, SS2012 Übungsgruppen: Do., Mi.,
|
|
|
- Lars Acker
- vor 7 Jahren
- Abrufe
Transkript
1 VU Technische Grundlagen der Informatik Übung 3: Schaltnete , SS202 Übungsgruppen: Do., Mi., Aufgab: Vereinfachung mittels KV-Diagramm Gegeben ist folgende Wahrheitstafel: e 0 Z Z Benuten Sie die vorgegebenen KV-Diagramme und ermitteln Sie die minimale Form für Z 0 und Z. Tragen Sie diese durch Seten geeigneter Verbindungspunkte in das unten dargestellte PLA ein. Überlegen Sie vorab, welche minimale Form (konjunktive vs. disjunktive) bei diesem PLA ur Anwendung kommen muss! Hinweis: Nicht benötigte Leitungen des PLA können hier einfach ignoriert werden. Z : e 0 e 0 e 0 {}}{ Z 0 : e 0 e 0 e 0 {}}{ } {{ }} {{ } } {{ }} {{ } minimale Form: PLA: e 0 > Z 0 > Z
2 Aufgab: Schaltungsminimierung Gegeben ist folgendes Schaltnet: e 4 > > a a) Wie lautet die im Schaltnet realisierte Boolesche Funktion? b) Vereinfachen Sie diese Funktion anschließend mit einem KV-Diagramm. Wie lautet die Funktion in minimaler disjunktiver Form? c) Realisieren Sie die vereinfachte Funktion in einem Schaltnet wobei Ihnen ausschließlich nachfolgende Gatter ur Verfügung stehen: NOT ( Eingang; Ausgang) AND (2 Eingänge; Ausgang) OR (2 Eingänge; Ausgang) d) Wieviele NOT-/AND-/OR-Gatter können durch die Minimierung in Punkt b) eingespart werden? Aufgab: Umformungen Gegeben ist folgende Schaltung: > > Betrachten Sie die Schaltnete (a) bis (c) und eigen Sie, ob es sich um gültige Umformungen des oben dargestellten Schaltnetes handelt oder nicht. Eine Umformung ist gültig, wenn das umgeformte Schaltnet dieselbe Funktion wie das ursprünglich gegebene Schaltnet realisiert. Lösungshinweis: In den meisten Fällen führt eine grafische Umformung am schnellsten um Ziel, Sie können die Umformung aber auch algebraisch durchführen. (a) (b) (c) > > > > >
3 Aufgabe 4: Analyse Gegeben ist folgendes Schaltnet: x x 4 > > f(x,x 2,x 3,x 4 ) x 2 x 3 > > a) Wie lautet die realisierte Boolesche Funktion? b) Stellen Sie die ugehörige Wahrheitstafel auf und tragen Sie Ihr Ergebnis in nachfolgender Tabelle ein: x x 2 x 3 x 4 f(x, x 2, x 3, x 4 ) Aufgabe 5: Realisierung mit vorgegebenen Gattern Gegeben ist folgende Boolesche Funktion: f(x, x 2, x 3, x 4 ) = (x x 2 ) ( x x 2 ) (x x 3 x 4 ) Realisieren Sie diese Funktion als Schaltnet, wobei Ihnen folgende Gatterarten ur Verfügung stehen (Sie dürfen jedes dieser Gatter beliebig oft verwenden!): >
4 Aufgabe 6: Realisierung nur mit NAND Gegeben ist folgende Boolesche Funktion: ( ) ( ) Realisieren Sie diese Funktion nur unter Verwendung von NAND. Führen Sie die Umformung unächst algebraisch durch und eichnen Sie anschließend das entsprechende Schaltnet. Verwenden Sie die folgende Notation für die NAND-Operation: e NAND e e e Lösungshinweis: Zunächst Umformen des Ausdrucks durch doppeltes Negieren! Aufgabe 7: Realisierung nur mit NOR Gegeben ist die Boolesche Funktion aus Aufgabe 6. a) Realisieren Sie diese Funktion nur unter Verwendung von NOR-Gattern mit maximal 2 Eingängen. Nehmen Sie die Transformation grafisch vor (vgl. Foliensat 4, Foli2ff). b) Lesen Sie die realisierte Funktion unter Verwendung der folgenden Notation für NOR aus: e NOR e e e Aufgabe 8: Darstellungsformen Gegeben ist der folgende vereinfachte Ausdruck: ( e 4 ) ( ) ( e 4 ) Für die Realisierung (vgl. Foliensat 4, Folie 4) stehen Ihnen Gatter mit maximal 3 Eingängen ur Verfügung. a) Zeichnen Sie das entsprechende Schaltnet unter Verwendung der europäischen Norm. b) Zeichnen Sie das entsprechende Schaltnet unter Verwendung der angloamerikanischen Norm. c) Realisieren Sie das Schaltnet in folgendem PLA: e 4 a a 2 a 3
