Schaltalgebra. Prof. Metzler
|
|
|
- Ina Küchler
- vor 8 Jahren
- Abrufe
Transkript
1 Schaltalgebra 1
2 Schaltalgebra (oolsche lgebra) George oole, britischer Mathematiker, "The mathematical analysis of logic (lgebra zur systematischen ehandlung von Logik) 1847, leitet Claude Elwood Shannon ( , US, ell Labs) eine 2-wertige oolesche lgebra zur eschreibung binärer Schaltung ab (Schaltalgebra, Switching Theory) Sinn: nalyse, Vereinfachung und Synthese von digitalen Schaltungen nach definierten Gesetzen George oole egriffe: xiom: Ursatz, der nicht bewiesen (abgeleitet) werden kann Postulat: Forderung; unbeweisbare, aber unentbehrliche nnahme Theorem: Lehrsatz 2
3 Schaltalgebra (oolsche lgebra) Wie in der normalen lgebra existieren auch in der Schaltalgebra Variable und Konstante. Definition: Die Schaltalgebra kennt nur zwei Konstante: 0 und 1. Sie entsprechen den logischen Zuständen, die eine beliebige Variable annehmen kann. Definition: Konstanten der Schaltalgebra sind Größen, die die Werte oder Zustände 0 oder 1 annehmen können. Veranschaulichung der Variablen und ihre möglichen Werte 0 und 1 Veranschaulichung der Konstanten 0 und 1 3
4 Postulat der UND-Verknüpfung Postulat der ODER-Verknüpfung 4
5 Postulat der NICHT-Verknüpfung 5
6 Unter Heranziehung der ooleschen Postulate (nnahmen, Voraussetzungen) können jetzt die ooleschen Theoreme (Lehrsätze) aufgestellt werden. Die Rechenregeln für die Verknüpfung einer Variablen mit einer Konstanten oder einer Variablen mit sich selbst bzw. ihrer Negation werden Theoreme genannt. Die Richtigkeit dieser Lehrsätze kann jederzeit mit Hilfe der Postulate überprüft werden (z.. unter Verwendung von Wahrheitstafeln). 6
7 Theorem der UND-Verknüpfung 7
8 Theorem der ODER-Verknüpfung 8
9 Theorem der NICHT-Verknüpfung Zwei Negationsstriche heben sich gegenseitig auf 9
10 Kommutativgesetz (Vertauschungsgesetz) Definition: Die Reihenfolge, in der Variable der UND-Verknüpfung unterzogen werden, ist beliebig (10). Sie hat keinen Einfluß auf das Ergebnis. Definition: Die Reihenfolge, in der Variable der ODER-Verknüpfung unterzogen werden, ist beliebig (11). Sie hat keinen Einfluß auf das Ergebnis. 10
11 Kommutativgesetz (Vertauschungsgesetz) Kommutativgesetz der UND-Verknüpfung Kommutativgesetz der ODER-Verknüpfung 11
12 ssoziativgesetz (Verbindungs- oder Zuordnungsgesetz) Definition: Die Reihenfolge der Zuordnung der Variablen bei der UND- Verknüpfung ist beliebig (12). Sie hat keinen Einfluß auf das Ergebnis. 12
13 ssoziativgesetz (Verbindungs- oder Zuordnungsgesetz) Definition: Die Reihenfolge der Zuordnung der Variablen bei der ODER- Verknüpfung ist beliebig (13). Sie hat keinen Einfluß auf das Ergebnis. 13
14 Distributivgesetz (Verteilungsgesetz) Das Distributiv- oder Verteilungsgesetz hat eine große praktische edeutung bei der Umformung und Vereinfachung schaltalgebraischer Gleichungen. Es entspricht der Regel über das usmultiplizieren und usklammern eines Faktors in der normalen lgebra. ezogen auf die beiden logischen Grundverknüpfungen unterscheidet man das konjunktive und das disjunktive Distributivgesetz konjunktives Distributivgesetz disjunktives Distributivgesetz 14
