1)(5z) 4(z1)(z1) 4z0(10z 4z10z4)3z 3z 7z 33z16 4(z1)(z1) 4(z1)(z1) () 3 ()() ()() GN()() 6 3() 633 ()() ()() ()() 3z 4(z1) (z1)3z 4z0(z)(5z)3z 3z 4(z1)(z1) 4(z1)(z1) kürzen 33 ()() 6 3 ()() 3() ()() kürzen 3 Multiplikation: Zwei Bruhterme werden folgendermassen multipliziert: 1. Zähler und Nenner werden wenn möglih faktorisiert. Es wird wenn möglih gekürzt.. Der neue Zähler wird durh Zähler mal Zähler berehnet. 3. Der neue Nenner wird durh Nenner mal Nenner berehnet. Merke: Die Bruhterme müssen niht gleihnennrig gemaht werden. Beispiel: 5m5n m n mn 5(mn) (mn)(mn) (mn) kürzen 1 5 mn mn 15 (mn)(mn) 5 (mn) Repetitionsaufgaben Bruhterme
3 Division: Zwei Bruhterme werden folgendermassen dividiert: 1. Aus der Division wird eine Multiplikation mit dem Kehrwert des zweiten Bruhterms (Divisor) geshrieben.. Die Multiplikation (vgl. oben) wird durhgeführt. Beispiel: (4) 3(3) (3) 4 kürzen (3) 1 3 Doppelbrühe sind nihts anderes als die Division zweier Bruhterme. Der grösste Bruhstrih wird als Division umgeshrieben und dann kommt die Division (vgl. oben) zur Anwendung. Beispiel: a b a b Merkregel: Es kann äussere innere a a a b a (b) kürzen 1 b b b a b a 1 gerehnet werden. Denn a und b sind die äusseren, b und a sind die inneren Terme des Bruhterms, also a(b) (b)a. Repetitionsaufgaben Bruhterme 3
4 D) Aufgaben 1. Kürzen Sie die folgenden Bruhterme so weit wie möglih: a) a(b1) b) ) 4a3 b 5 (ab) 3 d) 3 77a 8a 4 b(ab) f) g) 5a5 5a h) 14a7b 1a 1ab3b. Berehnen Sie: a) d) g) z9 z5 z 1 z z j) a b ab aa bb ab ab b) 3 7 5a 10a 15a h) a3b 4ab ab ab k) 8 1 3a4b ab ) 3a a b 3b a b f) 5w w3 3w w i) l) w1 w w Berehnen Sie: a) a a d) b) ab 44 4z 3a3b 8z 56 ) 4() f) ( ) ( ) 4. Berehnen Sie: a) d) a3a 6 b) 41 3 (3) b5 ( 3) ) ( 3b f) ) 5. Berehnen Sie: a) 4bd ( 3a 4b 15 6d ) b) (36p 4q ) pq ) ( a b ) ( a b ) d) ( 1 1 ) Repetitionsaufgaben Bruhterme 4
5 E) Musterlösungen 1. a) kürzen mit 1 3 b) 55a(b1) 77a kürzen mit 11a 5(b1) ) 4a3 b 5 (ab) 3 8a 4 b(ab) d) a kürzen mit 14a 3 b(ab) 3b 4 (ab) (1) a kürzen mit (1) () () 1 kürzen mit () f) ( 9) ( 4 81) kürzen mit (3)(3) 4 g) 5a5 5a h) 3( 9) 5(a5) 5a 14a7b 1a 1ab3b. a) b) 5a 3 10a 7 ) GN6 1 7(ab) 3(4a 4abb ) ( 1) 4(3)(3) 3( 9)( 9) 5(a5) 1(a5) kürzen mit (a5) (ab) 3(ab) kürzen mit GN30a a 30a 30a 30a 30a 3a 3b 3a 3b a b a b (ab)(ab) (ab)(ab) kürzen mit (ab) 3 d) ab GN(5)(5) 5(1) (5)(5) (5) (5)(5) (1) GN(ab)(ab) 4(3)(3) 3( 9)(3)(3) kürzen mit (ab) 7 3a3b (ab)(ab) 3(ab) 3(5) 10(3 15) 5 5 (5)(5) (5)(5) (5)(5) 3(1) kürzen mit 3 5 GN3(1) (1) w1 5w 3w w1 w w6 w3 w (w)(w3) GN(w)(w3) f) 5w w3 3w w g) z9 z 1 z5 z z (w)5w (w)(w3) z 9z(z 4z5) z(z1)(z1) h) a3b 4ab ab ab 3a4b ab (w3)3w (w)(w3) z9 (z1)(z1) 5z5 z(z1)(z1) z5 z(z1) GN(ab)(ab) (ab)(a3b) (ab)(ab) (ab)(ab) (ab)(ab) a 4ab3b 4(a 3abb )(3a ab4b ) (ab)(ab) i) GN(1)(1) 6 3(1) 6 3(1) 5 3(1) 10 3(1) 3(ab) (ab)(ab) w1 5w 10w(3w 9w)(w1) w 17w1 (w)(w3) (w)(w3) (w)(w3) GNz(z1)(z1) 5(z1) z(z1)(z1) a3b (ab) 3a4b (ab) ab (ab) 3( 1) 5 ( 1)( 1) ( 1) (ab)(3a4b) (ab)(ab) 6a 9ab11b (ab)(ab) (1)(1) 5 (1)(1) 11 (1)(1) z(z9) (z1)(z5) z(z1)(z1) z(z1)(z1) kürzen mit (z1) 5 z(z1) kürzen mit ( 1), 3 5 (1)(1) (1)(1) Repetitionsaufgaben Bruhterme 5