5 Aufgabe 9: Addierer Sie benötigen dringend einen 8 Bit Addierer, in Ihrem Bauteilekasten finden Sie jedoch nur drei Bauteile vom Typ des folgenden 4 2 Bit Addierers: a 2 b 2 a b a 0 b 0 c 3 c 2 c c 0 HA HA s 2 s Wie können Sie damit den benötigten 8 Bit Addierer bauen und wieviele der drei Bauteile benötigen Sie dafür? Zeichnen Sie ein geeignetes Schaltbild indem Sie die Ein-/Ausgänge der 4 2 Bit Addier-Bausteine in nachfolgender Grafik verbinden und die Ein-/Ausgänge Ihres resultierenden 8 Bit Addierers entsprechend beschriften. a 2 b 2 a b a 0 b 0 s 2 s a 2 b 2 a b a 0 b 0 s 2 s a 2 b 2 a b a 0 b 0 s 2 s Aufgab0: Funktionale Vollständigkeit Für die Realisierung einer digitalen Schaltung stehen Ihnen jeweils entweder nur die beiden Bausteine in a) oder jene in b) ur Verfügung. Zeigen Sie für beide Fälle, dass Sie durch Kombination der beiden gegebenen Bausteine die logischen Grundfunktionen NOT, AND und OR realisieren können. a) und b) und > log. > log. Hinweis: bedeutet, dass an einem Eingang eine konstante Verbindung mit logisch hergestellt wird.
2. Funktionen und Entwurf digitaler Grundschaltungen
2. Funktionen und Entwurf digitaler Grundschaltungen 2.1 Kominatorische Schaltungen Kombinatorische Schaltungen - Grundlagen 1 Grundgesetze der Schaltalgebra UND-Verknüpfung ODER-Verknüpfung NICHT-Verknüpfung
Lehrveranstaltung: Digitale Systeme. KS-Praktikums-Vorbereitung Dipl.-Inf. Markus Appel , , ,
Lehrveranstaltung: Digitale Systeme KS-Praktikums-Vorbereitung Dipl.-Inf. Markus Appel 24.04.2012, 25.04.2012, 26.04.2012, 27.04.2012 Übersicht Kombinatorische Schaltungen n-bit-addierer Minimierungsverfahren
Ein ROM soll aus mehreren ROMs (vgl. Abbildung rechts: Enable-Leitung EN, Adressleitungen ADDR, Datenleitungen DATA) aufgebaut werden.
VU Technische Grundlagen der Informatik Übung 4: Schaltwerke 183.579, 2015W Übungsgruppen: Mo., 23.11. Mi., 25.11.2015 Aufgabe 1: ROM-Erweiterung Ein 256 64 ROM soll aus mehreren 128 16 ROMs (vgl. Abbildung
Grundlagen der Technischen Informatik. 6. Übung. Christian Knell Keine Garantie für Korrekt-/Vollständigkeit
Grundlagen der Technischen Informatik 6. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 6. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Relais-Schaltnetze Entwicklungssatz
, SS2012 Übungsgruppen: Do., Mi.,
VU Technische Grundlagen der Informatik Übung 4: Schaltwerke 83.579, SS202 Übungsgruppen: Do., 26.04. Mi., 02.05.202 ufgabe : Zahlenumwandlung mittels Tabellenspeicher Konstruieren Sie eine Schaltung,
N Bit binäre Zahlen (signed)
N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101
Darstellung von negativen binären Zahlen
Darstellung von negativen binären Zahlen Beobachtung für eine beliebige Binärzahl B, z.b. B=110010: B + NOT(B) ---------------------------------------------- = B + NOT(B) 1 + (Carry) ----------------------------------------------
Boolesche Algebra (1)
Boolesche Algebra (1) Definition 1: Sei B = Σ 2 = {0,1} das Alphabet mit den Elementen 0 und 1. Seien auf B die 3 Operatoren einer Algebra wie folgt definiert für x,y aus B: x+y := Max(x,y), x y := Min(x,y),
03 Boolesche Algebra. Technische Grundlagen der Informatik
03 Boolesche Algebra Technische Grundlagen der Informatik Automation Systems Group E183-1 Institute of Computer Aided Automation Vienna University of Technology email: [email protected] Inhalt Operationen
Klausur ( ): Technische Grundlagen der Informatik 1 Digitale Systeme WS 2006/2007
Klausur (9.02.2007): Technische Grundlagen der Informatik Digitale Systeme WS 2006/2007 Vorname :.............................................. Name :.............................................. Matrikelnummer
