3. Bestimmen Sie die Gitterkonstante eines Transmissionsgitters durch Ausmessung der Lage der Maxima.

Größe: px
Ab Seite anzeigen:

Download "3. Bestimmen Sie die Gitterkonstante eines Transmissionsgitters durch Ausmessung der Lage der Maxima."

Transkript

1 Fakultät für Physik ud Geowisseschafte Physikalisches Grudpraktikum O 7 Beuu Aufabe 0. Bereche Sie i der Vorbereitu auf de Versuch aalytisch die Fouriertrasformierte eier Eizelspalt- ud eier Doppelspaltfuktio ud verleiche Sie diese mit de für diese Objekte bekate Frauhofer-Beuusmuster. Ermittel Sie mittels FFT (Fast-Fourier-Trasform) i ORIGIN die Fouriertrasformierte der Fuktioe F(k) = sic(πk) = si(πk)/(πk) sowie F(k) ; diskutiere Sie das Erebis uter Berücksichtiu des Faltustheorems.. Bestimme Sie durch Beuu (Frauhofer, Fresel) vo Laserlicht am Eifachspalt desse Breite. Messe Sie hierzu die Itesität des ebeute Lichts mit eier CCD-Zeilekamera. Bestimme Sie die Spaltbreite (a) aus der Lae der Miima verschiedeer Ordue ud (b) mittels FFT.. Nehme Sie die Itesitätsverteilu des a eiem Doppelspalt ebeute Laserlichts mit eier CCD-Zeilekamera auf. Bestimme Sie de Mitteabstad der Spalte ud die Spaltbreite aus (a) Lae der Miima verschiedeer Ordue sowie durch (b) Fit des bekate Frauhofer-Beuusbilds a die Date ud (c) FFT der Itesitätsverteilu. 3. Bestimme Sie die Gitterkostate eies Trasmissiositters durch Ausmessu der Lae der Maxima. Literatur Physikalisches Praktikum, 3. Auflae, Hrs. W. Schek, F. Kremer, Optik,.0,.,.3, Fourier- Trasformatio ud Sialaalyse,.0 Gerthse Physik, D. Meschede,. Auflae, Zubehör Diodelaser mit Strahlaufweitu (λ = 636 m), CCD-Zeilekamera (Thorlabs mit Software), PC, Drucker, Messschraubeokular, Polarisatiosfilter, Eizel- ud Doppelspalt, Trasmissiositter, Reflexiositter, Millimeterskale mit Lochblede Schwerpukte zur Vorbereitu - Iterferez, Kohärez, Kohärezbediu - Beuu am Spalt, Doppelspalt, Reflexios- ud Trasmissiositter - Beuu ach Frauhofer ud Fresel - Aufbau ud Fuktiosweise eies Lasers, He-Ne-Laser - Eieschafte vo Laserlicht, Gesetz vo Malus, Prizipieller Aufbau eies CCD-Sesors - Fouriertrasformatio

2 Sicherheitshiweis Der Laser-Primärstrahl (Laserklasse ) hat eie Leistu vo ca. mw. Direktes Hieisehe i de Laser-Primärstrahl ka zu Aueverletzue führe. Bei der Beobachtu der Iterferez mit eiem Okularmikrometer Ist ei Polarisatiosfilter zur Abschwächu der Itesität zwische Laser ud Spalt eizubrie (Gesetz vo Malus). Frauhofersche- ud Freselsche Beuu Es wird bei Beuuserscheiue zwische der Beuu (Beobachtusart) ach Frauhofer ud ach Fresel uterschiede. Bei der Frauhofersche Beuu oder Beuu paralleler Strahle betrachtet ma die Beuu ebeer Welle. Im letzteate Fall ist der Abstad zwische Lichtquelle ud dem Hideris (z.b. Spalt), a dem die Beuu erfolt, ud der Abstad zwische Beobachtuspukt ud Hideris stets uedlich. Im Experimet erreicht ma diese Art vo Beuu, idem ma die Lichtquelle i de Brepukt eier Sammellise stellt oder eie Lichtquelle (Laser) verwedet, die selbst ebee Welle aussedet. Das Beuusbild betrachtet ma i der Brepuktsebee eier Sammellise auf eiem Schirm oder wie i userem Fall mit eier CCD-Zeilekamera. Als Freselsche Beuu wird jee Art vo Lichtbeuu bezeichet, bei dere Berechu die Krümmu der Wellefrot der eifallede sowie der ebeute Welle icht verachlässit werde ka, die Strahle also icht parallel verlaufe. Freselsche Beuu tritt da auf, we sich sowohl die Lichtquelle als auch die Beobachtusebee des Beuusbildes oder auch ur letztere sich i eiem edliche Abstad zu dem beuede Hideris befidet. Die Berechu dieser Probleme ist zumeist sehr kompliziert. Für Freselsche Beuu am erade Spalt etscheidet u. a. die Größe des Welleparameters w über die Itesitätsverteilu i der Beobachtusebee w = λ a. b Dabei sid a der Abstad zwische Spaltebee ud der zu ihr parallele Beobachtusebee, b die Spaltbreite ud λ die Welleläe des verwedete moochromatische Lichts. I aaloer Weise bestimmt bei der Beuu am Doppelspalt (Spaltabstad ) die Fresel-Zahl N F mit N Übera der Beobachtu der Fresel-Beuu zur Frauhofer-Beuu für N F <. F = de 4a λ Abb.. Schematische Darstellu der Itesitätsverteilu bei Beuu a eiem breite Spalt (w <<)

3 Für w umfasse die Itesitätsschwakue de esamte Bereich zwische x ud x. Je ach dem Wert vo w ka i der Mitte des Beuusbilds ei Maximum oder ei Miimum der Itesität auftrete. Bei w>> (b>λ) aber etspricht das Beuusbild dem der Frauhofersche Beuu. Das Hauptmaximum der Itesität befidet sich hiter der Spaltmitte ud ist umso mehr "verschwomme", je eer der Spalt ist. Hiweise zu Aufabe 0 Die Eizelspaltfuktio sei eebe durch f(x) =, -b/ < x < b/, f(x) = 0 sost ud die Doppelspaltfuktio durch f(x) =, -(+b)/ < x < -(-b)/, (-b)/ < x < (+b)/, f(x) = 0, sost. b bezeichet dabei die Spaltbreite ud de Spaltabstad. Die Fouriertrasformatio eier Fuktio f(x) ist defiiert durch mit der Rücktrasformatio [ ] F( k) = FT f( x) = f( x)exp( ikx) dx () fx () [ ()] ()exp( ) FT Fk = = π π Fk ikxdk. () Hilfreich ist oft die Darstellu der δ-fuktio durch Fouriertrasformatio: ( x x δ 0) = exp( ( 0)) π ik x x dk. (3) Falls x eie Ortskoordiate bezeichet, so hat k die Eiheit m -, d.h. k ist ei Wellevektor. Ma spricht daher auch vo Ortsraum ud Wellevektorraum; die Fouriertrasformatio trasformiert demetspreched Fuktioe vo eiem i de adere Raum. Seie f(x) ud (x) Fuktioe im Ortsraum, F(k) ud G(k) die etsprechede Fouriertrasformierte. Da elte folede Beziehue:. Parsevalsches Theorem. Liearität f x dx= F k dk ( ) ( ) (4) 3. Skalierussatz [ ] FT af() x + b() x = af() k + bg() k (5) [ ( )] FT f cx k = F c c (6) 4. Verschiebussatz [ ] FT f ( x x ) = exp( ikx ) F( k) (7) 0 0 3