15 De Morgansche Gesetze Mit ihnen können gegebene Digitalschaltungen so umgerechnet werden, dass man nur mit NND- oder NOR-Gattern auskommt. Dies ermöglicht den Einsatz gleichartiger auteile und damit kostengünstigere, einfachere Schaltungen. ugustus De Morgan *1806 in Indien 1871 in England Dualität: Jedes Gesetz der Schaltalgebra bleibt gültig, wenn 0 und 1 sowie und vertauscht werden Erstes De Morgansches Gesetz: Z = = 16 Zweites De Morgansches Gesetz: Z = = 17 15
16 De Morgansche Gesetze Erstes De Morgansches Gesetz: Z = = 16
17 De Morgansche Gesetze Zweites De Morgansches Gesetz: Z = = 17
18 De Morgansche Gesetze Folgende Gleichung ist zu vereinfachen: P = R S R S Tip: Z = = Gleichung: 6, 7, 8 18
19 indungsregel Die Verknüpfung mehrerer Variablen durch UND und ODER kann zu Mehrdeutigkeiten führen. Die Gleichung Z = C kann auf zwei verschiedene Weisen aufgefasst werden. Variante 1: Z = ( ) C Variante 2: Z = ( C) Definition: Gemäß der Priorität Punktrechnung geht vor Strichrechnung aus der normalen lgebra bindet in der Schaltalgebra eine UND- Verknüpfung stets stärker als eine ODER-Verknüpfung. 19
20 NND- und NOR-Funktion Die Schaltalgebra ist auf drei Grundfunktionen aufgebaut (UND, ODER und NICHT). Mit diesen Funktionen können beliebige Verknüpfungsschaltungen hergestellt werden. Das 1. Morgansche Gesetz zeigt, dass jede UND-Verknüpfung mit einer ODER-Verknüpfung und mehreren NICHT-Funktionen gebildet werden kann. 20
21 NND- und NOR-Funktion = 1. Morgansche Gesetz = = 21
22 NND- und NOR-Funktion Definition: Jede gewünschte Verknüpfungsschaltung lässt sich nur mit NOR-Gattern aufbauen. 22
23 NND- und NOR-Funktion = 2. Morgansche Gesetz = = 23
24 NND- und NOR-Funktion Definition: Jede gewünschte Verknüpfungsschaltung lässt sich nur mit NND-Gattern aufbauen. 24
25 ufgaben Folgende Gleichungen sind zu vereinfachen: a) Z = C b) Y = C C c) X = ( C) ( C) 25
26 26 ufgaben ) ( ) ( ) ( ) ( ) ( S R P N M C X D C Y C Q R S Z = = = a) b) c) Rechnen Sie die Gleichungen so um, dass die Schaltung a) nur mit NND-Gliedern, b) nur mit NOR-Gliedern aufgebaut werden kann.
2. Funktionen und Entwurf digitaler Grundschaltungen
2. Funktionen und Entwurf digitaler Grundschaltungen 2.1 Kominatorische Schaltungen Kombinatorische Schaltungen - Grundlagen 1 Grundgesetze der Schaltalgebra UND-Verknüpfung ODER-Verknüpfung NICHT-Verknüpfung
1. Logische Verknüpfungen
1. Logische Verknüpfungen 1.1 UND - Verknüpfung Mathematik: X = A Schaltzeichen: A & X Wahrheitstabelle: A X 0 0 0 0 1 0 1 0 0 1 1 1 Am Ausgang eines UND Gliedes liegt nur dann der Zustand 1, wenn an allen
Informationsverarbeitung auf Bitebene
Informationsverarbeitung auf Bitebene Dr. Christian Herta 5. November 2005 Einführung in die Informatik - Informationsverarbeitung auf Bitebene Dr. Christian Herta Grundlagen der Informationverarbeitung
Kapitel 2. Boolesche Algebra. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik
Kapitel 2 oolesche lgebra Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of pplied Sciences w Fakultät für Informatik Schaltalgebra, und sind Operatoren über der Menge {0,1} a b a b 0 0 0
Kombinatorische Logik, Schaltalgebra
Lothar Müller euth Hochschule erlin 1 Logische Zustände In der Digitaltechnik werden Informationen oder Signale verwendet, die nur 2 Zustände annehmen können. Mathematisch kennzeichnen wir sie unter Verwendung
Logische Aussagen können durch die in der folgenden Tabelle angegebenen Operationen verknüpft werden.