Einführung in die Informatik I
Einführung in die Informatik I Arithmetische und bitweise Operatoren im Binärsystem Prof. Dr. Nikolaus Wulff Operationen mit Binärzahlen Beim Rechnen mit Binärzahlen gibt es die ganz normalen arithmetischen
Informationsverarbeitung auf Bitebene
Informationsverarbeitung auf Bitebene Dr. Christian Herta 5. November 2005 Einführung in die Informatik - Informationsverarbeitung auf Bitebene Dr. Christian Herta Grundlagen der Informationverarbeitung
Übungen zu Informatik 1
Übungen zu Informatik Technische Grundlagen der Informatik - Übung 9 Ausgabedatum: 2. November 22 Besprechung: Übungsstunden in der Woche ab dem 9. November 22 ) Schaltungen und Schaltnetze Communication
II. Grundlagen der Programmierung
II. Grundlagen der Programmierung II.1. Zahlenssteme und elementare Logik 1.1. Zahlenssteme 1.1.1. Ganze Zahlen Ganze Zahlen werden im Dezimalsstem als Folge von Ziffern 0, 1,..., 9 dargestellt, z.b. 123
Algebra mit Schaltungen I Städtisches Gymnasium Bad Laasphe
Informatik Gierhardt Algebra mit Schaltungen I Städtisches Gymnasium Bad Laasphe Algebra Der englische Mathematiker George Boole (1815-1864) entwickelte in seinem Buch The Laws of Thought zur systematischen
Einführung in die technische Informatik
Einführung in die technische Informatik hristopher Kruegel [email protected] http://www.auto.tuwien.ac.at/~chris Logische Schaltungen System mit Eingängen usgängen interne Logik die Eingänge auf
Eingebettete Systeme
Einführung in Eingebettete Systeme Vorlesung 7 Bernd Finkbeiner 03/12/2014 [email protected] Prof. Bernd Finkbeiner, Ph.D. [email protected] 1 Schaltfunktionen! Schaltfunktion:
Grundlagen der Technischen Informatik. 8. Übung
Grundlagen der Technischen Informatik 8. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 8. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Verknüpfungsbasis Entwicklungssatz NAND-Technik
Technische Grundlagen der Informatik
Technische Grundlagen der Informatik WS 2008/2009 6. Vorlesung Klaus Kasper WS 2008/2009 Technische Grundlagen der Informatik Inhalt Wiederholung Boolesche Gesetze Boolesche Kürzungsregeln Antivalenz und
Klausur ( ) : Technische Grundlagen der Informatik 1 Digitale Systeme WS 2007/2008
Klausur (03.04.2008) : Technische Grundlagen der Informatik Digitale Systeme WS 2007/2008 Vorname :.............................................. Name :.............................................. Matrikelnummer
Klausur ( ) : Technische Grundlagen der Informatik 1 Digitale Systeme WS 2010/2011
Klausur (08.04.20) : Technische Grundlagen der Informatik Digitale Systeme WS 200/20 Vorname : Max Name : Mustermann Matrikelnummer : 23456 Klausur-Code : 007 Mobiltelefone sind auszuschalten Wichtige
2.1 Boole sche Funktionen
. Grundlagen digitaler Schaltungen. Boole sche Funktionen Darstellung Boolescher Funktionen. Boole sche lgebra Sätze der Booleschen lgebra.3 Realisierung von Booleschen Funktionen Normalformen zweistufiger
Kapitel 6 Programmierbare Logik. Literatur: Kapitel 6 aus Oberschelp/Vossen, Rechneraufbau und Rechnerstrukturen, 9. Auflage
Kapitel 6 Programmierbare Logik Literatur: Kapitel 6 aus Oberschelp/Vossen, Rechneraufbau und Rechnerstrukturen, 9. Auflage Kapitel 6: Programmierbare Logik und VLSI Seite Kapitel 6: Programmierbare Logik
Schaltfunktion, Definition
Schaltfunktion, Definition Sei S = { 0,1}. Dann heißt eine Abbildung f: S n S eine Schaltfunktion. = f(x n-1,x n-2,...,,, ), x n-1, x n-2,...,,, S x i X = (x n-1,x n-2,...,,, ) Eingangsvariable Eingangsvektor
Technische Informatik I
Rechnerstrukturen Dario Linsky Wintersemester 200 / 20 Teil 2: Grundlagen digitaler Schaltungen Überblick Logische Funktionen und Gatter Transistoren als elektronische Schalter Integrierte Schaltkreise
