Rechnerorganisation 5. Vorlesung
|
|
|
- Cathrin Scholz
- vor 7 Jahren
- Abrufe
Transkript
1 Rechnerorganisation 5. Vorlesung Mathematische Grundlagen (1) Boolesche Algebren: BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6,7) Sequentielle Schaltungen (8) Programmierbare Strukturen (9) Rechneraufbau und ~funktion (10,11) Informationskodierung (12,13,14) H.-D. Wuttke, K. Henke
2 Bonusklausur am Spielregeln: Bis zu 10% Bonus zum Ergebnis der Prüfung addiert z.b. 50 Punkte Prüfung = 100% nicht da > kein Nachholen > kein Bonus => 10% Bonus = 5 Prüfungspunkte > kein Problem, da > keine Prüfungsvoraussetzung Wiederholer starten neu, d.h. neue Boni, neue Prüfung Inhalt: o o o Zahlensysteme Boolesche Algebra (Kürzen, Erweitern, Karnaugh) Kombinatorische Schaltungen (Wertetabelle <> Ausdruck <> Schaltung) H.-D. Wuttke, K. Henke
3 Selbststudium Schlüssel: *IKS2016# H.-D. Wuttke, K. Henke
4 Karnaugh-Veith-Diagramme Weitere Darstellungen, (nur für DNF) H.-D. Wuttke, K. Henke
5 Kürzen Erweitern Kürzen H.-D. Wuttke, K. Henke
6 Karnaugh-Veith-Diagramme z.b. k 13 k 9 H.-D. Wuttke, K. Henke
7 Karnaugh-Veith-Diagramme H.-D. Wuttke, K. Henke
8 Strukturdefinition - Koppelfunktion eindeutig H.-D. Wuttke, K. Henke
9 Basissysteme H.-D. Wuttke, K. Henke
10 Elementare Strukturen H.-D. Wuttke, K. Henke
11 Strukturanalyse strukturgleiche Schaltung strukturgleicher Ausdruck H.-D. Wuttke, K. Henke
12 Rechnerorganisation 5. Vorlesung 3. Struktur digitaler Schaltungen: kombinatorische Strukturen, programmierbare Strukturen, komplexes Beispiel: Analyse, Minimierung, NAND-Synthese H.-D. Wuttke, K. Henke
13 kombinatorische Strukturen Torschaltung i: Information (0 bzw. 1) s: Steuerbit 0: Tor geschlossen 1: Tor offen, a=i a: Ausgangsinformation, gültig für s=1 Anmerkung: normales AND-Gatter, spezielle Interpretation der Funktion H.-D. Wuttke, K. Henke
14 Dekoder Ein Tor i für je eine Elementarkonjunktion k 1 => für jede Eingangsbelegung öffnet sich genau ein Tor, Kode X 1 =[0,...,0,0,1] am Eingang wird dekodiert => Dekoder Kode=Eingangsbelegung X X 1 =[0,...,0,0,1] X 0 =[0,...,0,0,0] H.-D. Wuttke, K. Henke
15 kombinatorische Strukturen Dekoder + ODER =? H.-D. Wuttke, K. Henke
16 kombinatorische Strukturen Dekoder + ODER =? H.-D. Wuttke, K. Henke
17 kombinatorische Strukturen Dekoder + ODER + zusätzliche Signal-Eingänge k (X i ) = Multiplexer H.-D. Wuttke, K. Henke
18 kombinatorische Strukturen Dekoder + ODER + zusätzliche Signal-Eingänge k (X i ) = Multiplexer Schaltzeichen A: Adresse, D: Daten CS: Chip Select H.-D. Wuttke, K. Henke
19 Multiplexer Demultiplexer Ursprüngliche Verwendung: Vermittlungstechnik mehrere Teilnehmer nutzen eine Leitung Teilnehmer 0 [0,0] mit Teilnehmer 2 [1,0] verbunden H.-D. Wuttke, K. Henke
20 Multiplexer Demultiplexer Teilnehmer 0 [0,0] mit Teilnehmer 1 [0,1] 0 1 [0,...,0] [0,...,1] H.-D. Wuttke, K. Henke
21 Demultiplexer Dekoder + Programmiereingang p Schaltzeichen D: Daten (1) A: Adressen (n) CS: Chip Select (1) DX H.-D. Wuttke, K. Henke
22 Rechnerorganisation 5. Vorlesung 3. Struktur digitaler Schaltungen: kombinatorische Strukturen, programmierbare Strukturen, komplexes Beispiel: Analyse, Minimierung, NAND-Synthese H.-D. Wuttke, K. Henke
23 Programmierbarer Datenspeicher ROM Adresse 5: [101] <5>: Inhalt von Adresse 5: [1010] H.-D. Wuttke, K. Henke
24 Programmierbarer Datenspeicher ROM Dekoder + programmierbare Matrix Programmierung H.-D. Wuttke, K. Henke