6 j) k) l) a b ab aa bb ab ab kürzen mit a bzw. b bzw. ab GN(1)(1) GN(3)(3) 1 (1) (1)(1) (3) (3)(3) kürzen mit (1) 4(1) (1)(1) 3. a) a a b) ab ) 4() 5 1 a a(1) 1 ( 1) b ab b(1) ab( 1) 1 (1) (1)(1) (1) (1)(1) (1)(1) (1)(1) (1)(1) (4) (4)(3) 3() ()(3) (3)3 6(39) 15 (3)(3) (3)(3) (3)(3) kürzen mit (4) bzw. () ( 1) (1)(1) 4( 1) (1)(1), kürzen mit (1) 4(1)(1) 1 (1) (1) (1) 1 1 kürzen mit a und 11 3a3b 1 4 (ab) d) GN(1)(1) 4(1) (1)(1) 3(ab) 4() ( 4) ( 4 16) ()() ( 4)()() z 8z 56 () 4z kürzen mit (ab) () () (1) 4( 1)( 1) (1)(1) (1)(1) kürzen mit 5() ()() ( 4)( 4) 5 kürzen mit 5()() 9 8z ()(3) f)( ) ( ) () () ( ) () () 4. a) b) 41 3 kürzen mit 41 ( 3) ) 48 4b5 ( ) 48 ( 5 3b 5 3b 4b 5) d) f) (3) a(31) (3) 6 6 a3a 6 (3) (3) kürzen mit 4 6 a3a (3) 6 kürzen mit (3) kürzen mit (6)(3) 3 ( 4) 3 1 ( 4) kürzen mit 4z() () kürzen mit (3) ) ( 5 3b b (3) (31) (31) a(3) 6 3b 6 (3) 6 1 kürzen mit (3)(31) 3 31 a (3) (6)() (3)(1) (3)() (6)(1) 1 ()(1) 1 ()(1) Repetitionsaufgaben Bruhterme 6
7 5. a) 4bd ( 3a ) kürzen mit 3 4bd 6d 15 4b kürzen mit 4bd 1 3ad10b 3ad10b 1 GN35 3 ( 180p b) ( 36p 7 3 4q ) pq (3a 5 ) GN4bd 4bd 4b d (3ad 10b ) 4bd 3ad10b 4bd 4bd 4bd q ) p 168q pq pq 1(15p 14q ) 35 kürzen mit 635 (15p 14q ) 1 (15p 14q ) pq pq pq ) ( a ) b ( a ) GNb b b ( a ) b b (b a ) b b (ba) b (ba) (ba)(ba) b b Variante: ( a ) b ( a ) 3. binomishe Formel a b b (ba)(ba) b d) ( 1 1 ) 4 () () GN()() ( ()() GNb b () ()() ) ( () a b a a b b ()() ) ( Variante: ( 1 1 ). binomishe Formel 1 1 () ()() () GN() () () ()() () () () () 4 () () ()() ) () ( ) () () () () Repetitionsaufgaben Bruhterme 7
Repetitionsaufgaben Negative Zahlen/Brüche/Prozentrechnen
Kantonale Fachschaft Mathematik Repetitionsaufgaben Negative Zahlen/Brüche/Prozentrechnen Zusammengestellt von der Fachschaft Mathematik der Kantonsschule Willisau Inhaltsverzeichnis A) Lernziele... 1
Repetitionsaufgaben Termumformungen
Kantonale Fachschaft Mathematik Repetitionsaufgaben Termumformungen Zusammengestellt von der Fachschaft Mathematik der Kantonsschule Willisau Inhaltsverzeichnis A) Vorbemerkung... 1 B) Lernziele... 1 C)
Seiten 5 / 6. Seite 8. Lösungen Mathematik-Dossier Algebra in Q
Seite Binomishe Formeln Seiten / Produkt von zwei Binomen / Binome in Trinome verwandeln 1 a) (r + ) (s 11) rs 11r + s - b) ( + ) ( ) 2 + 2 2-2 ) (19y + ) ( y) 12y 7y 2 + 2 12y -7y 2 + 10y + 2 (korrekt
) sind keine Terme. Setzt man für die Variable eines Terms eine Zahl ein, so erhält man als Ergebnis wieder eine Zahl. y = 2 3 y = 11
Wert eines Terms berechnen sind sinnvolle Rechenausdrücke, die aus Zahlen, Variablen, Rechenzeichen und Klammern bestehen können. Setzt man für die Variablen Zahlen ein, so erhält man als Ergebnis wieder
Terme und Gleichungen
Terme und Gleichungen Rainer Hauser November 00 Terme. Rekursive Definition der Terme Welche Objekte Terme genannt werden, wird rekursiv definiert. Die rekursive Definition legt zuerst als Basis fest,
Umstellen von Formeln und Gleichungen
Umstellen von Formeln und Gleihungen. Ds Zusmmenfssen von Termen edeutet grundsätzlih ein Ausklmmern, uh wenn mn den Zwishenshritt niht immer ufshreit. 4 6 = (4 6) =. Steht eine Vrile, nh der ufgelöst
Terme und Formeln Grundoperationen
Terme und Formeln Grundoperationen Die Vollständige Anleitung zur Algebra vom Mathematiker Leonhard Euler (*1707 in Basel, 1783 in Petersburg) prägte den Unterricht und die Lehrmittel für lange Zeit. Euler
Regeln zur Bruchrechnung
Regeln zur Bruchrechnung Brüche und Anteile Zur Beschreibung von Anteilen verwendet man Brüche (von gebrochen, z. B. eine Glasscheibe) wie 5 ; 5 oder 9. Die obere Zahl (über dem Bruchstrich) heißt Zähler,
Potenzen mit gleichen Grundzahlen werden multipliziert, indem man die Hochzahlen addiert und die Grundzahlen beibehält. a n a m = a m+n. a...