Grundlagen der Technischen Informatik
Universität Duisburg-Essen PRAKTIKUM Grundlagen der Technischen Informatik VERSUCH 2 Schaltungssimulation und Schaltungsanalyse Name: Vorname: Betreuer: Matrikelnummer: Gruppennummer: Datum: Vor Beginn
2.4. Das Karnaugh Veitch Diagramm ( KV Diagramm )
2.4. Das Karnaugh Veitch Diagramm ( KV Diagramm ) Mit dem KV-Diagramm sollen Sie ein Verfahren kennen lernen, mit dem Funktionsgleichungen vereinfacht werden können. Dazu wird jeder Eingangskombination
Rechnerorganisation. (10,11) Informationskodierung (12,13,14) TECHNISCHE UNIVERSITÄT ILMENAU. IHS, H.- D. Wuttke 08
Rechnerorganisation Mathematische Grundlagen (1) Boolesche Algebren: : BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6,7) Sequentielle Schaltungen (8) Programmierbare Strukturen (9) Rechneraufbau
3.6 Bemerkungen zur Umformung boolescher Formeln (NAND): doppelte Negation
3.6 Bemerkungen zur Umformung boolescher Formeln (NAND): Häufig verwendeten Umformungen sind: Idempotenz doppelte Negation De Morgan a = a a a = a a + b = a b ADS-EI 3.6 Bemerkungen zur Umformung boolescher
Teil 1: Digitale Logik
Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Analoge und digitale Hardware bei
2.5. Umwandlung von Schaltfunktionen in die NOR und NAND Technik
.. Umwandlung on Schaltfunktionen in die NOR und NAND Technik... Smbole 0 0 0 0 0 NAND Elemente 0 0 0 0 0 0 0 NOR Elemente Beachte : Jedes NOR bzw. NAND Element hat mindestens Eingänge!... Umwandlungsorschriften
Schriftliche Prüfung
OTTO-VON-GUERICKE-UNIVERSITÄT MAGDEBURG FAKULTÄT FÜR INFORMATIK Schriftliche Prüfung im Fach: Technische Grundlagen der Informatik Studiengang: Bachelor (CV / CSE / IF / WIF) am: 19. Juli 2008 Bearbeitungszeit:
Aussagenlogik. Formale Methoden der Informatik WiSe 2012/2013 teil 6, folie 1
Aussagenlogik Formale Methoden der Informatik WiSe 22/23 teil 6, folie Teil VI: Aussagenlogik. Einführung 2. Boolesche Funktionen 3. Boolesche Schaltungen Franz-Josef Radermacher & Uwe Schöning, Fakultät
GETE DIGITAL TECHNIK CODIERUNG BCD: BINARY CODED DIGITAL. Hr. Houska
GETE DIGITAL TECHNIK Hr. Houska CODIERUNG Codes werden dazu verwendet, um Zahlen, Buchstaben und Zeichen in ander Darstellungsformen zu verwenden. So repräsentieren unterschiedliche Codes die verschiedenen
DuE-Tutorien 17 und 18
DuE-Tutorien 17 und 18 Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery TUTORIENWOCHE 8 AM 23.12.2011 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum
5. Vorlesung: Normalformen
5. Vorlesung: Normalformen Wiederholung Vollständige Systeme Minterme Maxterme Disjunktive Normalform (DNF) Konjunktive Normalform (KNF) 1 XOR (Antivalenz) X X X X X X ( X X ) ( X X ) 1 2 1 2 1 2 1 2 1
GTI ÜBUNG 12. Komparator und Addierer FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG JAN SPIECK 1
GTI ÜBUNG 12 Komparator und Addierer FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG JAN SPIECK 1 AUFGABE 1 KOMPARATOR Beschreibung Entwickeln Sie eine digitale Schaltung, die zwei Bits a und b miteinander
N Bit binäre Zahlen (signed)
N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101
Klausur - Digitaltechnik
Klausur - Digitaltechnik Aufgabe : Testen integrierter Schaltungen: D-Algorithmus (3 Punkte: a 2, b, c 5, d 3, e 2) B = S N A >= O OR Der Ausgang des N-Gatters soll auf einen Stuck-AT--Fehler überprüft
Logik (Teschl/Teschl 1.1 und 1.3)
Logik (Teschl/Teschl 1.1 und 1.3) Eine Aussage ist ein Satz, von dem man eindeutig entscheiden kann, ob er wahr (true, = 1) oder falsch (false, = 0) ist. Beispiele a: 1 + 1 = 2 b: Darmstadt liegt in Bayern.