25 Programmierbarer Datenspeicher ROM Dekoder + programmierbare Matrix X 01 =[0,...,0,0] =[0,...,0,1] (X 01 )=Y [ ] 1] H.-D. Wuttke, K. Henke
26 Programmierbarer Datenspeicher ROM Dekoder + programmierbare Matrix Problem bei praktischer Realisierung der Matrix: Alle auf 1 programmierten Ausgänge sind verbunden!! Als Struktur verboten!! je Ausgang y und je Adresse 1 separate Leitung Verknüpft über ein ODER-Gatter ODER-Matrix H.-D. Wuttke, K. Henke
27 kombinatorische Strukturen Dekoder + progr. ODER-Matrix = ROM H.-D. Wuttke, K. Henke
28 Programmierbarer Datenspeicher ROM H.-D. Wuttke, K. Henke
29 Programmierbarer Datenspeicher ROM H.-D. Wuttke, K. Henke
30 Programmierbarer Datenspeicher ROM Vereinfachte Darstellung H.-D. Wuttke, K. Henke
31 Dekoder + progr. OR-Matrix = ROM Read Only Memory ROM H.-D. Wuttke, K. Henke
32 Programable Logic Array (PLA) Vereinfachte Darstellung H.-D. Wuttke, K. Henke
33 Programmable Array Logic (PAL/GAL) Vereinfachte Darstellung H.-D. Wuttke, K. Henke
34 Programmable Array Logic (PAL/GAL) Fuses x1 AND x2 OR y AND H.-D. Wuttke, K. Henke
35 Zusammenfassung ROM PLA GAL H.-D. Wuttke, K. Henke
36 komplexes Beispiel: Gegeben I 1 ={3,4,6,7,9,12,14} Gesucht: Minimierung, Realisierung als KNF, DNF und NAND H.-D. Wuttke, K. Henke
37 Buch: Schaltsysteme, S146, Aufgabe 3.15 H.-D. Wuttke, K. Henke
38 Das war s für heute Viel Spaß beim Wiederholen! Bis nächsten Donnerstag H.-D. Wuttke, K. Henke
Rechnerorganisation. H.-D. Wuttke `
Rechnerorganisation Mathematische Grundlagen (1) Boolesche Algebren: BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6,7) Sequentielle Schaltungen (8) Programmierbare Strukturen (9) Rechneraufbau
Rechnerorganisation 5. Vorlesung
Rechnerorganisation 5. Vorlesung Mathematische Grundlagen (1) Boolesche Algebren: BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6,7) Sequentielle Schaltungen (8) Programmierbare Strukturen
Technische Informatik (RO)
Technische Informatik (RO) Informationskodierung (1) Boolesche Algebren: BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6) Sequentielle Schaltungen (7) Ablaufsteuerung (8) Fortsetzung Teil
Technische Informatik (RO)
Technische Informatik (RO) Informationskodierung (1) Boolesche Algebren: BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6) Sequentielle Schaltungen (7) Ablaufsteuerung (8) Fortsetzung Teil
Rechnerorganisation. (10,11) Informationskodierung (12,13,14) TECHNISCHE UNIVERSITÄT ILMENAU. IHS, H.- D. Wuttke 08
Rechnerorganisation Mathematische Grundlagen (1) Boolesche Algebren: : BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6,7) Sequentielle Schaltungen (8) Programmierbare Strukturen (9) Rechneraufbau
Technische Informatik (RO)
Technische Informatik (RO) Informationskodierung (1) Boolesche Algebren: BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6) Sequentielle Schaltungen (7) Ablaufsteuerung (8) Fortsetzung Teil
Technische Informatik I 4. Vorlesung. 2. Funktion digitaler Schaltungen... wertverlaufsgleiche Umformungen
Technische Informatik I 4. Vorlesung 2. Funktion digitaler Schaltungen... wertverlaufsgleiche Umformungen...... H.-D. Wuttke 09 Karnaugh-Veith Veith-Diagramme, 3. Struktur digitaler Schaltungen: Strukturdefinition,
Technische Informatik 3. Vorlesung
Technische Informatik 3. Vorlesung Mathematische Grundlagen (1) Boolesche Algebren: BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6,7) Sequentielle Schaltungen (8) Programmierbare Strukturen
Rechnerorganisation 2.Vorlesung