4 5. Faltustheorem [ ] [ ] [ ] FT fx ( ) x ( ) = FT fx ( ') x ( x') dx' = FT fx ( ) FTx ( ) = FkGk ( ) ( ) (8) Hiweise zu Aufabe Die Auswahl des Eifachspaltes (A, B oder C) wird vom Betreuer voreomme. Es ist die Beobachtusart ach Frauhofer zu realisiere. Dazu stellt ma de Spalt (Abb..) so auf, dass seie Ebee sekrecht zur Achse der optische Bak steht. Das auftreffede Licht passiert die rechteckie Öffu des Spaltes zum Teil uestört i seier ursprüliche Richtu ud wird zum adere Teil ebeut. Abb.. Zur Beuu ach Frauhofer Alle die durch de Spalt der Breite b uestört hidurchtretede achseparallele (icht ebeute) Strahle werde i der Breebee F der Sammellise L bei x = 0 esammelt. Ihr Gauterschied ist ull, so dass sie sich verstärke. Der Gauterschied Δ ist defiiert als die Differez der optische Weläe s (Δ = s -s für Luft mit der Brechzahl = ) der miteiader iterferierede Strahle. Parallelstrahle, die vo eizele Pukte des Spaltes uter dem leiche Wikel α ausehe (homoloe Pukte), werde bei x = f taα vereiit, wobei f die Breweite der Sammellise ist. Zwische diese Strahle trete jedoch Gauterschiede Δ auf. Ist z.b. Δ= λ zwische de beide Radstrahle, so lösche sich jeweils ei Strahl der obere ud der utere Spalthälfte, die vo zwei Spaltpukte mit dem Abstad b/ ausehe, bei Vereiiu durch L eeseiti aus. Für das Miimum beliebier Ordue ( = ±, ±,...) ilt da Für die Betrachtu Miima höherer Ordue muss ma die Spaltbreite i Viertel ( = ±), Sechstel ( = ±3) usw. eiteile. 4

5 bsiα = λ. (9) Miimale Beleuchtusstärke (Dukelheit) tritt i der Breebee F a de Stelle λ x = f taα = f ta arcsi b (0) auf. Für kleie Beuuswikel α erhält ma λ x f. b Im vorlieede Versuch wird ohe Sammellise earbeitet. Frauhofersche Beuu liet vor, we die Beobachtusebee weit eu vom Spalt etfert ist. Das Beuusbild wird mit eier CCD- Zeilekamera aufeomme, die Date werde auf eie Computer trasferiert ud i ORIGIN importiert. Die Abszisse x ist i µm aeebe ud ibt die Positio auf der Kamera a. I (a) werde die Abstäde x zwische de ±-te Miima bestimmt; daraus wird die Spaltbreite mittels liearer Reressio ermittelt. I (b) wird eie FFT des Itesitätsprofils voreomme. Verschiebe Sie dazu das Itesitätsbild etla der Abszisse, so dass das Hauptmaximum bei x = 0 liet. Leite Sie die folede Beziehu her, die de Wellevektor k sekrecht zur optische Achse mit der Positio x verküpft: π x π x k =. () λ x + d λ d d bezeichet de Abstad zwische Spalt ud CCD-Sesor. Stelle Sie die Itesität als Fuktio vo k dar, führe Sie eie FFT durch ud bestimme Sie b. I Eräzu zur Frauhofersche Beuu ist das Beuusbild durch Freselsche Beuu auszumesse ud die Spaltbreite b zu bestimme. Dazu ist der Abstad a zwische Spaltebee ud CCD-Sesor zu messe. Uter Verwedu der Beziehue x λ taα = ud siα = (a,b) a b ka durch Ausmesse der Lae der Miima wie bereits obe auseführt der Wert für b bestimmt a werde. Für kleie Wikel ilt wieder die Näheru x λ. b Führe Sie weiterhi eie FFT der Itesitätsverteilu für sehr kleie Abstäde zwische Spalt ud CCD-Kamera durch. Lässt sich daraus ebefalls die Spaltbreite bestimme? Hiweise zu Aufabe Ei Doppelspalt besteht aus zwei parallele Spalte leicher Spaltbreite b mit dem Mitteabstad zwische de Spalte. Bei der Berechu der Beuu ach Fresel muss wie bereits obe 5

6 beschriebe die Krümmu der Wellefrot (I) der eifallede sowie der ebeute Welle oder (II) ur der ebeute Welle berücksichtit werde. Bei userer Versuchsaordu liet Fall (II) vor. Die vo zwei Pukte F ud F der Eizelspalte des Doppelspaltes ausehede Wellezüe besitze i eiem Pukt P des (ebeute) Wellefeldes de Gauterschied Δ= r - r mit r = F P ud r = F P (Abb..). Alle Pukte mit leichem Gauterschied Δ (bzw. Phasedifferez δ = Δ π/λ) liee somit defiitiosemäß auf eiem zweischalie Rotatioshyperboloid mit F ud F als Brepukte ud der Verbidusliie F F als Hauptachse (Rotatiosachse). Abb.. Kofokale Hyperbel, Brepukte im Abstad e vo der Hauptachse, jede Hyperbel ibt Orte leiche Gauterschiedes Δ a. Die vo F ud F ausehede Welle verstärke sich z.b. bei eier Phasedifferez δ = π ( = ±, ±,...). Im Versuch werde die Rotatioshyperboloide vo eiem ebee Schirm (CCD-Zeile) im Abstad d vo der Rotatiosachse eschitte, der sekrecht zur optische Achse (Hauptachse der Hyperbel) steht. I eiem eüed kleie Gebiet um die optische Achse köe Maxima ud Miima i leichroße Abstäde zueiader beobachtet werde. I Abb.. ist die Überlaeru vo zwei durch de Doppelspalt ebeute Teilbüdel darestellt. Abb.. Zur Beuu am Doppelspalt Im Abstad x iterferiere diese Teilbüdel. Der Gauterschied Δ zwische ihe eribt sich über = + + ud = + r x d r x d 6

7 mit d >>, d >> x ud r r d zu r r Δ= r r = x r+ r d. (3) Ist der Gauterschied Δ = λ ( = ±, ±,...), so beobachtet ma im Abstad max d x = λ (4) Maxima bzw. für Δ = ( - ) λ/ ( = ±, ±,...) im Abstad x mi λ d = ( ) (5) Miima. Aus λ= x / d= taα siα erket ma, dass bei roße Abstäde d (taα siα ) im Falle der Fresel-Beuu die Formel der Frauhofer-Beuu verwedet werde köe. Dem Beuusbild des Doppelspaltes ist das Beuusbild seier Eizelspalte überlaert (Abb..3). Für die zuehörie Miima (blaue Kurve i Abb..3) ilt die leiche Beziehu wie für de Eizelspalt: bsi α = λ ; = ±, ±,... I I 0 Abb..3 Zur Itesitätsverteilu ach Beuu am Doppelspalt (schwarz: Doppelspaltfuktio, blau: Eizelspaltfuktio mit der leicher Spaltbreite) α Die Itesitätsverteilu des am Doppelspalt ebeute Lichtes ist eebe durch sip π π 4 max cos mit siα ud si I= I q p= b q= p λ λ α. Währed der Faktor (si p/p) die Beuu am Eizelspalt der Breite b beschreibt, charakterisiert der Faktor cos q de Itesitätsverlauf bei Iterferez zweier puktförmier kohäreter Lichtquelle im Abstad zueiader. Die Spaltbreite b ud das Verhältis (/b) bestimme maßeblich die Itesitätsverhältisse im Beuusbild. Bei azzahliem Verhältis m = /b ka ma im zetrale Maximum m Miima beobachte. Bereche Sie währed der Vorbereitu die theoretische (6) 7