Basisinformationstechnologie I
Basisinformationstechnologie I Wintersemester 2013/14 22. Januar 2014 Kurzwiederholung / Klausurvorbereitung II Universität zu Köln. Historisch-Kulturwissenschaftliche Informationsverarbeitung Jan G. Wieners
Einführung in. Logische Schaltungen
Einführung in Logische Schaltungen 1/7 Inhaltsverzeichnis 1. Einführung 1. Was sind logische Schaltungen 2. Grundlegende Elemente 3. Weitere Elemente 4. Beispiel einer logischen Schaltung 2. Notation von
Klausur zur Vorlesung Technische Informatik 1 im WS 06/07 Donnerstag, den von Uhr Uhr, HS 5
Philipps-Universität Marburg Fachbereich Mathematik und Informatik AG Verteilte Systeme http://ds.informatik.uni-marburg.de Prof. Dr. Helmut Dohmann Prof. Dr. Bernd Freisleben Klausur zur Vorlesung Technische
Wirtschaftsingenieurwesen Elektronik/Schaltungstechnik Prof. M. Hoffmann FB ETIT Übung 7 Schaltnetze 2
Wirtschaftsingenieurwesen Elektronik/chaltungstechnik Prof. M. Hoffmann FB ETIT Übung 7 chaltnetze 2 Kenntnisse bezüglich der logischen Grundfunktionen sowie der Regeln und Gesetze der chaltalgebra sind
Übung zu Grundlagen der Technischen Informatik
Grundlagen der Technischen Informatik 9. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 9. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Multiplexer und De-Multiplexer
Aufgabe 1 Minimieren Sie mit den Gesetzen der Booleschen Algebra 1.1 f a ab ab 1 = + + Aufgabe 2. Aufgabe 3
Logischer Entwurf Digitaler Systeme Seite: 1 Übungsblatt zur Wiederholung und Auffrischung Aufgabe 1 Minimieren Sie mit den Gesetzen der Booleschen Algebra 1.1 f a ab ab 1 = + + 1.2 f ( ) ( ) ( ) 2 = c
Aussagenlogik. Formale Methoden der Informatik WiSe 2010/2011 teil 7, folie 1 (von 50)
Aussagenlogik Formale Methoden der Informatik WiSe 2/2 teil 7, folie (von 5) Teil VII: Aussagenlogik. Einführung 2. Boolesche Funktionen 3. Boolesche Schaltungen Franz-Josef Radermacher & Uwe Schöning,
Übungen zur Vorlesung Grundlagen der Rechnerarchitektur
Universität Koblenz-Landau Übungen zur Vorlesung Grundlagen der Rechnerarchitektur - Sommersemester 2018 - Übungsblatt 2 Abgabe bis Montag, 28. Mai 2018, 23:59 Uhr als pdf via SVN Punkte Kürzel A1 (10)
Arbeitsblatt Logische Verknüpfungen Schaltnetzsynthese
Einleitung Zur Aktivitätsanzeige der 3 Gehäuselüfter (Signale a - c) eines PC-Systems soll eine Logikschaltung entwickelt werden, die über drei Signalleuchten (LEDs) anzeigt, ob ein beliebiger (LED1 x),
Systemorientierte Informatik 1
Systemorientierte Informatik. Grundlagen Digitaler Schaltungen.8 Schaltnetze aus Gattern und Leitungen.9 Boole sche Algebra. Minimierung Boole scher Funktionen. CMOS Komplegatter Die nächste Funktion,
x x y x y Informatik II Schaltkreise Schaltkreise Schaltkreise Rainer Schrader 3. November 2008
Informatik II Rainer Schrader Zentrum für Angewandte Informatik Köln 3. November 008 1 / 47 / 47 jede Boolesche Funktion lässt mit,, realisieren wir wollen wir uns jetzt in Richtung Elektrotechnik und
183.580, WS2012 Übungsgruppen: Mo., 22.10.