Rechnerorganisation 2.Vorlesung Begriffe, Mathematische Grundlagen (1) Boolesche Algebren, Normalformen (2,3) Kombinatorische Schaltungen (4) Programmierbare Strukturen (5) Automaten, Sequentielle Schaltungen
Rechnerorganisation 8. Vorlesung
Rechnerorganisation 8. Vorlesung Mathematische Grundlagen (1) Boolesche Algebren: BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6,7) Sequentielle Schaltungen (8) Programmierbare Strukturen
Technische Informatik I
Technische Informatik I Mathematische Grundlagen (1) Boolesche Algebren: BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6,7) Sequentielle Schaltungen (8) Programmierbare Strukturen (9) Rechneraufbau
Rechnerorganisation. (10,11) Informationskodierung (12,13,14) TECHNISCHE UNIVERSITÄT ILMENAU. IHS, H.- D. Wuttke 08
Rechnerorganisation Mathematische Grundlagen (1) Boolesche Algebren: : BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6,7) Sequentielle Schaltungen (8) Programmierbare Strukturen (9) Rechneraufbau
Technische Informatik (RO)
Technische Informatik (RO) Zahlensysteme, Digitale Systeme (1) Boolesche Algebren: BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten, Sequentielle Schaltungen (6) Informationskodierung (7,8) Fortsetzung
Technische Informatik 1
Technische Informatik 1 Mathematische Grundlagen (1) Boolesche Algebren: : BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6,7) Sequentielle Schaltungen (8) Programmierbare Strukturen (9) Rechneraufbau
Technische Informatik (RO)
Technische Informatik (RO) Informationskodierung (1) Boolesche Algebren: BMA, BAA (2,3) Kombinatorische Schaltungen (4) Automaten (5) Sequentielle Schaltungen (6,7) Ablaufsteuerung (8) Fortsetzung Teil
Teil 1: Digitale Logik
Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Tri-State Ausgangslogik Ausgang eines
Heinz-Dietrich Wuttke Karsten Henke. Schaltsysteme. Eine automatenorientierte Einführung. Pearson Studium
Heinz-Dietrich Wuttke Karsten Henke Schaltsysteme Eine automatenorientierte Einführung Pearson Studium ein Imprint der Pearson Education Deutschland GmbH 1 2 2.1 2.2 2.3 2.4 Vorwort Einleitung Mathematische
Rechnerorganisation 12. Vorlesung
Rechnerorganisation 12. Vorlesung Mathematische Grundlagen (1) Boolesche Algebren: BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6,7) Sequentielle Schaltungen (8) Programmierbare Strukturen
Rechnerorganisation. (10,11) Informationskodierung (12,13,14) TECHNISCHE UNIVERSITÄT ILMENAU. IHS, H.- D. Wuttke 08
Rechnerorganisation Mathematische Grundlagen (1) Boolesche Algebren: : BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6,7) Sequentielle Schaltungen (8) Programmierbare Strukturen (9) Rechneraufbau
Schaltsysteme Eine automatenorientierte Einführung
Heinz-Dietrich Wuttke Karsten Henke Schaltsysteme Eine automatenorientierte Einführung ein Imprint der Pearson Education Deutschland GmbH Schaltsysteme - PDF Inhaltsverzeichnis Schaltsysteme - Eine automatenorientierte
Inhaltsverzeichnis. 1 Boolesche Algebra, Schaltalgebra - Begriffsbestimmung 1. 2 Operationssystem der Schaltalgebra 4. 3 Boolesche Funktionen 6
Inhaltsverzeichnis 1 Boolesche Algebra, Schaltalgebra - Begriffsbestimmung 1 2 Operationssystem der Schaltalgebra 4 3 Boolesche Funktionen 6 4 Boolesche Funktionen kombinatorischer Schaltungen 8 4.1 Begriffsbestimmung
Rechnerorganisation. IHS 2018/2019 H.-D. Wuttke, K. Henke
Rechnerorganisation Mathematische Grundlagen (1) Boolesche Algebren: BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6,7) Sequentielle Schaltungen (8) Programmierbare Strukturen (9) Rechneraufbau