Logische Operationen Logische ussagen können durch die in der folgenden Tabelle angegebenen Operationen verknüpft werden. ezeichnung Schreibweise (Sprechweise) wahr, genau dann wenn Negation (nicht ) falsch
Einführung in die Boolesche Algebra
Einführung in die Boolesche Algebra Einführung in Boole' sche Algebra 1 Binäre Größe Eine Größe (eine Variable), die genau 2 Werte annehmen kann mathematisch: falsche Aussage wahre Aussage technisch: ausgeschaltet
Satz von De Morgan A B A + B A + B A B A. Transistoren: A B U a A 0 0 Vcc Vcc Vcc V 0
Satz von De Morgan A + = A A A + A + A A 0 0 0 1 1 1 1 0 1 1 0 1 1 0 1 0 1 0 0 1 0 1 1 1 0 0 0 0 Transistoren: A U a A 0 0 Vcc 1 0 1 Vcc 1 1 0 Vcc 1 1 1 0 V 0 eispiel: Schaltung zur Erkennung gültiger
2.1 Boole sche Funktionen
. Grundlagen digitaler Schaltungen. Boole sche Funktionen Darstellung Boolescher Funktionen. Boole sche lgebra Sätze der Booleschen lgebra.3 Realisierung von Booleschen Funktionen Normalformen zweistufiger
Boolesche Algebra (1)
Boolesche Algebra (1) Definition 1: Sei B = Σ 2 = {0,1} das Alphabet mit den Elementen 0 und 1. Seien auf B die 3 Operatoren einer Algebra wie folgt definiert für x,y aus B: x+y := Max(x,y), x y := Min(x,y),
4 Schaltalgebra. Hochschule für Angewandte Wissenschaften Hamburg FACHBEREICH ELEKTROTECHNIK UND INFORMATIK DIGITALTECHNIK 4-1
4 Schaltalgebra 4. Axiome; Signale und Schaltfunktionen Der Entwurf einer Digitalschaltung mit vorgegebener Funktion erfordert die Manipulation der verschiedenen Eingangssignale auf eine Weise, die in
Schaltfunktion, Definition
Schaltfunktion, Definition Sei S = { 0,1}. Dann heißt eine Abbildung f: S n S eine Schaltfunktion. = f(x n-1,x n-2,...,,, ), x n-1, x n-2,...,,, S x i X = (x n-1,x n-2,...,,, ) Eingangsvariable Eingangsvektor
Vorkurs Mathematik für Informatiker 5 Logik, Teil 1
5 Logik, Teil 1 Michael Bader, Thomas Huckle, Stefan Zimmer 1. 9. Oktober 2008 Kap. 5: Logik, Teil 1 1 Aussagenlogik Rechnen mit Wahrheitswerten: true und false Kap. 5: Logik, Teil 1 2 Aussagenlogik Rechnen
Grundlagen der Informationverarbeitung
Grundlagen der Informationverarbeitung Information wird im Computer binär repräsentiert. Die binär dargestellten Daten sollen im Computer verarbeitet werden, d.h. es müssen Rechnerschaltungen existieren,
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 19. Oktober 2017 1/27 Zu der Vorlesung gibt es ein Skript, welches auf meiner Homepage
Vorkurs Mathematik für Informatiker Aussagenlogik -- Thomas Huckle Stefan Zimmer Matous Sedlacek,
Vorkurs Mathematik für Informatiker -- 4 ussagenlogik -- Thomas Huckle Stefan Zimmer Matous Sedlacek, 7..2 ussagenlogik Rechnen mit Wahrheitswerten: oder, oder Objekte, die wir untersuchen, sind jetzt
1. Boolesche Algebra und Schaltalgebra
1 oolesche lgebra und Schaltalgebra Folie 1 1. oolesche lgebra und Schaltalgebra 1.1 Was ist Informatik? Definition des egriffs Informatik Die Informatik ist die Wissenschaft, die sich mit der systematischen
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 26. Oktober 2017 1/35 Abbildungen Boolesche Algebra Summen- und Produktzeichen Definition
GETE DIGITAL TECHNIK CODIERUNG BCD: BINARY CODED DIGITAL. Hr. Houska
GETE DIGITAL TECHNIK Hr. Houska CODIERUNG Codes werden dazu verwendet, um Zahlen, Buchstaben und Zeichen in ander Darstellungsformen zu verwenden. So repräsentieren unterschiedliche Codes die verschiedenen
Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen
Rückblick Erweiterte b-adische Darstellung von Kommazahlen 7,1875 dargestellt mit l = 4 und m = 4 Bits 66 Rückblick Gleitkommazahlen (IEEE Floating Point Standard 754) lassen das Komma bei der Darstellung
03 Boolesche Algebra. Technische Grundlagen der Informatik
03 Boolesche Algebra Technische Grundlagen der Informatik Automation Systems Group E183-1 Institute of Computer Aided Automation Vienna University of Technology email: [email protected] Inhalt Operationen
Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen
Rückblick Erweiterte b-adische Darstellung von Kommazahlen 7,1875 dargestellt mit l = 4 und m = 4 Bits 66 Rückblick Gleitkommazahlen (IEEE Floating Point Standard 754) lassen das Komma bei der Darstellung
Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik
Grundlagen der Rechnerarchitektur Binäre Logik und Arithmetik Übersicht Logische Operationen Addition, Subtraktion und negative Zahlen Logische Bausteine Darstellung von Algorithmen Multiplikation Division
DV1_Kapitel_4.doc Seite 4-1 von 28 Rüdiger Siol 12.09.2009 16:29
Inhaltsverzeichnis 4 Boolesche lgebra... 4-2 4. lgebra der Logik, algebraische Logik... 4-2 4.. Schaltalgebra und logische Schaltungen... 4-3 4... Zustand eines digitalen Systems... 4-5 4...2 Schaltfunktion...