Mathematikskript: Steven Passmore Potenzgesetze Einleitung Einen Ausdruk mit einer Hohzahl nennt man Potenz Beispiele: 3 5,9 x, a n ). Zunähst ist eine Potenz eine vereinfahte Shreibweise für die vielfahe
Download. Basics Mathe Gleichungen mit Klammern und Binomen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen.
Download Michael Franck Basics Mathe Gleichungen mit Klammern und Binomen Einfach und einprägsam mathematische Grundfertigkeiten wiederholen Downloadauszug aus dem Originaltitel: Basics Mathe Gleichungen
Grundwissen Mathematik
Grundwissen Mathematik Algebra Terme und Gleichungen Jeder Abschnitt weist einen und einen teil auf. Der teil sollte gleichzeitig mit dem bearbeitet werden. Während die bearbeitet werden, sollte man den
Grundwissen Mathematik 6/1 1
Grundwissen Mathematik 6/ Formveränderung von Brüchen Erweitern heißt Zähler und Nenner eines Bruches mit der selben Zahl multiplizieren. a ac = b bc Kürzen heißt Zähler und Nenner eines Bruches durch
(8a 2b) 2 (8a + 2b) 2 16ab. Bringen Sie den folgenden Term auf eine möglichst einfache Form:
Blatt Nr 2.0 Mathematik Online - Übungen Blatt 2 Klasse Blatt 2 Kapitel Terme Division Terme und Gleichungen Nummer: 0 200000 Kl: X Grad: 0 Zeit: 20 Quelle: eigen W Aufgabe 2..: (a 2b) 2 (a + 2b) 2. x
Repetitionsaufgaben: Lineare Gleichungen
Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Gleichungen Zusammengestellt von Hannes Ernst, KSR Lernziele: - Lineare Gleichungen von Hand auflösen können. - Lineare Gleichungen mit Parametern
Vorbereitungskurs Mathematik
Vorbereitungskurs Mathematik Grundlagen für das Unterrichtsfach Mathematik für die Fachhochschulreifeprüfung Zweijährige Höhere Berufsfachschule Berufsoberschule I Duale Berufsoberschule Inhalt 0. Vorwort...
R. Brinkmann Seite
R. Brinkmann http//brinkmann-du.de Seite 1 09.02.2013 SEK I Lösungen zu rechnen mit Brüchen I Ergebnisse und ausführliche Lösungen zum nblatt SEK I Bruchrechnung I Einfache Bruchaufgaben zur Vorbereitung
Rationale Zahlen Kurzfragen. 26. Juni 2012
Rationale Zahlen Kurzfragen 26. Juni 2012 Rationale Zahlen Kurzfrage 1 Wann ist eine Operation (+,,,... ) in einer Menge M abgeschlossen? Rationale Zahlen Kurzfrage 1 Wann ist eine Operation (+,,,... )
Gleichungen, Ungleichungen, Beträge
KAPITEL 2 Gleichungen, Ungleichungen, Beträge Man bestimme alle reellen Lösungen der Gleichung x + 2 x 2 4 = 1. Nach Multiplikation beider Seiten mit x 2 4 ergibt sich die quadratische Gleichung x + 2
Grundrechnungsarten mit Brüchen
ganz klar: Mathematik - Das Ferienheft mit Erfolgsanzeiger Unechte Brüche gemischte Zahlen, 9_,,... unechte Brüche (Zähler > Nenner) _, _,,... gemischte Zahlen Unechte Brüche kann man immer in eine gemischte
1 3 Z 1. x 3. x a b b. a weil a 0 0. a 1 a weil a 1. a ist nicht erlaubt! 5.1 Einführung Die Gleichung 3 x 9 hat die Lösung 3.
5 5.1 Einführung Die Gleichung 3x 9 hat die Lösung 3. 3x 9 3Z 9 x 3 3 Die Gleichung 3x 1 hat die Lösung 1 3. 3x 1 1 3 Z 1 x 3 Definition Die Gleichung bx a, mit a, b Z und b 0, hat die Lösung: b x a a
Leitprogramm Bruchterme
Leitprogramm Jede Stunde werden die Lernziele mit Angaben der zu machenden festgelegt. Jede Gruppe arbeitet selbständig in ihrem eigenen Tempo, die einzelnen SuS unterstützen sich gegenseitig. Bei Problemen
Mathematik Runden, Potenzen, Terme
Mathematik Runden, Potenzen, Terme Mag. Rainer Sickinger HTL v 7 Mag. Rainer Sickinger Mathematik Runden, Potenzen, Terme 1 / 81 Das Stellenwertsystem eins < zehn < hundert < tausend < zehntausend < hunderttausend...