VU Grundlagen digitaler Systeme Übung 2: Numerik, Boolesche Algebra 183.580, WS2012 Übungsgruppen: Mo., 22.10. Aufgabe 1: Binäre Gleitpunkt-Arithmetik Addition & Subtraktion Gegeben sind die Zahlen: A
Grundlagen der Informationverarbeitung
Grundlagen der Informationverarbeitung Information wird im Computer binär repräsentiert. Die binär dargestellten Daten sollen im Computer verarbeitet werden, d.h. es müssen Rechnerschaltungen existieren,
Grundlagen der Technischen Informatik. 9. Übung
Grundlagen der Technischen Informatik 9. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 9. Übungsblatt Themen Aufgabe : Aufgabe 2: Aufgabe 3: Aufgabe 4: CMOS-Gatterschaltungen PAL-Implementierung
Grundlagen der Informatik II Übungsblatt: 4, WS 17/18 mit Lösungen
PD. Dr. Pradumn Shukla Marlon Braun Micaela Wünsche Dr. Friederike Pfeiffer-Bohnen Dr. Lukas König Institut für Angewandte Informatik und Formale Beschreibungsverfahren Grundlagen der Informatik II Übungsblatt:
3 Boole'sche Algebra und Aussagenlogik
3 Boole'sche Algebra und Aussagenlogik 3- Boole'sche Algebra Formale Grundlagen der Informatik I Herbstsemester 22 Robert Marti Vorlesung teilweise basierend auf Unterlagen von Prof. emer. Helmut Schauer
Rechnerorganisation. H.-D. Wuttke `
Rechnerorganisation Mathematische Grundlagen (1) Boolesche Algebren: BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6,7) Sequentielle Schaltungen (8) Programmierbare Strukturen (9) Rechneraufbau
Technische Informatik (RO)
Technische Informatik (RO) Informationskodierung (1) Boolesche Algebren: BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6) Sequentielle Schaltungen (7) Ablaufsteuerung (8) Fortsetzung Teil
Digital Design. Digital Design SS Prof. Dr. Richard Roth. 6 SWS SU und Übungen
SS 2005 Prof. Dr. Richard Roth 6 SWS SU und Übungen Richard Roth / FB Informatik und Mathematik Schaltungstechnische Grundlagen 1 Literatur zur Vorlesung DD [1] PERNARDS, P..; Digitaltechnik Hüthig, 1992
Auswertung. Hinweise. Einführung in die Technische Informatik WS 2006/2007 Probeklausur. Aachen, 02. November 2006 SWS: V2/Ü2, ECTS: 4
Professor Dr.-Ing. Stefan Kowalewski Dipl.-Inform. Andreas Polzer Dipl.-Inform. Ralf Mitsching LEHRSTUHL INFORMATIK XI SOFTWARE FÜR EINGEBETTETE SYSTEME Aachen, 02. November 2006 SWS: V2/Ü2, ECTS: 4 Einführung
DuE-Tutorien 4 und 6. Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery. WOCHE 4 AM
DuE-Tutorien 4 und 6 Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery WOCHE 4 AM 13.11.2012 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum
1. Logische Verknüpfungen
1. Logische Verknüpfungen 1.1 UND - Verknüpfung Mathematik: X = A Schaltzeichen: A & X Wahrheitstabelle: A X 0 0 0 0 1 0 1 0 0 1 1 1 Am Ausgang eines UND Gliedes liegt nur dann der Zustand 1, wenn an allen
a) Wie viele ROM-Bausteine benötigen Sie für den Aufbau des 64x16 ROMs? c) Wie viele Bytes Daten können im 64x16 ROM insgesamt gespeichert werden?