Grundlagen der Technischen Informatik
oolesche lgebra und Schaltalgebra Grundlagen der technischen Informatik Kapitel 1 oolesche lgebra und Schaltalgebra Prof. Dr.-Ing. xel Hunger Pascal. Klein, M.Sc. Prof. Dr.-Ing. xel Hunger oolesche lgebra
DIGITALTECHNIK 06 SCHALTUNGS- SYNTHESE UND ANALYSE
Seite 1 von 23 DIGITALTECHNIK 06 SCHALTUNGS- SYNTHESE UND ANALYSE Inhalt Seite 2 von 23 1 SCHALTUNGS- SYNTHESE UND ANALYSE... 3 1.1 NORMALFORM... 5 1.2 UND NORMALFORM... 5 1.3 ODER NORMALFORM... 7 1.4
Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie
Was ist Logik? Geschichte der Logik eng verknüpft mit Philosophie Begriff Logik wird im Alltag vielseitig verwendet Logik untersucht, wie man aus Aussagen andere Aussagen ableiten kann Beschränkung auf
Rechengesetze und ihre Anwendungen. a + b = b + a. Assoziativgesetz ( Verbindungsgesetz ) a + ( b + c ) Distributivgesetz ( Verteilungsgesetz )
Rechengesetze und ihre Anwendungen Es gibt 3 verschiedene Gesetze, die in der Mathematik angewandt werden. Es sind : Kommutativgesetz ( Vertauschungsgesetz ) a + b = b + a Assoziativgesetz ( Verbindungsgesetz
ELEMENTARE DISKRETE MATHEMATIK Kapitel 2: Elementare Logik und Beweise
ELEMENTARE DISKRETE MATHEMATIK Kapitel 2: Elementare Logik und Beweise MAA.01011UB MAA.01011PH Vorlesung mit Übung im WS 2016/17 Christoph GRUBER Günter LETTL Institut für Mathematik und wissenschaftliches
Technische Informatik 3. Vorlesung
Technische Informatik 3. Vorlesung Mathematische Grundlagen (1) Boolesche Algebren: BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6,7) Sequentielle Schaltungen (8) Programmierbare Strukturen
, SS2012 Übungsgruppen: Do., Mi.,
VU Technische Grundlagen der Informatik Übung 3: Schaltnete 83.579, SS202 Übungsgruppen: Do., 9.04. Mi., 25.04.202 Aufgab: Vereinfachung mittels KV-Diagramm Gegeben ist folgende Wahrheitstafel: e 0 Z Z
Logische Äquivalenz. Definition Beispiel 2.23
Logische Äquivalenz Definition 2.22 Zwei aussagenlogische Formeln α, β A heißen logisch äquivalent, falls für jede Belegung I von α und β gilt: Schreibweise: α β. Beispiel 2.23 Aus Folgerung 2.6 ergibt
f ist sowohl injektiv als auch surjektiv.