1. Funktionen. 1.3 Steigung von Funktionsgraphen
Klasse 8 Algebra.3 Steigung von Funktionsgraphen. Funktionen y Ist jedem Element einer Menge A genau ein E- lement einer Menge B zugeordnet, so nennt man die Zuordnung eindeutig. 3 5 6 8 Dies ist eine
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 5 1. Semester ARBEITSBLATT 5 RECHNEN MIT BRÜCHEN. 1. Arten von Brüchen und Definition
ARBEITSBLATT 5 RECHNEN MIT BRÜCHEN 1. Arten von Brüchen und Definition Beispiel: 3 5 Zähler Bruchstrich Nenner Definition: Jeder Bruch hat folgendes Aussehen: Zähler. Der Nenner gibt an, Nenner in wie
Achtung: Im Nenner eines Bruches darf nie die Null stehen!!
Grundwissen 6. Jahrgangsstufe Im Folgenden werden wir an Hand von einigen uns selbst gestellten Fragen, die wir auh gleih beantworten wollen, die wihtigsten Grundbegriffe zu Brühen wiederholen, die du
Übersicht über wichtige und häufig benötigte mathematische Operationen
Bruchrechnung Übersicht über wichtige und häufig benötigte mathematische Operationen Addition/Subtraktion von (ungleichnamigen) Brüchen: Brüche erweitern, sodass die Nenner gleichnamig sind, indem Zähler
Bruchrechnen. 2.1 Teilbarkeit von Zahlen. Die Primfaktorzerlegung ist die Zerlegung einer natürlichen Zahl in ein Produkt von Primzahlen.
ruchrechnen 2 2.1 Teilbarkeit von Zahlen Die Primfaktorzerlegung ist die Zerlegung einer natürlichen Zahl in ein Produkt von Primzahlen. Das kleinste gemeinsame Vielfache (kgv) mehrerer Zahlen ist die
Vorkurs für das Fach Mathematik am beruflichen Gymnasium, Bildungsgang Technik, der BBS Neustadt
Berufsbildende Schule Neustadt an der Weinstraße Vorkurs für das Fach Mathematik am beruflichen Gymnasium, Bildungsgang Technik, der BBS Neustadt Liebe Schülerinnen und Schüler, wir freuen uns, dass Sie
1.2 Rechnen mit Termen II
1.2 Rechnen mit Termen II Inhaltsverzeichnis 1 Ziele 2 2 Potenzen, bei denen der Exponent negativ oder 0 ist 2 3 Potenzregeln 3 4 Terme mit Wurzelausdrücken 4 5 Wurzelgesetze 4 6 Distributivgesetz 5 7
Aufgabensammlung Klasse 8
Aufgabensammlung Klasse 8 Inhaltsverzeichnis 1 Potenzen mit natürlichen Hochzahlen 3 1.1 Rechenregeln für das Rechnen mit Potenzen..................... 3 1.1.1 Addition und Subtraktion von Potenzen...................
1. Funktionale Zusammenhänge
1. Funktionale Zusammenhänge Proportionalität Grundwissen 8 Eigenschaften direkt proportionaler Größen x und y: zum n-fachen Wert von x gehört der n-fache Wert von y die Wertepaare (x ; y) sind quotientengleich,
Repetitionsaufgaben: Quadratische Gleichungen
Kantonale Fachschaft Mathematik Repetitionsaufgaben: Quadratische Gleichungen Zusammengestellt von Feli Huber, KSR Lernziele: - Sie können die Lösungen von quadratischen Gleichungen mit der Lösungsformel
1.2 Rechnen mit Termen II
1.2 Rechnen mit Termen II (Thema aus dem Gebiet Algebra) Inhaltsverzeichnis 1 Potenzen, bei denen der Exponent negativ oder 0 ist 2 2 Potenzregeln 2 3 Terme mit Wurzelausdrücken 4 4 Wurzelgesetze 4 5 Das
Faktorisierung bei Brüchen und Bruchtermen
Faktorisierung bei Brüchen und Bruchtermen Rainer Hauser Mai 2016 1 Einleitung 1.1 Rationale Zahlen Teilt man einen Gegenstand in eine Anzahl gleich grosse Stücke, so bekommt man gebrochene Zahlen, die
Gib die richtigen Fachbegriffe an. Welche Information gibt der Nenner eines Bruches an?
1 6/1 Gib die richtigen Fachbegriffe an. 2 6/1 Welche Information gibt der Nenner eines Bruches an? 3 6/1 Welcher Bruchteil ist markiert? 4 6/1 Welcher Bruchteil ist markiert? 5 6/1 Welcher Bruchteil ist
Mathematik 1 -Arbeitsblatt 1-4: Rechnen mit Brüchen. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB RECHNEN MIT BRÜCHEN
RECHNEN MIT BRÜCHEN. Arten von Brüchen und Definition Beispiel: 3 5 Zähler Bruchstrich Nenner Definition: Jeder Bruch hat folgendes Aussehen: Zähler Nenner. Der Nenner gibt an, in wie viele gleich große
= Rechne nach - das Ergebnis ist immer 1!