VU Technische Grundlagen der Informatik Übung 4: Schaltwerke 83.579, 24W Übungsgruppen: Mo., 24.. Mi., 26..24 Aufgabe : ROM-Erweiterung Ein 64x6 ROM soll aus mehreren 32x4 ROMs (vgl. Abbildung rechts:
Boolesche (Schalt-) Algebra (1)
Boolesche (Schalt-) Algebra (1) Definition 1: Sei B = SS 2 = 0,1 das Alphabet mit den Elementen 0 und 1. Seien auf BB die folgenden 3 Operatoren definiert für xx, yy B: xx + yy max xx, yy xx yy min xx,
Digitaltechnik II SS 2007
Digitaltechnik II SS 27 Vorlesung mit begleitendem Praktikum Klaus Kasper Achtung! Vorlesung am 3.4.27 fällt aus! Nächste Vorlesung am 2.4.27! Organisation des Praktikums Betreuung: Michael Müller, Klaus
Digitaltechnik. KV-Diagramm
KV-01 ie unterscheidet sich von der Analogtechnik dahingehend, dass sie nur zwei (Spannungs)Zustände kennt: nämlich 0V (binär 0) oder 5V (binär 1). iese beiden Zustände werden durch verschiedene logische
Technische Informatik - Eine Einführung
Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Technische Informatik - Eine Einführung Boolesche Funktionen - Grundlagen
Algorithmus von McClusky: Der Algorithmus von McCluskey liefert durch wiederholte Anwendung der ersten und zweiten Vereinfachungsregel:
Seite 1 Aufgabe 1 Algorithmus von McClusky: Der Algorithmus von McCluskey liefert durch wiederholte Anwendung der ersten und zweiten Vereinfachungsregel: f 1 = a b c d + a b c d + a b c d + a b c d + a
Aufgabe 3.1 Schaltalgebra - Schaltnetze
Aufgabe 3.1 Schaltalgebra - Schaltnetze Zeichnen Sie die folgenden Funktionen als Zusammenschaltung von AND-, OR- und Invertergattern: a) b) F = X ( Y Z) F = EN ( X Y) ( Y Z) zur Lösung 3.1 Aufgabe 3.2
Praktikum Digitaltechnik
dig A) Vorbereitungsaufgaben: 1) Ermitteln Sie anhand der gegebenen zwei Blockschaltbilder die Schaltgleichungen und vereinfachen Sie weitmöglich! y 1 =(/(/(x 0 x 1 )/(x 0 +x 1 )))+(/(/(x 0 x 1 )+/(x 0
8 Boolesche Algebra. 8.1 Grundlegende Operationen und Gesetze
82 8 Boolesche Algebra Die Boolesche Algebra ist eine Algebra der Logik, die George Boole (1815 1864) als erster entwickelt hat. Sie ist die Grundlage für den Entwurf von elektronischen Schaltungen und
1. Grundlagen der Informatik Boolesche Algebra / Aussagenlogik
1. Grundlagen der Informatik Boolesche Algebra / Aussagenlogik Inhalt Grundlagen digitaler Systeme Boolesche Algebra / Aussagenlogik Organisation und Architektur von Rechnern Algorithmen, Darstellung von
Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 14/15
Rechnerstrukturen, Teil 1 Vorlesung 4 SWS WS 14/15 Prof. Dr Jian-Jia Chen Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund [email protected] http://ls1-www.cs.tu-.de Übersicht
Musterlösungen. zu den Aufgaben der Nachklausur zum. Kurs 1701 Grundlagen der Technischen Informatik. und. Kurs 1707 Technische Informatik I
Musterlösungen zu den Aufgaben der Nachklausur zum Kurs 7 Grundlagen der Technischen Informatik und Kurs 77 Technische Informatik I im Sommersemester 2 vom 6.9.2 Zu Aufgabe : Schaltnetz analysieren a)
Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 15/16
Rechnerstrukturen, Teil Vorlesung 4 SWS WS 5/6 Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund [email protected] http://ls-www.cs.tu-.de Übersicht. Organisatorisches 2.
Tutorium: Einführung in die technische Informatik
Tutorium: Einführung in die technische Informatik Logische Schaltungen (2. 2.3) Sylvia Swoboda [email protected] Überblick Grundbegriffen von logischen Schaltung Realisierung von Funktionen
Rechnerstrukturen WS 2012/13
Rechnerstrukturen WS 2012/13 Boolesche Funktionen und Schaltnetze Schaltnetze Rechner-Arithmetik Addition Bessere Schaltnetze zur Addition Carry-Look-Ahead-Addierer Multiplikation Wallace-Tree Hinweis:
Rechnerorganisation 5. Vorlesung
Rechnerorganisation 5. Vorlesung Mathematische Grundlagen (1) Boolesche Algebren: BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6,7) Sequentielle Schaltungen (8) Programmierbare Strukturen
Satz von De Morgan A B A + B A + B A B A. Transistoren: A B U a A 0 0 Vcc Vcc Vcc V 0