Bemerkungen: Wir erinnern uns an folgende Definitionen: Eine Funktion f : U V heißt injektiv, wenn gilt: ( x, y U)[x y f(x) f(y)] Eine Funktion f : U V heißt surjektiv, wenn gilt: ( y V x U)[y = f(x)]
Einführung in die Informatik I
Einführung in die Informatik I Arithmetische und bitweise Operatoren im Binärsystem Prof. Dr. Nikolaus Wulff Operationen mit Binärzahlen Beim Rechnen mit Binärzahlen gibt es die ganz normalen arithmetischen
Algebra mit Schaltungen I Städtisches Gymnasium Bad Laasphe
Informatik Gierhardt Algebra mit Schaltungen I Städtisches Gymnasium Bad Laasphe Algebra Der englische Mathematiker George Boole (1815-1864) entwickelte in seinem Buch The Laws of Thought zur systematischen
Einführung in die technische Informatik
Einführung in die technische Informatik hristopher Kruegel [email protected] http://www.auto.tuwien.ac.at/~chris Logische Schaltungen System mit Eingängen usgängen interne Logik die Eingänge auf
Aufgabenblatt Punkte. Aufgabe 1 (Negation) Seien e R, n, m, k N und. Negieren Sie φ. 4. Lösung Es gilt
ufgabenblatt 3 40 Punkte ufgabe 1 (Negation) Seien e R, n, m, k N und φ e [e > 0 k n, m (((n k) (m k)) 1/n 1/m < e)] Negieren Sie φ. 4 Es gilt ϕ e [e > 0 k n, m (((n k) (m k)) 1/n 1/m < e)] e [e > 0 [
Mathematische Grundlagen I Logik und Algebra
Logik und Algebra Dr. Tim Haga 21. Oktober 2016 1 Aussagenlogik Erste Begriffe Logische Operatoren Disjunktive und Konjunktive Normalformen Logisches Schließen Dr. Tim Haga 1 / 21 Präliminarien Letzte
Signalverarbeitung 1
TiEl-F000 Sommersemester 2008 Signalverarbeitung 1 (Vorlesungsnummer 260215) 2003-10-10-0000 TiEl-F035 Digitaltechnik 2.1 Logikpegel in der Digitaltechnik In binären Schaltungen repräsentieren zwei definierte
2. Vorlesung: Boolesche Algebra
2. Vorlesung: Boolesche Algebra Wiederholung Codierung, Decodierung Boolesche Algebra UND-, ODER-Verknüpfung, Negation Boolesche Postulate Boolesche Gesetze 1 Wiederholung 2 Bits und Bitfolgen Bit: Maßeinheit
Punktrechnung geht vor Strichrechnung 3*4 + 5 = = 17. Das Minuszeichen vor einem Produkt ändert nur bei einem Faktor das Vorzeichen.
1.2.0.1. Rechnen mit Termen 1. Terme In der Mathematik bezeichnet ein Term einen sinnvollen Ausdruck, der Zahlen, Variablen, Symbole für mathematische Verknüpfungen und Klammern enthalten kann. In der
Münchner Volkshochschule. Planung. Tag 02
Planung Tag 02 Prof.Dr. Nils Mahnke Mathematischer Vorkurs Folie: 45 Mengenlehre VII Mengenoperationen: 1) Vereinigungsmenge: A B { x x A x B} 2) Schnittmenge: A 3) Differenzmenge: B { x x A x B} A \ B
II. Grundlagen der Programmierung
II. Grundlagen der Programmierung II.1. Zahlenssteme und elementare Logik 1.1. Zahlenssteme 1.1.1. Ganze Zahlen Ganze Zahlen werden im Dezimalsstem als Folge von Ziffern 0, 1,..., 9 dargestellt, z.b. 123
1 Rechnen. Addition rationaler Zahlen gleicher Vorzeichen Summand + Summand = Summe
Rationale Zahlen Die ganzen Zahlen zusammen mit allen positiven und negativen Bruchzahlen heißen rationale Zahlen. Die Menge der rationalen Zahlen wird mit Q bezeichnet. Je weiter links eine Zahl auf dem
Aussagenlogik. Formale Methoden der Informatik WiSe 2012/2013 teil 6, folie 1
Aussagenlogik Formale Methoden der Informatik WiSe 22/23 teil 6, folie Teil VI: Aussagenlogik. Einführung 2. Boolesche Funktionen 3. Boolesche Schaltungen Franz-Josef Radermacher & Uwe Schöning, Fakultät
Digitaltechnik. KV-Diagramm
KV-01 ie unterscheidet sich von der Analogtechnik dahingehend, dass sie nur zwei (Spannungs)Zustände kennt: nämlich 0V (binär 0) oder 5V (binär 1). iese beiden Zustände werden durch verschiedene logische