Was ist ein Bruch? Bisher kennst du genau eine Art der Zahlen, die sogenannten "Natürlichen Zahlen". Unter den Natürlichen Zahlen versteht man die Zahlen 0, 1,,,... bis Unendlich. Mit diesen Zahlen lassen
Mathematik. Subtraktion (Minuend Subtrahend = Differenz) Division (Dividend / Divisor = Quotient)
Inhalt: Mathematik 2.2003 2003 by Reto Da Forno Termumformungen - Operationsstufen Seite 1 - Gesetze Seite 1 - Addition + Subtraktion Seite 2 - Potenzen Seite 2 - Polynomdivision Seite 3 - Ausklammern
1. Grundlagen der Arithmetik
1. Grundlagen der Arithmetik Die vier Grundrechenarten THEORIE Addition (plus-rechnen, addieren, zusammenzählen): Summand + Summand = Summe Subtraktion (minus-rechnen, subtrahieren, wegzählen): Minuend
Bruchterme. Klasse 8
ALGEBRA Terme Bruchterme Teil Noch ohne Korrekturlesung! Klasse Datei Nr. Friedrich W. Buckel November 00 Geändert: Oktober 00 Internatsgymnasium Schloß Torgelow Inhalt DATEI. Werte berechnen. Definitionsbereiche
5.6 Gleichsetzungsverfahren
.6 Gleihsetzungsverfhren Verfhren: Beide Gleihungen des Gleihungssystems werden nh derselen Vrilen ufgelöst und die entsprehenden Terme werden einnder gleihgesetzt. Beispiele (G x ) ) () x + y () x - y
Mathematische Grundlagen 2. Termrechnen
Inhaltsverzeichnis: 2. Termrechnen... 2 2.1. Bedeutung von Termen... 2 2.2. Terme mit Variablen... 4 2.3. Vereinfachen von Termen... 6 2.3.1. Zusammenfassen von gleichartigen Termen... 6 2.3.2. Vereinfachen
BRUCHRECHNEN. Erweitern und Kürzen:
BRUCHRECHNEN Jede Bruchzahl läßt sich als Dezimalzahl darstellen 5 5:8 0.65 endlicher Dezimalbruch 8 0,6 unendlicher Dezimalbruch Nachfolgend werden die wesentlichen Zusammenhänge der Bruchrechnung angeführt.
0. Wiederholung 0.1 Rechnen in der Menge der positiven rationalen Zahlen lq + 0
0. Wiederholung 0.1 Rechnen in der Menge der positiven rationalen Zahlen lq + 0 0.1.1 Formveränderungen von Brüchen Erweitern heißt Zähler und Nenner eines Bruches mit derselben Zahl multiplizieren. a
Bruchrechnen ohne Variablen Anwendungen 11
Bruchrechnen ohne Variablen Anwendungen Addieren/Subtrahieren gleichnamiger Brüche Addition gleichnamiger Brüche: Nenner übernehmen; Zähler addieren: Subtraktion gleichnamiger Brüche: Nenner übernehmen;
ALGEBRA Lineare Gleichungen Teil 1. Klasse 8. Datei Nr Friedrich W. Buckel. Dezember 2005 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK
ALGEBRA Lineare Gleichungen Teil Klasse 8 Lineare Gleichungen mit einer Variablen Datei Nr. 40 Friedrich W. Buckel Dezember 005 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Inhalt DATEI 40 Grundlagen und ein
Bruchrechnen ohne Variablen Anwendungen 11 - Lösungen
Bruchrechnen ohne Variablen Anwendungen - Addieren/Subtrahieren gleichnamiger Brüche Addition gleichnamiger Brüche: Nenner übernehmen; Zähler addieren: Subtraktion gleichnamiger Brüche: Nenner übernehmen;
Terme. Kein Term, da sich eine Division durch Null ergibt
Allgemeines Terme Definition: Eine Variable ist ein Platzhalter für eine Zahl. In der Regel verwendet man für Variablen Kleinbuchstaben, z.b.: x, y, a,... Definition: Ein Term ist eine sinnvolle Kombination
Logarithmen und Logarithmengesetze
R. Brinkmnn http://brinkmnn-du.de Seite 9.. Logrithmen und Logrithmengesetze Wir betrhten die Gleihung 5 = 5 Auf der linken Seite steht eine Potenz mit der Bsis 5 und dem Eponenten. Auf der rehten Seite
Lektion 2: Bruchrechnung
Lektion 2: Bruchrechnung Die Menge der rationalen Zahlen: Um die rationalen Zahlen definieren zu können, benötigen wir zunächst die Menge der ganzen Zahlen. Diese ist: Z = {0; 1; + 1; 2; + 2; 3; + 3; ±
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 11 GLEICHUNGEN UND ÄQUIVALENZUMFORMUNGEN
ARBEITSBLATT 11 GLEICHUNGEN UND ÄQUIVALENZUMFORMUNGEN Mathematische Gleichungen ergeben sich normalerweise aus einem textlichen Problem heraus. Hier folgt nun ein zugegebenermaßen etwas künstliches Problem:
Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele.
Basiswissen Mathematik Klasse 5 / 6 Seite 1 von 12 1 Berechne schriftlich: a) 538 + 28 b) 23 439 Bilde selbst ähnliche Beispiele. 2 Berechne schriftlich: a) 36 23 b) 989: 43 Bilde selbst ähnliche Beispiele.