Satz von De Morgan A + = A A A + A + A A 0 0 0 1 1 1 1 0 1 1 0 1 1 0 1 0 1 0 0 1 0 1 1 1 0 0 0 0 Transistoren: A U a A 0 0 Vcc 1 0 1 Vcc 1 1 0 Vcc 1 1 1 0 V 0 eispiel: Schaltung zur Erkennung gültiger
Computersysteme. 2. Grundlagen Digitaler Schaltungen 2.10 Minimierung Boole scher Funktionen 2.11 CMOS Komplexgatter
Computersysteme 2. Grundlagen Digitaler Schaltungen 2.10 Minimierung Boole scher Funktionen 2.11 CMOS Komplexgatter 1 Die Einsen im KV-Diagramm werden zu Blöcken maximaler Größe zusammengefasst. Dabei
Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik
Grundlagen der Rechnerarchitektur Binäre Logik und Arithmetik Übersicht Logische Operationen Addition, Subtraktion und negative Zahlen Logische Bausteine Darstellung von Algorithmen Multiplikation Division
Grundlagen der Technischen Informatik. 5. Übung
Grundlagen der Technischen Informatik 5. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 5. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Boolesche Algebra
Teil 1: Digitale Logik
Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Tri-State Ausgangslogik Ausgang eines
VU Grundlagen digitaler Systeme
VU Grundlagen digitaler Systeme Übung 4. Übung 183.580, 2014W Übungsgruppen: Fr., 05.12.2014 Hinweis: Verwenden Sie für Ihre Lösungen keinen Taschenrechner und geben Sie die einzelnen Lösungsschritte an,
Rechnerorganisation 5. Vorlesung
Rechnerorganisation 5. Vorlesung Mathematische Grundlagen (1) Boolesche Algebren: BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6,7) Sequentielle Schaltungen (8) Programmierbare Strukturen
Höhere Mathematik I für die Fachrichtung Elektrotechnik und Informationstechnik Lösungsvorschläge zum 1. Übungsblatt
Karlsruher Institut für Technologie (KIT) Institut für Analysis Prof. Dr. Dirk Hundertmark Dipl.-Math. Matthias Uhl WS 2011/12 Höhere Mathematik I für die Fachrichtung Elektrotechnik und Informationstechnik
Rechnerstrukturen. Michael Engel und Peter Marwedel SS TU Dortmund, Fakultät für Informatik
Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik SS 2013 Hinweis: Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 13. Mai 2013 1 Programmierbare
Grundlagen der Technischen Informatik
TECHNISCHE FAKULTÄT 11. Übung zur Vorlesung Grundlagen der Technischen Informatik Aufgabe 1 (VHDL) Gegeben ist ein binärer Taschenrechner (siehe Abb. 1), der als Eingabe die Tasten 0, 1, +, - und = und
DIGITALTECHNIK 06 SCHALTUNGS- SYNTHESE UND ANALYSE
Seite 1 von 23 DIGITALTECHNIK 06 SCHALTUNGS- SYNTHESE UND ANALYSE Inhalt Seite 2 von 23 1 SCHALTUNGS- SYNTHESE UND ANALYSE... 3 1.1 NORMALFORM... 5 1.2 UND NORMALFORM... 5 1.3 ODER NORMALFORM... 7 1.4
Rechnerstrukturen WS 2012/13
Rechnerstrukturen WS 202/3 Boolesche Funktionen und Schaltnetze Repräsentationen boolescher Funktionen (Wiederholung) Normalformen boolescher Funktionen (Wiederholung) Repräsentation boolescher Funktionen
a) Wandeln sie die Dezimalzahl 77 in eine Dualzahl um (2P) b) Bilden Sie die Differenz aus und der Dualzahl aus Aufgabenteil a) (3P)
Aufgabe 1: Zahlensysteme (5P) a) Wandeln sie die Dezimalzahl 77 in eine Dualzahl um (2P) b) Bilden Sie die Differenz aus 01100001 und der Dualzahl aus Aufgabenteil a) (3P) Aufgabe 2: Boolesche Algebra
Formale Grundlagen von Schaltnetzen L6, L7, L8 1. L 6 : Gesetze der Booleschen Algebra
Formale Grundlagen von Schaltnetzen L6, L7, L8 1 L 6 : Gesetze der Booleschen Algebra Formale Grundlagen von Schaltnetzen L6, L7, L8 2 L 6-2: Einführung und Motivation Seien term 1 und term 2 beliebige
Teil 1: Digitale Logik
Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Analoge und digitale Hardware bei
IT 1 Übung / Kombinatorische Logik1
IT 1 Übung / Kombinatorische Logik1 Lehrziel dieser Übung ist es eine kombinatorische Logikschaltung aufzubauen. Weiters wird die Schaltung simuliert und messtechnisch überprüft. Übungsdurchführung: 1.
13. Vorlesung. Logix Klausuranmeldung nicht vergessen! Übungsblatt 3 Logikschaltungen. Multiplexer Demultiplexer Addierer.
13. Vorlesung Logix Klausuranmeldung nicht vergessen! Übungsblatt 3 Logikschaltungen Diode Transistor Multiplexer Demultiplexer Addierer 1 Campus-Version Logix 1.1 Vollversion Software und Lizenz Laboringenieur