Vorwort. Gerd Wöstenkühler. Grundlagen der Digitaltechnik. Elementare Komponenten, Funktionen und Steuerungen ISBN:
Vorwort Gerd Wöstenkühler Grundlagen der Digitaltechnik Elementare Komponenten, Funktionen und Steuerungen ISN: 978-3-446-42737-2 Weitere Informationen oder estellungen unter http://www.hanser.de/978-3-446-42737-2
BOOLSCHE ALGEBRA / SCHALTUNGSALGEBRA
BOOLSCHE ALGEBRA / SCHALTUNGSALGEBRA 1. Digitale Grundschaltungen 1.1 UND/AND-SCHALTUNG 0 0 0 1 0 0 0 1 0 1 1 1 x = a /\ b 1.2 ODER/OR-SCHALTUNG 0 0 0 0 1 1 1 0 1 1 1 1 x = a \/ b NICHT/NOT-SCHALTUNG A
Technische Grundlagen der Informatik
Technische Grundlagen der Informatik WS 2008/2009 6. Vorlesung Klaus Kasper WS 2008/2009 Technische Grundlagen der Informatik Inhalt Wiederholung Boolesche Gesetze Boolesche Kürzungsregeln Antivalenz und
Grundlagen der Technischen Informatik. 6. Übung. Christian Knell Keine Garantie für Korrekt-/Vollständigkeit
Grundlagen der Technischen Informatik 6. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 6. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Relais-Schaltnetze Entwicklungssatz
Rechnenund. Systemtechnik
Rechnen- und Systemtechnik 1 / 29 Rechnenund Systemtechnik Skript und Unterrichtsmitschrift April 22 Rechnen- und Systemtechnik 2 / 29 nhaltsverzeichnis 1. Grundbausteine der Digitaltechnik... 4 1.1. UND-Verknüpfungen
Mengen und Abbildungen
1 Mengen und bbildungen sind Hilfsmittel ( Sprache ) zur Formulierung von Sachverhalten; naive Vorstellung gemäß Georg Cantor (1845-1918) (Begründer der Mengenlehre). Definition 1.1 Eine Menge M ist eine
8 Boolesche Algebra. 8.1 Grundlegende Operationen und Gesetze
82 8 Boolesche Algebra Die Boolesche Algebra ist eine Algebra der Logik, die George Boole (1815 1864) als erster entwickelt hat. Sie ist die Grundlage für den Entwurf von elektronischen Schaltungen und
Stichwortverzeichnis. Gerd Wöstenkühler. Grundlagen der Digitaltechnik. Elementare Komponenten, Funktionen und Steuerungen ISBN:
Stichwortverzeichnis Gerd Wöstenkühler Grundlagen der Digitaltechnik Elementare Komponenten, Funktionen und Steuerungen ISBN: 978-3-446-42737-2 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-42737-2
Logik für Informatiker
Vorlesung Logik für Informatiker 5. Aussagenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Normalformen Definition: Literal Atom (aussagenlogische
Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik
Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik WS 2013/14 Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 21. Oktober 2013 1/33 1 Boolesche
Algorithmen & Programmierung. Logik
Algorithmen & Programmierung Logik Aussagenlogik Gegenstand der Untersuchung Es werden Verknüpfungen zwischen Aussagen untersucht. Aussagen Was eine Aussage ist, wird nicht betrachtet, aber jede Aussage
der einzelnen Aussagen den Wahrheitswert der zusammengesetzten Aussage falsch falsch falsch falsch wahr falsch wahr falsch falsch wahr wahr wahr
Kapitel 2 Grundbegriffe der Logik 2.1 Aussagen und deren Verknüpfungen Eine Aussage wie 4711 ist durch 3 teilbar oder 2 ist eine Primzahl, die nur wahr oder falsch sein kann, heißt logische Aussage. Ein
11. Beschreiben Sie die disjunktive und die konjunktive Normalform eines logischen Ausdrucks!
Kapitel 3 Logik Verständnisfragen Sachfragen 1. Was ist eine logische Aussage? 2. Wie ist die Konjunktion und die Disjunktion definiert? 3. Beschreiben Sie das Exklusive Oder, die Implikation und die Äquivalenz!