1) Mit welcher Zahl muss 18 multipliziert werden, um 234 zu erhalten? Kontrolliere! 2) Finde die Zahl, mit der 171 multipliziert werden muss, um 4104
1) Mit welcher Zahl muss 18 multipliziert werden, um 234 zu erhalten? Kontrolliere! 2) Finde die Zahl, mit der 171 multipliziert werden muss, um 4104 zu erhalten? Probe! 3) Von zwei Zahlen ist die eine
Grundwissensblatt 8. Klasse. IV. Lineare Gleichungen mit zwei Variablen 1. Eigenschaften von linearen Gleichungen mit zwei Variablen
Grundwissensblatt 8. Klasse IV. Lineare Gleichungen mit zwei Variablen. Eigenschaften von linearen Gleichungen mit zwei Variablen Alle linearen Gleichungen der Form a + by = c (oder auch y = m + t) erfüllen:
Grundlagen der Mathematik von Ansgar Schiffler - Seite 1 von 7 -
- Seite von 7 -. Wie lautet die allgemeine Geradengleichung? (Mit Erklärung). Ein Telefontarif kostet 5 Grundgebühr und pro Stunde 8 cent. Wie lautet allgemein die Gleichung für solch einen Tarif? (Mit
b n = b In der darauffolgenden Prüfung zu diesem Thema mussten die Schülerinnen und Schüler die Aufgabe
Aufgabenblatt Aufgaben zum Thema Potenzgesetze 1. Unterhaltsame Potenzgesetze Im Unterricht wurden die folgenden 5 Potenzgesetze behandelt: 1. Gesetz: 2. Gesetz: 3. Gesetz: 4. Gesetz: 5. Gesetz: a n a
Kapitel 7: Gleichungen
1. Allgemeines Gleichungen Setzt man zwischen zwei Terme T 1 und T 2 ein Gleichheitszeichen (=), so entsteht eine Gleichung! Ungleichung Setzt man zwischen zwei Terme T 1 und T 2 ein Ungleichheitszeichen
Grundwissen JS 5 Algebra
GYMNASIUM MIT SCHÜLERHEIM PEGNITZ math.-technolog. u. sprachl. Gymnasium Grundwissen JS 5 Algebra WILHELM-VON-HUMBOLDT-STRASSE 7 91257 PEGNITZ FERNRUF 09241/48333 FAX 09241/2564 Rechnen in N 29. Juli 2009
Vorrangregeln der Grundrechnungsarten
Vorrangregeln der Grundrechnungsarten Wenn verschiedene Rechenzeichen in einer Rechnung vorkommen, so gelten folgende Regeln:. Klammerrechnung. Punktrechnungen von links nach rechts ( ) vor vor +. Strichrechnungen
Übstunden 7. Klasse Aufgaben und Lösungen zur Algebra
Übstunden 7. Klasse Aufgaben und Lösungen zur Algebra Jens Möller Owingen jmoellerowingen@aol 5 Blätter Übungen und Hausaufgaben Blatt 01 Regeln: (1) Punktrechnung ( bzw: ) geht vor Strichrechnung ( +
9 = c) a) = b) = c) = d) =
A Grundrechnungsarten. Rechnen mit Brüchen Addieren und Subtrahieren von Brüchen Addiere und subtrahiere die Brüche. a) 0 0 0 b) - 0...... Brüche mit gleichem Nenner werden addiert, indem du die Zähler
b) Notieren Sie hier die Brüche aus der Tabelle, die sich noch kürzen lassen und kürzen Sie diese soweit als möglich: 1 2
Addieren und Subtrahieren gleichnamiger Brüche Addition gleichnamiger Brüche: Nenner übernehmen; Zähler addieren: Subtraktion gleichnamiger Brüche: Nenner übernehmen; Zähler subtrahieren. Füllen Sie die
Terme ================================================================== Rechteck mit den Seiten a und b :
Terme ================================================================== Rechteck mit den Seiten a und b : Flächeninhalt : A(a; b) = a b b Umfang : U(a; b) = 2 a + 2 b = 2a + 2b a Quader mit einem Quadrat
Terme und Aussagen und
1 Grundlagen Dieses einführende Kapitel besteht aus den beiden Abschnitten Terme und Aussagen und Bruchrechnung. Die Erfahrung zeigt, dass diese Dinge zwar in der Schule gelehrt und gelernt werden, dass
Vektoren werden addiert, bzw. subtrahiert, indem man die einander entsprechenden Komponenten addiert bzw. subtrahiert.
R. Brinkmann http://brinkmann-du.de Seite.9. Vektoren im kartesishen Koordinatensystem Rehengesetze für Vektoren in Koordinatendarstellung Addition und Subtraktion von Vektoren: Vektoren werden addiert,
Klapptest Lineare Gleichungen I
Klapptest Lineare Gleichungen I (Lösungen als ganze Zahlen) 1. 6(x + 2)(x - 7) = x(6x + 6) - 48 1. x = -1 2. -7(x + 3)(x + 1) = x(-7x - 2) - 255 2. x = 9 3. 4(x - 7)(x + 7) = x(4x - 8) - 156 3. x = 5 4.
Lösungen lineare Gleichungen IV. Ergebnisse: Aufgabe Lösen Sie die Gleichungen nach x auf. 20x 3 5x x. b) ( ) a) ( ) ( ) 5x 8 + 9x = 12.