8 Itesitätsverteilu eies Doppelspaltes i Abhäikeit azzahlier Verhältisse b/ =, 3 ud 5 ud bestimme Sie damit die Azahl der Maxima ud der Miima ierhalb der 'Eihüllede'. Bestimmu des Spaltabstades Bei kleie Beuuswikel α erhält ma für die Lae x der Extrema der Itesitäte des Doppelspaltes (Maxima ud Miima der Fuktio cos q): d λ x = d taα dsiα =. (7) Maxima: = 0, ±, ±,... Miima: = ±/, ±3/,... Misst ma die Lae der Maxima ud Miima im Bereich des zetrale Maximums ud trät die etsprechede Werte über auf, so ka ma aus dem Astie der Ausleichserade de Spaltabstad bestimme. Abschätzu der Spaltbreite b Die Spaltbreite b ist aus der Lae der Miima. Ordu der Eihüllede der Itesitätsverteilu (blaue Kurve i Abb..3) zu ermittel. Bestimmu vo ud b mittels FFT Führe Sie etspreched der vorherehede Aufabe eie FFT des Itesitätsverlaufs durch. Bestimme Sie ud b. Hiweise zu Aufabe 3 Das Trasmissiositter ist zwische Spalt ud Skale zu brie (Abb.3.) ud zu justiere (optische Achse sekrecht zur Gitterebee). Um die Messeauikeit des Abstades l zwische Gitterebee ud eier lieare Messskala (Lieal, Mattlasskala) zu erhöhe, verrößert ma de Abstad zwische diese, bis ei k-tes Maximum (k = ±, ± oder ±3) a de Ede der Skale beobachtet wird. Für die Auswertu werde Gleichue verwedet, die i Aaloie zum Doppelspalt hereleitet werde köe. Abb. 3. Zur Messu mit dem Trasmissiositter 8

9 λ xk Es ilt: si αk = k, taαk =, α k Beuuswikel für das k-te Maximum. l Für die Gitterkostate eribt sich Eräzede Literatur l = kλ + xk. Berma-Schaefer; Bd. III, 8. Aufl. a) Kap. III,. S ; b) Kap. III, 8. S ; c) Kap. III, 0. S H. Häsel, W. Neuma: Physik, Spektrum, 993, Bd., Kap. 0., 0. Lipso, Lipso, Tahäuser, Optik, Sprier, 997 Applet for two-slit diffractio: Abb. 5 Spektrale Empfidlichkeit optischer Sesore (a. Fotodiode, b. CCD-Sesor) Die Bedieusaleitu der Thorlabs CCD-Lie-Camera ka aus dem Dowloadbereich der Praktikumsseite heruterelade werde. 9

3. Bestimmen Sie die Gitterkonstante eines Transmissionsgitters durch Ausmessung der Lage der Maxima.

3. Bestimmen Sie die Gitterkonstante eines Transmissionsgitters durch Ausmessung der Lage der Maxima. Fakultät für Physik ud Geowisseschafte Physikalisches Grudpraktikum O 17a Beuu (Laserlicht) Aufabe 1. Bestimme Sie durch Beuu (Frauhofer, Fresel) vo Laserlicht am Eifachspalt desse Breite. Messe Sie hierzu

Mehr

Versuch : Interferenz und Beugung am Gitter

Versuch : Interferenz und Beugung am Gitter Versuch : Iterferez ud Beugug am Gitter Uiversität Duisburg-Esse Campus Duisburg Fachbereich Physik; AOR Dr. J. Käster 1. Literatur: Bergma-Schaefer, Lehrbuch der Experimetalphysik, Bd. 3: Optik W. Walcher,

Mehr

1. Musterversuch: Bestimmung der Erdbeschleunigung g Freier Fall einer Kugel

1. Musterversuch: Bestimmung der Erdbeschleunigung g Freier Fall einer Kugel . Musterversuch: Bestimmu der Erdbeschleuiu Freier Fall eier Kuel Versuchsaufbau: Die Kuel wird obe i de Halter eiespat ud schließt dabei eie elektrische Kotakt. Beim Auslöse der Kuel wird der elektrische

Mehr

b) Der eintretende und der austretende Lichtstrahl sind parallel. Es tritt keine Verzerrung auf.

b) Der eintretende und der austretende Lichtstrahl sind parallel. Es tritt keine Verzerrung auf. Physik awede ud verstehe: Lösuge 5. Brechug ud Totalreflexio 004 Orell Füssli Verlag AG 5. Brechug ud Totalreflexio Beim Übergag i ei Medium gilt obige Aussage icht mehr. Würde das Licht die kürzeste Strecke

Mehr

425 Polarisationszustand des Lichtes

425 Polarisationszustand des Lichtes 45 Polarisatioszustad des Lichtes. Aufgabe. Bestimme Sie de Polarisatiosgrad vo Licht ach Durchgag durch eie Glasplattesatz, ud stelle Sie de Zusammehag zwische Polarisatiosgrad ud Azahl der Glasplatte

Mehr

Übungsblatt 02 Grundkurs IIIa für Physiker, Wirtschaftsphysiker und Physik Lehramt

Übungsblatt 02 Grundkurs IIIa für Physiker, Wirtschaftsphysiker und Physik Lehramt Übugsblatt 0 Grudkurs IIIa für Physiker, Wirtschaftsphysiker ud Physik Lehramt Othmar Marti, othmar.marti@physik.ui-ulm.de 0., 6. ud 7. 5. 003 Aufgabe Licht i der geometrische Optik, Bilderzeugug durch

Mehr

Ergänzung zu den Fresnelschen Formeln. I 1 Medium 1 n 1 I 3 I 2. der einfallenden Welle galt für isotrope, nicht magnetische Medien

Ergänzung zu den Fresnelschen Formeln. I 1 Medium 1 n 1 I 3 I 2. der einfallenden Welle galt für isotrope, nicht magnetische Medien Vorlesug Physik III WS 0/03 Ergäzug zu de Freselsche Formel eifalleder Strahl I Medium Eifallsebee reflektierter Strahl 3 I 3 Grezfläche Aus de theoretische Betrachtuge der Stetigkeit der elektromagetische

Mehr

Physikalisches Anfaengerpraktikum. Beugung und Brechung

Physikalisches Anfaengerpraktikum. Beugung und Brechung Physikalisches Afaegerpraktikum Beugug ud Brechug Ausarbeitug vo Marcel Egelhardt & David Weisgerber (Gruppe 37) Mittwoch, 3. Februar 005 I Utersuchuge am Prismespektroskop 1. Versuch zur Bestimmug des