Schaltalgebra und kombinatorische Logik
Schaltalgebra und kombinatorische Logik. Digitale elektrische Schaltungen 2. Beschreibung durch logische Ausdrücke 3. Boolesche Algebra 4. Schaltfunktionen 5. Synthese von Schaltungen 6. Schaltnetze *Die
3 Boole'sche Algebra und Aussagenlogik
3 Boole'sche Algebra und Aussagenlogik 3- Boole'sche Algebra Formale Grundlagen der Informatik I Herbstsemester 22 Robert Marti Vorlesung teilweise basierend auf Unterlagen von Prof. emer. Helmut Schauer
Boolesche (Schalt-) Algebra (1)
Boolesche (Schalt-) Algebra (1) Definition 1: Sei B = SS 2 = 0,1 das Alphabet mit den Elementen 0 und 1. Seien auf BB die folgenden 3 Operatoren definiert für xx, yy B: xx + yy max xx, yy xx yy min xx,
Schaltalgebra und kombinatorische Logik
Schaltalgebra und kombinatorische Logik. Digitale elektrische Schaltungen 2. Beschreibung durch logische Ausdrücke 3. Boolesche Algebra 4. Schaltfunktionen 5. Synthese von Schaltungen 6. Schaltnetze Wintersemester
Digitalelektronik Einführung Prof. Metzler
Digitalelektronik Einführung 1 Prof. Uwe Metzler Hochschule für Technik und Wirtschaft FB 1, Studiengänge IKT (BA) & (MA) Wilhelminenhofstr. 75A 12459 Berlin Raum C 307 Tel.: 5019-3211 Email: [email protected]
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 3 06.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Bis jetzt Syntax (Formeln) Semantik Wertebelegungen/Valuationen/Modelle
Physikalisches Praktikum für Vorgerückte. an der ETH Zürich. vorgelegt von. Mattia Rigotti Digitale Elektronik
Physikalisches Praktikum für Vorgerückte an der ETH Zürich vorgelegt von Mattia Rigotti [email protected] 14.02.2003 Digitale Elektronik Versuchsprotokoll 1 Inhaltverzeichnis 1. Zusammenfassung...
Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2.
Theorie der Informatik 24. Februar 2014 2. Aussagenlogik II Theorie der Informatik 2. Aussagenlogik II 2.1 Äquivalenzen Malte Helmert Gabriele Röger 2.2 Vereinfachte Schreibweise Universität Basel 24.
Markus Kühne www.itu9-1.de Seite 1 30.06.2003. Digitaltechnik
Markus Kühne www.itu9-1.de Seite 1 30.06.2003 Digitaltechnik Markus Kühne www.itu9-1.de Seite 2 30.06.2003 Inhaltsverzeichnis Zustände...3 UND austein ; UND Gatter...4 ODER austein ; ODER Gatter...5 NICHT
Aufgabe 1. Aufgabe 2. Abbildung 1: Schaltung für die Multiplikation mit 4
Aufgabe 1 Eine Zahl a ist mit 8 Bits vorzeichenlos (8 bit unsigned) dargestellt. Die Zahl y soll die Zahl a multipliziert mit 4 sein (y = a 4 D ). a) Wie viele Bits benötigen Sie für die Darstellung von
2 Schaltalgebra bzw. Boole sche Algebra *
9 2 Schaltalgebra bzw. Boole sche Algebra * Die zweiwertige Logik nimmt eine besondere Bedeutung in der Rechnerentwicklung ein, da Daten mit physikalischen Größen besonders gut durch zwei Werte dargestellt
Digital Design. Digital Design SS Prof. Dr. Richard Roth. 6 SWS SU und Übungen
SS 2005 Prof. Dr. Richard Roth 6 SWS SU und Übungen Richard Roth / FB Informatik und Mathematik Schaltungstechnische Grundlagen 1 Literatur zur Vorlesung DD [1] PERNARDS, P..; Digitaltechnik Hüthig, 1992
Logik (Prof. Dr. Wagner FB AI)
Logik (Prof. Dr. Wagner FB AI) LERNZIELE: Über die Kenntnis und das Verständnis der gegebenen Definitionen hinaus verfolgt dieser Teil der Lehrveranstaltung die folgenden Lernziele: Bei gegebenen sprachlichen
Inhaltsverzeichnis. Inhalt. 1 Einleitung
Inhalt 3 Inhaltsverzeichnis 1 Einleitung 1.1 Digitale und analoge Signale... 9 1.2 Digitale Darstellung... 12 1.3 Datenübertragung... 14 1.4 Aufgaben digitaler Schaltungen... 17 1.5 Geschichte der Digitalrechner...