R. Brinkmann http://brinkmann-du.de Seite..03 Lösungen lineare Gleichungen IV Ergebnisse: E E Lösen Sie die Gleichungen nach x auf. 0x 3 5x 7 3 x a) ( + ) = ( ) b) ( ) c) ( x 3)( x 3) = ( x )( x 8) + 6
6. Klasse. 1. Zahlen 1.1. Brüche und Bruchteile
1. Zahlen 1.1. Brüche und Bruchteile 1.2.Die Menge der rationalen Zahlen => Die Menge aller Brüche, wobei die Zähler eine beliebige ganze Zahl und die Nenner eine ganze Zahl außer Null sein dürfen nennt
Themen: Brüche (Grundbegriffe, Ordnen, Addition/Subtraktion)
Klasse d Mathematik Vorbereitung zur Klassenarbeit Nr. am 0..0 Themen: Brüche (Grundbegriffe, Ordnen, Addition/Subtraktion) Checkliste Was ich alles können soll Ich kann Bruchteile in geometrischen Figuren
Einführung in die Bruchrechnung
- Seite 1 Einführung in die Bruchrechnung 1. Der Bruchbegriff Die Tafel unter drei Kindern aufteilen! Die Schokoladentafel wird zer"brochen" Jedes Kind erhält einen "Bruchteil". Wenn die Tafel aus 15 Stücken
Technische Mathematik Ausgabe für gewerblich-technische Berufe
Bildungswerk der Bayerischen Wirtschaft ggmbh Seminar Technische Mathematik Ausgabe für gewerblich-technische Berufe Kursbegleitende Unterlagen Auflage Nr. 1 Technische Fachkurse Köck www.fachkurse-koeck.de
Bruchrechnen in Kurzform
Teil Bruchrechnen in Kurzform Für alle, die es benötigen, z. B. zur Prüfungsvorbereitung in 0 Zu diesen Beispielen gibt es einen Leistungstest in 09. Ausführliche Texte zur Bruchrechnung findet man in:
Negative Zahlen. Lösung: Ordne in einen Zahlenstrahl ein! 7;5; 3; 6. Das Dezimalsystem
Negative Zahlen Negative Zahlen Ordne in einen Zahlenstrahl ein! 7;5; 3; 6 Das Dezimalsystem Zerlege in Stufen! Einer, Zehner, usw. a) 3.185.629 b) 24.045.376 c) 3.010.500.700 Das Dezimalsystem a) 3M 1HT
Mathematik. FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli Kontakt und weitere Infos:
FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli 2004 Kontakt und weitere Infos: www.schule.barmetler.de Inhaltsverzeichnis 1 Wiederholung 5 1.1 Bruchrechnen.............................
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 2. Semester ARBEITSBLATT 3 RECHNEN MIT BRUCHTERMEN. 1. Kürzen von Bruchtermen
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3. Semester ARBEITSBLATT 3 RECHNEN MIT BRUCHTERMEN 1. Kürzen von Bruchtermen Zunächst einmal müssen wir klären, was wir unter einem Bruchterm verstehen. Definition:
Vorwort. Marc Peter, Rainer Hofer Berufsschullehrer und Lehrpersonen für Förderangebote
Vorwort Das mathematische Grundwissen in der Arithmetik dem «Rechnen» kommt in vielen Berufen zur Anwendung. Dieser Band aus der Reihe «Mathematik Basics» bietet Ihnen die Möglichkeit, in Form eines programmierten
1 Rechnen. Addition rationaler Zahlen gleicher Vorzeichen Summand + Summand = Summe
Rationale Zahlen Die ganzen Zahlen zusammen mit allen positiven und negativen Bruchzahlen heißen rationale Zahlen. Die Menge der rationalen Zahlen wird mit Q bezeichnet. Je weiter links eine Zahl auf dem
Bruchteile. Anteile gibt man in Bruchschreibweise an. Anteil : 1 8. Bruchteil : 1 cm 2. Bruchteil : 0,5 cm 2. Anteil : 3 8. Bruchteil : 3 cm 2
Bruchteile Anteile gibt man in Bruchschreibweise an. Anteil : 8 Bruchteil : cm Anteil : 8 Bruchteil : 0, cm Anteil : 8 Bruchteil : cm Anteil : 8 Bruchteil :, cm 8 nennt man einen Bruch. 8 heißt Nenner
8.2 Invertierbare Matrizen
38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen
Rechnen mit rationalen Zahlen
Rechnen mit rationalen Zahlen a ist die Gegenzahl von a und ( a) a Subtraktionsregel: Statt eine rationale Zahl zu subtrahieren, addiert man ihre Gegenzahl. ( 8) ( ) ( 8) + ( + ) 8 + 7, (,6) 7, + ( +,6)
Corinne Schenka Vorkurs Mathematik WiSe 2012/13. Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen:
2. Zahlbereiche Besonderheiten und Rechengesetze Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen: 2.1. Die natürlichen Zahlen * + besitzt abzählbar unendlich viele Elemente
Grundkurs Mathematik I
Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 19 Kommutative Ringe Wir erfassen die in der letzten Vorlesung etablierten algebraischen Eigenschaften der ganzen Zahlen mit
Fachrechnen für die Feuerwehr
Die Roten Hefte e, Bd. 31 Fachrechnen für die Feuerwehr Bearbeitet von Kurt Klingsohr überarbeitet 2007. Taschenbuch. 145 S. Paperback ISBN 978 3 17 019903 3 Format (B x L): 10,5 x 14,8 cm Gewicht: 100
Begriffe, die auf eine Multiplikation oder Division hinweisen
Fachbegriffe der Addition und Subtraktion Bei der Addition werden Zahlen zusammengezählt: 2 + 4 = 6 1. Summand 2. Summand Summe Bei der Subtraktion wird eine Zahl von einer anderen abgezogen. 7 2 = 5 Minuend
Mathematik 17 Bruchrechnen 00 Name: Vorname: Datum: Lernziele:
Mthemtik 7 Bruhrehnen 00 Nme: Vornme: Dtum: Lernziele: Nr. Lernziel A Ih knn ie vier Grunopertionen (Aition, Subtrktion, Multipliktion un Division) uf Aufgben mit Brühen nwenen. B Ih knn ie vier Grunopertionen
Mathematik PM Rationale Zahlen. Ist a kein Vielfaches von b, so entsteht eine neue Zahl, Bruch oder rationale Zahl genannt. Sie bilden die Menge Q.