Mehr

Naturwissenschaften II (B. Sc. Maschinenbau)

Naturwissenschaften II (B. Sc. Maschinenbau) Übuge zur Vorlesug Naturwisseschafte II (B. Sc. Maschiebau) Sommersemester 2008 Musterlösug 9 Besprechug i der Woche vom 16.6-23.6.08 Professor Dr. G. Birkl, Dr. N. Herschbach www.physik.tu-darmstadt/apq/aturwisseschafte

Mehr

13. Landeswettbewerb Mathematik Bayern

13. Landeswettbewerb Mathematik Bayern 3. Ladeswettbewerb Mathematik Bayer Lössbeispiele für die Afabe der. Rde 00/0 Afabe I eiem 0x0-Gitter mit qadratische Felder werde 0 Spielsteie so esetzt, dass i jeder Spalte d jeder Zeile ea ei Feld belet

Mehr

2. Einführung in die Geometrische Optik

2. Einführung in die Geometrische Optik 2. Eiührug i die Geometrische Optik 2. Allgemeie Prizipie 2.. Licht ud Materie Optische Ssteme werde ür de Spektralbereich zwische dem extreme Ultraviolette ( m) ud dem thermische Irarote (Q-Bad bei 2

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Istitut für Techologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 3/4 Prof. Dr. J. Schmalia Blatt 7 Dr. P. P. Orth Abgabe ud Besprechug 3..3. Tayloretwicklug I 5 + 5 + 5 + 5

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? A welche Stichwörter vo der letzte Vorlesug köe Sie sich och erier? Strahleoptik (geometrische Optik) Brechugsidex c v Eifallswikel ist gleich Reflexioswikel Sellius sche Brechugsgesetz si si 1 1 2 2 Dispersio

Mehr

Übungen mit dem Applet Taylor-Entwickung von Funktionen

Übungen mit dem Applet Taylor-Entwickung von Funktionen Taylor-Etwickug vo Fuktioe Übuge mit dem Applet Taylor-Etwickug vo Fuktioe Ziele des Applets... Mathematischer Hitergrud... 3 Vorschläge für Übuge... 3 3. Siusfuktio si(...3 3. Cosiusfuktio cos(...4 3.3

Mehr

1.2. Taylor-Reihen und endliche Taylorpolynome

1.2. Taylor-Reihen und endliche Taylorpolynome 1.. aylor-reihe ud edliche aylorpolyome 1..1 aylor-reihe Wir köe eie Fuktio f() i eier Umgebug eies Puktes o gut durch ihre agete i o: t o () = f(o) + f (o) (-o) aäher: Wir sehe: Je weiter wir vo o weg

Mehr

Physikalische Grundlagen: Strahlengang durch optische Systeme

Physikalische Grundlagen: Strahlengang durch optische Systeme ieser Text ist ür iteressierte Leser gedacht, die sich über die klausur-relevate, physiologische Grudlage hiaus mit der Optik des Auges beschätige wolle! Physikalische Grudlage: Strahlegag durch optische

Mehr

Aufgaben Brechung am Prisma

Aufgaben Brechung am Prisma Aufgabe Brechug am Prisma 67. Zwei Lichtstrahle gleicher Farbe treffe parallel zur rudfläche auf ei Prisma aus leichtem Kroglas. Sie werde beim Übergag Luft - las so gebroche, dass sie beide die rudfläche

Mehr

Proseminar: Mathematisches Problemlösen. Ungleichungen 2. Pierre Schmidt. Vortragstermin: 19. Juni Fakultät für Mathematik

Proseminar: Mathematisches Problemlösen. Ungleichungen 2. Pierre Schmidt. Vortragstermin: 19. Juni Fakultät für Mathematik Prosemiar: Mathematisches Problemlöse Ugleichuge Pierre Schmidt Vortragstermi: 19. Jui 015 Übugsleiteri: Dr. Natalia Griberg Fakultät für Mathematik Karlsruher Istitut für Techologie Ihaltsverzeichis 1

Mehr

Vordiplomprüfung 2014 Mathematik Seite 1 von 3

Vordiplomprüfung 2014 Mathematik Seite 1 von 3 Vordiplomprüfug 14 Mathematik Seite 1 vo 1. Aufgabe Has hat eie Uhr bekomme. Er beobachtet, dass der Miutezeiger vo Zeit zu Zeit de Studezeiger überholt. a) Um welche Zeit zwische 9 ud 1 Uhr stehe die

Mehr

Diesen Grenzwert nennt man partielle Ableitung von f nach x i und

Diesen Grenzwert nennt man partielle Ableitung von f nach x i und Bevor wir zum ächste Kapitel übergehe, werde wir de Begri eier Fuktio i mehrere Variable eiführe. Eie Fuktio vo Variable ist eie Vorschrift, die jedem Pukt (x 1,x,...,x ) eier Teilmege D des IR eie bestimmte

Mehr

GIBS. Übungsaufgaben zur Vertiefung. V1. Beschriften Sie die Konstruktionen! n n n n ' ' ' ' Modul 1.5. Geometrische Optik 1 58.

GIBS. Übungsaufgaben zur Vertiefung. V1. Beschriften Sie die Konstruktionen! n n n n ' ' ' ' Modul 1.5. Geometrische Optik 1 58. eometrische Optik 1 58 Übugsaufgabe zur Vertiefug V1. Beschrifte Sie die Kostruktioe! ' ' ' ' ' ' ' ' Lehrerversio eometrische Optik 1 59 V2. Bei eiem Brillekroglas tritt Licht a der Rückfläche des lases

Mehr

Aufgaben Reflexionsgesetz und Brechungsgesetz

Aufgaben Reflexionsgesetz und Brechungsgesetz Aufgabe Reflexiosgesetz ud Brechugsgesetz 24. Zeiche zwei Spiegel, die sekrecht zueiader stehe. Utersuche mit zwei verschiede eifallede Strahle, welche Eigeschafte die reflektierte Strahle habe, die acheiader

Mehr

Optische Systeme (8. Vorlesung)

Optische Systeme (8. Vorlesung) Optische Systeme (8. Vorlesug) Martia Gerke..006 Uiversität Karlsruhe (TH) Ihalte der Vorlesug 8.. Grudlage der Welleoptik. Abbildede optische Systeme 3. Optische Messtechik 3. Spektroskopie 3. Materialcharakterisierug

Mehr

Abitur - Grundkurs Mathematik. Sachsen-Anhalt Gebiet G2 Analytische Geometrie

Abitur - Grundkurs Mathematik. Sachsen-Anhalt Gebiet G2 Analytische Geometrie Abitur - Grudkurs Mathematik Sachse-Ahalt 00 Gebiet G Aalytische Geometrie Aufgabe.. 4 0 I eiem kartesische Koordiatesystem sid die Vektore a, b 8 sowie der Pukt 4 4 A 3 gegebe. a) Weise Sie ach, dass

Mehr

Lichtquellen Körper die selbst Licht erzeugen, nennt man Lichtquellen. Die meisten Lichtquellen sind glühende Körper mit hoher Temperatur.