Digitalelektronik: Einführung
Überblick Grundlagen: Spannung, Strom, Widerstand, IV-Kennlinien Elektronische Messgeräte im Elektronikpraktikum Passive Filter Signaltransport im Kabel Transistor Operationsverstärker PI-Regler Sensorik
1. Grundlagen der Informatik Boolesche Algebra / Aussagenlogik
1. Grundlagen der Informatik Boolesche Algebra / Aussagenlogik Inhalt Grundlagen digitaler Systeme Boolesche Algebra / Aussagenlogik Organisation und Architektur von Rechnern Algorithmen, Darstellung von
Teil 1: Digitale Logik
Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Analoge und digitale Hardware bei
Schaltalgebra in der Schule
Proseminararbeit Angewandte Mathematik WS 2002/03 Schaltalgebra in der Schule Lisi Karner 0006698 Elisabeth Lehner 0001277 Nicole Senft 0048777 1 Inhaltsverzeichnis Einleitung 1. Theoretischer Teil 1.1.
Grundbegriffe aus Logik und Mengenlehre
Prof. Dr. B. Niethammer Dr. C. Seis, R. Schubert Institut fr Angewandte Mathematik Universitt Bonn Grundbegriffe aus Logik und Mengenlehre Wir wollen im Folgenden eine kurze Einführung in die Grundbegriffe
Mathematikvorkurs. Fachbereich I. Sommersemester Elizaveta Buch
Mathematikvorkurs Fachbereich I Sommersemester 2017 Elizaveta Buch Themenüberblick Montag Grundrechenarten und -regeln Bruchrechnen Binomische Formeln Dienstag Potenzen, Wurzeln und Logarithmus Summen-
Aussagenlogik. Formale Methoden der Informatik WiSe 2010/2011 teil 7, folie 1 (von 50)
Aussagenlogik Formale Methoden der Informatik WiSe 2/2 teil 7, folie (von 5) Teil VII: Aussagenlogik. Einführung 2. Boolesche Funktionen 3. Boolesche Schaltungen Franz-Josef Radermacher & Uwe Schöning,
Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum
Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum Protokoll-Nr.: 11 Digitalschaltungen Protokollant: Jens Bernheiden Gruppe: 2 Aufgabe durchgeführt: 25.06.1997 Protokoll
Aussagenlogik. Aussagen und Aussagenverknüpfungen
Aussagenlogik Aussagen und Aussagenverknüpfungen Aussagen sind Sätze, von denen sich sinnvollerweise sagen läßt, sie seien wahr oder falsch. Jede Aussage besitzt also einen von zwei möglichen Wahrheitswerten,
Mathe Leuchtturm Übungsleuchtturm =Übungskapitel
Mathe Leuchtturm-Übung-.Klasse-Nr.00 Mathe Leuchtturm Übungsleuchtturm =Übungskapitel.Klasse Rechnen und Darstellen mittels Variablen- Formen und Aussagen Die Sprache der Mathematik - Mathematische Grundkompetenzen
Halbaddierer - und Volladdierer - Schaltungen
Fachhochschule erlin Labor für digitale Elektronik DE ufgabe DE Protokol albaddierer - und Volladdierer - chaltungen albaddierer - und Volladdierer - chaltungen Lernziel: Erfahrungen über einige wichtige
Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }
Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird
Umgekehrter Dreisatz Der umgekehrte Dreisatz ist ein Rechenverfahren, das man bei umgekehrt proportionalen Zuordnungen anwenden kann.
Dreisatz Der Dreisatz ist ein Rechenverfahren, das man bei proportionalen Zuordnungen anwenden kann. 3 Tafeln Schokolade wiegen 5 g. Wie viel Gramm wiegen 5 Tafeln? 1. Satz: 3 Tafeln wiegen 5 g.. Satz:
DuE-Tutorien 17 und 18
DuE-Tutorien 17 und 18 Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery TUTORIENWOCHE 3 AM 18.11.2011 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum
Aussagenlogik. 1 Einführung. Inhaltsverzeichnis. Zusammenfassung
Tobias Krähling email: Homepage: 13.10.2012 Version 1.2 Zusammenfassung Die Aussagenlogik ist sicherlich ein grundlegendes mathematisches Gerüst für weitere
HM I Tutorium 1. Lucas Kunz. 27. Oktober 2016
HM I Tutorium 1 Lucas Kunz 27. Oktober 2016 Inhaltsverzeichnis 1 Theorie 2 1.1 Logische Verknüpfungen............................ 2 1.2 Quantoren.................................... 3 1.3 Mengen und ihre