Mthetik PM Rtionle Zhlen Rtionle Zhlen. Einführung Die Gleihung = 9 ht ie Lösung. Z 9 9 Die Gleihung = ht ie Lösung. Z Definition Die Gleihung =, it, Z un 0, ht ie Ist kein Vielfhes von, so entsteht eine
Kapitel 4: Variable und Term
1. Klammerregeln Steht ein Plus -Zeichen vor einer Klammer, so bleiben beim Auflösen der Klammern die Vorzeichen erhalten. Bei einem Minus -Zeichen werden die Vorzeichen gewechselt. a + ( b + c ) = a +
Termumformungen. 2. Kapitel aus meinem Lehrgang ALGEBRA. Ronald Balestra CH St. Peter
Termumformungen 2. Kapitel aus meinem Lehrgang ALGEBRA Ronald Balestra CH - 7028 St. Peter www.ronaldbalestra.ch e-mail: [email protected] 11. Oktober 2009 Überblick über die bisherigen ALGEBRA
5. bis 10. Klasse. Schnell-Merk-System. Mathematik. Kompaktwissen Testfragen SMS. Mit Lernquiz fürs Handy
5. bis 10. Klasse SMS Schnell-Merk-System Mathematik Kompaktwissen Testfragen Mit Lernquiz fürs Handy 2 Zahlen und Rechnen Rechnen mit natürlichen Zahlen Multiplikation ist die mehrfache Addition gleicher
Vorrangregeln der Grundrechnungsarten
Vorrangregeln der Grundrechnungsarten Wenn verschiedene Rechenzeichen in einer Rechnung vorkommen, so gelten folgende Regeln:. Klammerrechnung. Punktrechnungen von links nach rechts ( ) vor vor +. Strichrechnungen
Grundwissen. 5. Jahrgangsstufe. Mathematik
Grundwissen 5. Jahrgangsstufe Mathematik Grundwissen Mathematik 5. Jahrgangsstufe Seite 1 1 Natürliche Zahlen 1.1 Große Zahlen und Zehnerpotenzen eine Million = 1 000 000 = 10 6 eine Milliarde = 1 000
1.Weiterentwicklung der Zahlvorstellung 1.1.Bruchteile und Bruchzahlen
Grundwissen Mathematik 6.Klasse Gymnasium SOB.Weiterentwicklung der Zahlvorstellung..Bruchteile und Bruchzahlen 3 des Kreises ist rot, des Kreises ist blau gefärbt. Über dem Bruchstrich steht der Zähler,
Mathematik-Dossier 8 Rechnen mit Variablen (angepasst an das Lehrmittel Mathematik 1)
Name: Mathematik-Dossier 8 Rechnen mit Variablen (angepasst an das Lehrmittel Mathematik 1) Inhalt: Terme umformen / Rechenregeln mit Variablen Klammerregeln Verbindung von Operationen verschiedener Stufe
UND MOSES SPRACH AUCH DIESE GEBOTE
UND MOSES SPRACH AUCH DIESE GEBOTE 1. Gebot: Nur die DUMMEN kürzen SUMMEN! Und auch sonst läuft bei Summen und Differenzen nichts! 3x + y 3 darfst Du NICHT kürzen! x! y. Gebot: Vorsicht bei WURZELN und
Skript Bruchrechnung. Erstellt: 2014/15 Von:
Skript Bruchrechnung Erstellt: 2014/15 Von: www.mathe-in-smarties.de Inhaltsverzeichnis Vorwort... 2 1. Einführung... 3 2. Erweitern / Kürzen... 5 3. Gemischte Brüche... 8 4. Multiplikation von Brüchen...
Potenzen mit ganzzahligen Exponenten: Rechenregeln
Lüneburg, Fragment Potenzen mit ganzzahligen Exponenten: Rechenregeln 5-E1 5-E2 Potenzen: Rechenregeln Regel 1: Potenzen mit gleicher Basis können dadurch miteinander multipliziert werden, dass man die
Der Nenner eines Bruchs darf nie gleich 0 sein! Der Zähler eines Bruchs kann dagegen auch 0 sein. Dies besagt, dass kein Teil zu nehmen ist.
Bruchteile Bruchteile von Ganzen lassen sich mit Hilfe von Brüchen angeben. Der Nenner gibt an, in wie viele gleiche Teile ein Ganzes zerlegt wird. Der Zähler gibt an, wie viele dieser gleichen Teile zu
Mathematische Grundlagen 2. Termrechnen
Inhaltsverzeichnis: 2. Termrechnen... 2 2.1. Bedeutung von Termen... 2 2.2. Terme mit Variablen... 4 2.3. Vereinfachen von Termen... 5 2.3.1. Zusammenfassen von gleichartigen Termen... 5 2.3.2. Vereinfachen
( 4-9 ) ( 5x + 16 ) -5x c - d - ( c - d ) 0 4. ( 3b + 4d ) - ( 5b - 3d ) 7d - 2b a - [ 5b - ( 6a + 7b ) ] 3a + 2b
Klammerrechnung Für das Rechnen mit Klammern gilt: Steht vor einer Klammer ein Minus, so drehen sich beim Auflösen der Klammern die Vorzeichen um. Distributivgesetz: Wird eine ganze Zahl mit einer eingeklammerten