Lichtquellen Körper die selbst Licht erzeugen, nennt man Lichtquellen. Die meisten Lichtquellen sind glühende Körper mit hoher Temperatur. PS - OPTIK P. Redulić 2007 LICHT STRAHLENOPTIK LICHT. Lichtquelle ud beleuchtete Körper Sichtbare Körper sede teilweise Licht aus, teilweise reflektiere sie aber auch das auf sie fallede Licht. Lichtquelle

Mehr

Transformator. n Windungen

Transformator. n Windungen echische iversität Dresde stitut für Ker- ud eilchephysik R. Schwierz V/5/29 Grudpraktikum Physik Versuch R rasformator rasformatore werde i viele ereiche der Elektrotechik ud Elektroik eigesetzt. Für

Mehr

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n)

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n) Übugsaufgabe Aalysis I Aufgabe. Beweise oder widerlege Sie: a Jede i R kovergete Folge ist beschräkt. b Es gibt Cauchy-Folge im R, die icht kovergiere. c Beschräkte Folge sid koverget. d Folge mit eiem

Mehr

1. Zahlenfolgen und Reihen

1. Zahlenfolgen und Reihen . Zahlefolge ud Reihe We ma eie edliche Mege vo Zahle hat, ka ma diese i eier bestimmte Reihefolge durchummeriere: {a,a 2,...,a }. Ma spricht vo eier edliche Zahlefolge. Fügt ma immer mehr Zahle hizu,

Mehr

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S Statistik mit Excel 2013 Peter Wies Theme-Special 1. Ausgabe, Februar 2014 W-EX2013S 3 Statistik mit Excel 2013 - Theme-Special 3 Statistische Maßzahle I diesem Kapitel erfahre Sie wie Sie Date klassifiziere

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 8/9 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum. Übugsblatt

Mehr

Potentielle Energie und Spannenergie (Artikelnr.: P )

Potentielle Energie und Spannenergie (Artikelnr.: P ) Lehrer-/Dozentenblatt Potentielle Energie und Spannenergie (Artikelnr.: P1001500) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-10 Lehrplanthema: Mecha7ik Unterthema: Arbeit u7d

Mehr

Fortgesetztes Verdünnen

Fortgesetztes Verdünnen ortesetztes Verdüe CB V vor Verdüe V V ach Verdüe V m vor Verdüe m für Masseateil : m ach Verdüe m c( X ) c ( X ) Am.: Die Gleichu ilt siemäß auch für adere koz ach Gehaltsaabe: β(x), σ(x), w(x) etc. koz

Mehr

Klasse: Platzziffer: Punkte: / Graph zu f

Klasse: Platzziffer: Punkte: / Graph zu f Pflichtteil Mathematik I Aufgabe P Name: Vorame: Klasse: Platzziffer: Pukte: / P.0 Gegebe ist die Fuktio f mit der Gleichug (siehe Zeichug). y x8 y,25 4 mit GI IRIR Graph zu f O x P. x 8 Die Pukte C (x,25

Mehr

Linsengesetze und optische Instrumente

Linsengesetze und optische Instrumente Lisegesetze ud optische Istrumete Gruppe X Xxxx Xxxxxxxxx Xxxxxxx Xxxxxx Mat.-Nr.: XXXXX Mat.-Nr.: XXXXX XX.XX.XX Theorie Im olgede werde wir eie kurze Überblick über die Fuktio, de Aubau ud die Arte vo

Mehr

Rotationsvolumina Auf den Spuren von Pappus und Guldin

Rotationsvolumina Auf den Spuren von Pappus und Guldin Rotatiosvolumia Auf de Spure vo Pappus ud Guldi Gegebe sei ei Kreis mit Radius r, desse Mittelpukt um a aus dem Ursprug eies kartesische Koordiatesystems i Richtug der Ordiate verschobe sei. Die Kreisfläche

Mehr

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE Versuch 3/ NEWTONSCHE INTERFERENZRINGE Blatt NEWTONSCHE INTERFERENZRINGE Die Oberfläche vo Lise hat im allgemeie Kugelgestalt. Zur Messug des Krümmugsradius diet das Sphärometer. Bei sehr flacher Krümmug

Mehr

Empirische Verteilungsfunktion

Empirische Verteilungsfunktion KAPITEL 3 Empirische Verteilugsfuktio 3.1. Empirische Verteilugsfuktio Seie X 1,..., X uabhägige ud idetisch verteilte Zufallsvariable mit theoretischer Verteilugsfuktio F (t) = P[X i t]. Es sei (x 1,...,

Mehr

Protokoll zum Anfängerpraktikum

Protokoll zum Anfängerpraktikum Protokoll zum Afägerpraktikum Polarisatio vo Licht Gruppe, Team 5 Sebastia Korff Frerich Max 0.07.06 Ihaltsverzeichis. Eileitug -3-. Polarisatio -3-. Dichroismus -4-.3 BREWSTER Wikel -5-.4 Der FARADAY

Mehr

Streuungsmaße. Prof. Dr. Paul Reuber. Institut für Geographie. Seminar Methoden der empirischen Humangeographie

Streuungsmaße. Prof. Dr. Paul Reuber. Institut für Geographie. Seminar Methoden der empirischen Humangeographie Streuugsmaße Istitut für Geographie Streuugswerte (Streuugsmaße) Die Diskussio um die Mittelwerte hat die Vorteile dieser statistische Kewerte gezeigt, aber bereits, isbesodere beim arithmetische Mittel,

Mehr

HS D. Hochschule Düsseldorf Fachbereich EI. Physikalisches Praktikum. V 503 : Spektrometer

HS D. Hochschule Düsseldorf Fachbereich EI. Physikalisches Praktikum. V 503 : Spektrometer Gruppe : Name, Matrikel Nr.: HS D Hochschule Düsseldorf Versuchstag: Vorgelegt: Testat : V 503 : Spektrometer Zusammefassug: 01.04.016 Versuch: Spektrometer Seite 1 vo 10 Gruppe : HS D Korrigiert am: Hochschule

Mehr

4. Vektorräume mit Skalarprodukt

4. Vektorräume mit Skalarprodukt 4. Vektorräume mit Skalarprodukt Wiederholug: V=R x, y R: x= x x i x, y= y y, :R R R Skalarprodukt Stadardskalarprodukt lieare Abbildug mit 2 Argumete 4. Eigeschafte vo Skalarprodukte Def.: Es sei V ei

Mehr

AT AB., so bezeichnet man dies als innere Teilung von

AT AB., so bezeichnet man dies als innere Teilung von Teilverhältisse Aus der Geometrie der Dreiecke ket ma die Aussage, dass der Schwerpukt T eies Dreiecks die Seitehalbierede im Verhältis : teilt. Für die Strecke AT ud TM gilt gemäß der Abbildug AT : TM

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Methode der kleiste Quadrate KAPITEL 5: REGRESSIONSRECHNUNG Die Methode der kleiste Quadrate (MklQ) ist ei Verfahre zur Apassug eier Fuktio a eie Puktwolke. Agewadt wird sie beispielsweise, um eie Gesetzmäßigkeit

Mehr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Lars Machiek Dipl.-Math. Sebastia Schwarz WS 206/207 03..206 Aalysis I Lösugsvorschläge zum 3. Übugsblatt Abgabe:

Mehr

sfg Quadratwurzeln a ist diejenige nichtnegative Zahl (a 0), die quadriert a ergibt: Die Zahl a unter der Wurzel heißt Radikand:

sfg Quadratwurzeln a ist diejenige nichtnegative Zahl (a 0), die quadriert a ergibt: Die Zahl a unter der Wurzel heißt Radikand: M 9.1 Quadratwurzel a ist diejeige ichtegative Zahl (a 0), die quadriert a ergibt: a 2 = a Die Zahl a uter der Wurzel heißt Radikad: a Quadratwurzel sid ur für ichtegative Zahle defiiert: a 0 25 = 5; 81

Mehr

Aufgaben zur Übung und Vertiefung

Aufgaben zur Übung und Vertiefung Aufgabe zur Übug ud Vertiefug ARITHMETISCHE ZAHLENFOLGEN Berufliches Gymasium / Uterstufe () Stelle Sie fest, welche der gegebee Folge arithmetisch sid: Bestimme Sie zuächst die erste füf Folgeglieder,

Mehr

Aufgaben zur Analysis I

Aufgaben zur Analysis I Aufgabe zur Aalysis I Es werde folgede Theme behadelt:. Logik, Iduktio, Mege, Abbilduge 2. Supremum, Ifimum 3. Folge, Fuktioefolge 4. Reihe, Potezreihe 5. Mootoie ud Stetigkeit 6. Differetialrechug 7.

Mehr

Halbleiter II. x 1 2 e ax dx = Γ ( ) verwendet werden. Außerdem gilt. 1. intrinsische Halbleiter. 4π 2 ( 2m. k b T ) a

Halbleiter II. x 1 2 e ax dx = Γ ( ) verwendet werden. Außerdem gilt. 1. intrinsische Halbleiter. 4π 2 ( 2m. k b T ) a Übuge zu Materialwisseschafte I Prof. Alexader Holleiter Übugsleiter: Jes Repp / ric Parziger Kotakt: jes.repp@wsi.tum.de / eric.parziger@wsi.tum.de Blatt 4, Besprechug:28.-3..23 Halbleiter II. itrisische

Mehr

Teil II Zählstatistik

Teil II Zählstatistik Teil II Zählstatistik. Aufgabestellug. Vergleiche Sie experimetelle Zählverteiluge mit statistische Modelle (POISSON-Verteilug ud Normalverteilug) 2. Theoretische Grudlage Stichworte zur Vorbereitug: Impulszahl,

Mehr

Abb. 1: Eine Stahlkugel fällt auf eine Stahlplatte oder ein Aluminium-Blech (Zeichnung: Skript Ihringer)

Abb. 1: Eine Stahlkugel fällt auf eine Stahlplatte oder ein Aluminium-Blech (Zeichnung: Skript Ihringer) Fall, Wurf ud Federkräfte I der Zwischeeit habe Sie die Beriffe Arbeit, potetielle ud kietische Eerie, sowie die Eerieerhaltu keeelert. Wir wolle u eiie Versuche um Thema Fall ud Wurf betrachte, mit dee

Mehr

Konvexität und Ungleichungen

Konvexität und Ungleichungen Koveität ud Ugleichuge Tag der Mathematik 2003 Holger Stepha Weierstraß Istitut für Agewadte Aalysis ud Stochastik http://www.wias-berli.de/people/stepha = Für mathematisch iteressierte Schüler = Folie

Mehr

Schwerpunkt 1 E Ma 1 Lubov Vassilevskaya

Schwerpunkt 1 E Ma 1 Lubov Vassilevskaya http://www.ewagilmour.com/wp-cotet/uploads/2010/05/forkkifespooegg.jpg Schwerpukt 1 E Der starre c Körper http://www.flickr.com/photos/iesca/3139536876/i/pool-streetlamps Abb. 1 1: Zur Defiitio eies starre

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

Analysis II für M, LaG und Ph, WS07/08 Übung 2, Lösungsskizze

Analysis II für M, LaG und Ph, WS07/08 Übung 2, Lösungsskizze Gruppeübug Aalysis II für M, LaG ud Ph, WS7/8 Übug, Lösugsskizze G 4 (Zum warm werde). Begrüde die vo Physiker beliebte Näheruge si(x) x, cos(x) ud ta(x) x für kleie x R. Dies folgt direkt aus der Tayloretwicklug

Mehr

1 Funktionen und Flächen

1 Funktionen und Flächen Fuktioe ud Fläche. Fläche Defiitio: Die Ebee R ist defiiert als Mege aller geordete Paare vo reelle Zahle: R = {(,, R} Der erste Eitrag heißt da auch Koordiate ud der zweite Koordiate. Für zwei Pukte (,,

Mehr

2.Klausur LK Physik 12/2 - Sporenberg Datum:

2.Klausur LK Physik 12/2 - Sporenberg Datum: 2.Klausur LK Physik 12/2 - Sporeberg Datum: 06.06.2011 1.Aufgabe: 1.1 Iterfereze bei Licht I eiem erste Experimet utersucht ma Iterfereze vo sichtbarem Licht, das eie Doppelspalt durchläuft. Der verwedete

Mehr

5.3 Wachstum von Folgen

5.3 Wachstum von Folgen 53 Wachstum vo Folge I diesem Abschitt betrachte wir (rekursiv oder aders defiierte) Folge {a } = ud wolle vergleiche, wie schell sie awachse, we wächst Wir orietiere us dabei a W Hochstättler: Algorithmische

Mehr

Drehstrom. 1 Begriffe. 2 Drei Phasen und Cosinus. David Vajda 30. April Effektivwert. Nennwert. Spitzenwert = Scheitelwert = Amplitude.

Drehstrom. 1 Begriffe. 2 Drei Phasen und Cosinus. David Vajda 30. April Effektivwert. Nennwert. Spitzenwert = Scheitelwert = Amplitude. Drehstrom David Vajda 0. April 017 1 Begriffe Effektivwert Newert Spitzewert = Scheitelwert = Amplitude Mittel: arithmetisches Mittel geometrisches Mittel quadratisches Mittel..., oder, Mittel: arithmetisches

Mehr

4. Reihen Definitionen

4. Reihen Definitionen 4. Reihe 4.1. Defiitioe Addiere wir die Glieder eier reelle Zahlefolge (a k ), so heißt diese Summe S (uedliche) (Zahle-) Reihe S (Folge: Fuktio über N; Reihe: 1 Zahl): S := a 1 + a 2 + a 3 +... := Σ a

Mehr

Vorkurs Mathematik für Informatiker Folgen

Vorkurs Mathematik für Informatiker Folgen Vorkurs Mathematik ür Iormatiker -- 8 Folge -- 11.10.2015 1 Folge: Deiitio Eie (uedliche) Folge im herkömmliche Sie etsteht durch Hitereiaderschreibe vo Zahle 1,2,3,4,5, Dabei ist die Reiheolge wichtig,

Mehr

Die Jensensche Ungleichung

Die Jensensche Ungleichung Die Jesesche Ugleichug Has-Gert Gräbe, Uiv Leipzig Februar 1998 1 Kovexe ud kokave Fuktioe Wir betrachte eie stetige Fuktio y = (x), die au eiem oee Itervall ]a, b[ deiiert sei möge Eie solche Fuktio köe

Mehr

so spricht man von einer kommutativen Gruppe oder auch abelschen Gruppe.

so spricht man von einer kommutativen Gruppe oder auch abelschen Gruppe. Defiitioe ud Aussage zu ruppe Michael ortma Eie ruppe ist ei geordetes Paar (, ). Dabei ist eie icht-leere Mege, ist eie Verküpfug (Abbildug), wobei ma i.a. a b oder gar ur ab statt ( a, b) schreibt. Es

Mehr

2 Konvergenz von Folgen

2 Konvergenz von Folgen Kovergez vo Folge. Eifache Eigeschafte Defiitio.. Eie Abbildug A : N C heißt Folge. Ma schreibt a statt A) für N ud a ) oder a ) statt A. We a R N, so heißt a ) reelle Folge. Defiitio.. Seie a ) eie Folge

Mehr

Praktikum Messtechnik

Praktikum Messtechnik Praktikum Messtechik Fachhochschule Stuttgart, Hochschule der Medie Witersemester 2008/2009 Versuchsdatum: 9. November 2008 Versuch 4: 4/ Rauheit /mecha. Tastschittverfahre 4/2 Rauheit /optisches Tastschittverfahre

Mehr

3. Tilgungsrechnung. 3.1. Tilgungsarten

3. Tilgungsrechnung. 3.1. Tilgungsarten schreier@math.tu-freiberg.de 03731) 39 2261 3. Tilgugsrechug Die Tilgugsrechug beschäftigt sich mit der Rückzahlug vo Kredite, Darlehe ud Hypotheke. Dabei erwartet der Gläubiger, daß der Schulder seie

Mehr

n=0 f(x) = log(1 + x) = n=1

n=0 f(x) = log(1 + x) = n=1 Potez - Reihe Machmal ist es praktisch eie Fuktio f() mir Hilfe ihrer Potezreihe auszudrücke. Eie Potezreihe um de Etwicklugspukt 0 sieht im Allgemeie so aus a ( 0 ) Fuktioe, für die eie Potezreihe eistiert,

Mehr

Mathematische Probleme, SS 2015 Donnerstag $Id: convex.tex,v /05/21 18:28:20 hk Exp $

Mathematische Probleme, SS 2015 Donnerstag $Id: convex.tex,v /05/21 18:28:20 hk Exp $ $Id: covex.tex,v 1.18 2015/05/21 18:28:20 hk Exp $ 3 Kovexgeometrie 3.2 Die platoische Körper Ei platoischer Körper vo Typ (, m) ist ei kovexer Polyeder desse Seitefläche alle gleichseitige -Ecke ud i

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

Übungen mit dem Applet erwartungstreu

Übungen mit dem Applet erwartungstreu Übuge mit dem Applet erwartugstreu Visualisierug vo erwartugstreu Begriffe ud statischer Hitergrud. Visualisieruge mit dem Applet..3. Zufallsstreuug der Eizelwerte...3. Mittelwerte 3.3 Variaz. 4.4 Variaz

Mehr

Betrachtung von wahrscheinlichen und unwahrscheinlichen Zuständen eines Systems. Beide Zustände haben die gleiche Innere Energie (ideales Gas).

Betrachtung von wahrscheinlichen und unwahrscheinlichen Zuständen eines Systems. Beide Zustände haben die gleiche Innere Energie (ideales Gas). Etropie etrachtug vo wahrscheiliche ud uwahrscheiliche Zustäde eies Systems. A eispiel: Gas Vakuum Gas eide Zustäde habe die gleiche Iere Eergie (ideales Gas). Übergag vo ach A ist keie Verletzug des Eergiesatzes.

Mehr

Abschlussprüfung 2012 an den Realschulen in Bayern

Abschlussprüfung 2012 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Abschlussprüfug 01 a de Realschule i Bayer Mathematik II Aufgabe B 1 Haupttermi B 1.0 Die Parabel p verläuft durch die Pukte P( 5 19) ud Q(7 5). Sie hat eie Gleichug der Form y

Mehr

Klausur vom

Klausur vom UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Domiik Faas Stochastik Witersemester 00/0 Klausur vom 7.0.0 Aufgabe 3+.5+.5=6 Pukte Bei eier Umfrage wurde 60 Hotelbesucher ach ihrer Zufriedeheit

Mehr

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2 D-MATH Topologie FS 15 Theo Bühler Musterlösug 2 1. a) Per Defiitio ist A = {x : x berührt A}. I der Vorlesug wurde die Formel (X A) = ( A ) c gezeigt, also A = ( X A ) c. Daher ist A = A A = A (A ) c

Mehr

Geometrische Wahrscheinlichkeit, Crofton s Formel und ihre Anwendungen

Geometrische Wahrscheinlichkeit, Crofton s Formel und ihre Anwendungen Istitut für Iformatik, Abteilug I Semiar Algorithmische Geometrie ud algorithmische Bewegugsplaug SS 004 Prof. Dr.Rolf Klei Dr. Elmar Lagetepe Geometrische Wahrscheilichkeit, Crofto s Formel ud ihre Aweduge

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Empirische Wirtschaftsforschug ud Ökoometrie Dr. Rolad Füss Statistik II: Schließede Statistik SS 2007 6. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug

Mehr

4. Die Menge der Primzahlen. Bertrands Postulat

4. Die Menge der Primzahlen. Bertrands Postulat O. Forster: Eiführug i die Zahletheorie 4. Die Mege der Primzahle. Bertrads Postulat 4.1. Satz (Euklid. Es gibt uedlich viele Primzahle. Beweis. Wir zeige, dass es zu jeder edliche Mege p 1, p 2,..., p

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 04..05 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 6. Übugsblatt Aufgabe

Mehr

Finanzmathematische Formeln und Tabellen

Finanzmathematische Formeln und Tabellen Jui 2008 Dipl.-Betriebswirt Riccardo Fischer Fiazmathematische Formel ud Tabelle Arbeitshilfe für Ausbildug, Studium ud Prüfug im Fach Fiaz- ud Ivestitiosrechug Dieses Werk, eischließlich aller seier Teile,

Mehr

Übung 8: Transformationen

Übung 8: Transformationen ZHAW, DSV, 008, Rumc, 1/7 Übug 8: Trasformatioe Aufgabe 1: (Wavelet) Basisfuktioe. Betrachte Sie die folgede 4 Basisfuktioe f m [], m = 1,...,4, sowie das Zeitsigal x[] = [9 7 3 5]. f 0 [] f 1 [] 0.5 0.5-0.5

Mehr

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung 6. Übugsblatt Aufgabe mit Lösuge + Selbsttest-Auflösug Aufgabe 6: Utersuche Sie die Folge, dere Glieder ute für N agegebe sid, auf Beschräktheit, Mootoie ud Kovergez bzw. Beschräktheit, Mootoie ud Kovergez

Mehr

Abschlussprüfung 2011 an den Realschulen in Bayern

Abschlussprüfung 2011 an den Realschulen in Bayern Lösugsmuster ud Bewertug Abschlussprüfug 0 a de Realschule i Bayer Mathematik I Aufgabe A - Nachtermi FUNKTIONEN A. x + + y=,05 GI = 0 0 K A. 6 y=,05 y=,0 Am Ede des sechste Tages ware vo Bakterie bedeckt.

Mehr

3. Taylorformel und Taylorreihen

3. Taylorformel und Taylorreihen Prof Dr Siegfried Echterhoff Aalysis Vorlesug SS 9 3 Taylorformel ud Taylorreihe Sei I R ei Itervall ud sei f : I R eie Fuktio Ziel: Wolle utersuche, wa sich die Fuktio f i eier Umgebug vo eiem Pukt I

Mehr

und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n.

und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n. Reeller Vektorraum Kapitel Vektorräume Die Mege aller Vektore x mit Kompoete bezeiche wir mit x R =. : x i R, i x ud wird als -dimesioaler (reeller) Vektorraum bezeichet. Defiitio Ei Vektorraum V ist eie

Mehr

1. Mathematikschulaufgabe

1. Mathematikschulaufgabe .0 Die Pukte P(0/-7) ud Q(5/-) liege auf eier ach ute geöffete Normalparabel p. G< x. Bereche die Gleichug der Parabel p. (Ergebis: y = - x + 6x - 7 ). Bestimme die Koordiate des Parabel-Scheitels. Gib

Mehr

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $ Mathematik für Iformatiker B, SS 0 Diestag 5.6 $Id: folge.tex,v. 0/06/05 ::8 hk Exp $ 6 Folge 6.4 Folge reeller Zahle I der letzte Sitzug habe wir de Begriff des Grezwerts eier Folge i eiem metrische Raum

Mehr

$Id: komplex.tex,v /04/13 15:09:53 hk Exp $

$Id: komplex.tex,v /04/13 15:09:53 hk Exp $ Mathematik für Igeieure IV, SS 206 Mittwoch 3.4 $Id: komplex.tex,v.2 206/04/3 5:09:53 hk Exp $ Komplexe Zahle I diesem Kapitel wolle wir erst eimal zusammestelle was aus de vorige Semester über die komplexe

Mehr

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5 Vl Statistische Prozess- ud Qualitätskotrolle ud Versuchsplaug Übug 5 Aufgabe ) Sei p = P(A) die Wahrscheilichkeit für ei Ereigis A, dh., es gilt 0 p. Bereche Sie das Maximum der Fuktio f(p) = p(-p). Aufgabe

Mehr

Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus.

Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus. bschlussprüfug 0 a de Realschule i Bayer usterlösug Lösug Diese Lösug wurde erstellt vo orelia azebacher. ie ist keie offizielle Lösug des Bayerische taatsmiisteriums für Uterricht ud Kultus. ufgabe.0

Mehr

10 Aussagen mit Quantoren und

10 Aussagen mit Quantoren und 0 Aussage mit Quatore ud 0.6. Eisatz vo (bereits bekater) Eistezaussage Bisher hatte wir Eistezbeweise geführt, idem wir ei passedes Objekt agegebe habe ( Setze... ). Stattdesse ka ma auch auf bereits

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VMa Schuljahr 6/7 Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 5 Für Experte 7 Defiitioe ud Beispiele

Mehr

Zahlenfolgen. Zahlenfolgen

Zahlenfolgen. Zahlenfolgen Zahlefolge Eie Zahlefolge a besteht aus Zahle a,a,a 3,a 4,a 5,... Die eizele Zahle eier Folge heiße Glieder oder Terme. Beispiele für Zahlefolge sid die atürliche Zahle: 3 4 5 6 7 8 9 0 3 4 5..., die gerade

Mehr

Repetitionsaufgaben Potenzfunktionen

Repetitionsaufgaben Potenzfunktionen Repetitiosaufgabe Potezfuktioe Ihaltsverzeichis A) Vorbemerkuge/Defiitio 1 B) Lerziele 1 C) Etdeckuge (Graphe) 2 D) Zusammefassug 7 E) Bedeutug der Parameter 7 F) Aufgabe mit Musterlösuge 9 A) Vorbemerkuge

Mehr

Zentrale Klassenarbeit unter Prüfungsbedingungen im Schuljahr 2009/2010. Mathematik (A) 26. März 2010

Zentrale Klassenarbeit unter Prüfungsbedingungen im Schuljahr 2009/2010. Mathematik (A) 26. März 2010 Miisterium für Bildug, Juged ud Sport Zetrale Klassearbeit uter Prüfugsbediguge im Schuljahr 009/00 Mathematik (A) 6. März 00 Zugelassee Hilfsmittel: - Tascherecher (icht programmierbar ud icht grafikfähig)

Mehr

1 Das Skalarprodukt und das Kreuzprodukt

1 Das Skalarprodukt und das Kreuzprodukt Das Skalarprodukt ud das Kreuzprodukt Wir betrachte zu x = de Ausdruck y t x : = x Grud: Die rechte Seite der Gleichug ist: y t x = (y tx +... + (y ty { t x } y +... + x y x + x y (x y +... + x y x x t

Mehr

Übungen mit dem Applet Fourier-Reihen

Übungen mit dem Applet Fourier-Reihen Fourier-Reihe 1 Übuge mit dem Applet Fourier-Reihe 1 Mathematischer Hitergrud... Übuge mit dem Applet... 3.1 Eifluss der Azahl ud der Sprugstelle...3. Eifluss vo y-verschiebug ud Amplitude...4.3 Eifluss

Mehr

Prof. Dr. Roland Füss Statistik II SS 2008

Prof. Dr. Roland Füss Statistik II SS 2008 1. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug ergibt sich aus de Grezwertsätze. Grezwertsätze sid Aussage über eie Zufallsvariable für de Fall, dass die Azahl

Mehr

n 2(a + bx i y i ) = 0 und i=1 n 2(a + bx i y i )x i = 0 i=1 gilt. Aus diesen beiden Gleichungen erhalten wir nach wenigen einfachen Umformungen

n 2(a + bx i y i ) = 0 und i=1 n 2(a + bx i y i )x i = 0 i=1 gilt. Aus diesen beiden Gleichungen erhalten wir nach wenigen einfachen Umformungen Regressio Dieser Text rekapituliert die i der Aalsis ud Statistik wohlbekate Methode der kleiste Quadrate, auch Regressio geat, zur Bestimmug vo Ausgleichsgerade Regressiosgerade ud allgemei Ausgleichpolome.

Mehr

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id,

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id, Kreisabbilduge Im Folgede sehe wir us eie gaz spezielle Klasse vo dyamische Systeme a: Abbilduge auf dem Kreis. Diese sid eifach geug, so dass wir sie och recht leicht aalysiere köe, habe aber adererseits

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Istitut für tochastik Prof. Dr. N. Bäuerle Dipl.-Math.. Urba Lösugsvorschlag 9. Übugsblatt zur Vorlesug Fiazmathematik I Aufgabe Ei euartiges Derivat) Wir sid i eiem edliche, arbitragefreie Fiazmarkt,

Mehr

Folgen explizit und rekursiv Ac

Folgen explizit und rekursiv Ac Folge explizit ud rekursiv Ac 03-08 Folge sid Fuktioe, bei dee atürliche Zahle ( 0; ; ; ) reelle Zahle a() zugeordet werde. Ma schreibt dafür : a() bzw. a. Für die Folge schreibt ma auch < a >. Folge köe

Mehr