Technische Informatik 1 Rechnerorganisation (RO)
Technische Informatik 1 Rechnerorganisation (RO) Dr.-Ing. Heinz-Dietrich Wuttke H.-D. Wuttke `13 10.10.2013 www.tu-ilmenau.de/iks 1 Hier fanden Sie uns: nun Informatikgebäude, EG, Sekretariat Zi. 1031
Rechnerorganisation (RO)
Rechnerorganisation (RO) Dr.-Ing. Heinz-Dietrich Wuttke Dr.-Ing. Karsten Henke H.-D. Wuttke / K. Henke 2016 www.tu-ilmenau.de/iks 1 Hier fanden Sie uns bisher: ehemaliges Informatikgebäude Lehre und Forschung
Rechnerorganisation (RO)
Rechnerorganisation (RO) Dr.-Ing. Heinz-Dietrich Wuttke Dr.-Ing. Karsten Henke H.-D. Wuttke / K. Henke 2015 www.tu-ilmenau.de/iks 1 Hier fanden Sie uns bisher: ehemaliges Informatikgebäude Lehre und Forschung
Teil 1: Digitale Logik
Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Tri-State Ausgangslogik Ausgang eines
Technische Informatik 1 Rechnerorganisation (RO)
Technische Informatik 1 Rechnerorganisation (RO) Dr.-Ing. Heinz-Dietrich Wuttke H.-D. Wuttke `13 10.10.2013 www.tu-ilmenau.de/iks 1 Hier fanden Sie uns: nun Informatikgebäude, EG, Sekretariat Zi. 1031
Seminaraufgaben. zur Lehrveranstaltung. Technische Informatik Teil RO (EIT, FZT, LAE, LAM, MB, MT, MTR, OST, TKS, WI, WSW) (Ausgabe Oktober 2018)
Technische Universität Ilmenau Fakultät für Informatik und Automatisierung Institut für Technische Informatik und Ingenieurinformatik Fachgebiet Integrierte Kommunikationssysteme Seminaraufgaben zur Lehrveranstaltung
Teil 1: Digitale Logik
Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Analoge und digitale Hardware bei
Technische Informatik (RO)
Technische Informatik (RO) Zahlensysteme, Digitale Systeme (1) Boolesche Algebren: BMA, BAA (2,3) Kombinatorische Schaltungen (4) Automaten (5,6) Informationskodierung (7) Sequentielle Schaltungen (6)
Synthese und Analyse Digitaler Schaltungen
Synthese und Analyse Digitaler Schaltungen von Prof. Dr.-Ing. habil. Gerd Scarbata Technische Universität Ilmenau 2., überarbeitete Auflage Oldenbourg Verlag München Wien V Inhaltsverzeichnis Seite Boolesche
Rechnerorganisation. H.-D. Wuttke `
Rechnerorganisation Mathematische Grundlagen (1) Boolesche Algebren: BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6,7) Sequentielle Schaltungen (8) Programmierbare Strukturen (9) Rechneraufbau
Seminaraufgaben. zur Lehrveranstaltung. Technische Informatik. (Basic Engineering School) (Ausgabe April 2017)
Technische Universität Ilmenau Fakultät für Informatik und Automatisierung Institut für Technische Informatik und Ingenieurinformatik Fachgebiet Integrierte Kommunikationssysteme Seminaraufgaben zur Lehrveranstaltung
Kapitel 6 Programmierbare Logik. Literatur: Kapitel 6 aus Oberschelp/Vossen, Rechneraufbau und Rechnerstrukturen, 9. Auflage
Kapitel 6 Programmierbare Logik Literatur: Kapitel 6 aus Oberschelp/Vossen, Rechneraufbau und Rechnerstrukturen, 9. Auflage Kapitel 6: Programmierbare Logik und VLSI Seite Kapitel 6: Programmierbare Logik
Rechnerorganisation. (10,11) Informationskodierung (12,13,14) TECHNISCHE UNIVERSITÄT ILMENAU. IHS, H.- D. Wuttke `09
Rechnerorganisation Mathematische Grundlagen (1) Boolesche Algebren: : BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6,7) Sequentielle Schaltungen (8) Programmierbare Strukturen (9) Rechneraufbau
Technische Informatik (TI)
Technische Informatik (TI) Dipl.-Inf. René Hutschenreuter Dr.-Ing. Heinz-Dietrich Wuttke Dr.-Ing. Prof. h. c. Karsten Henke H.-D. Wuttke / K. Henke 2018/19 www.tu-ilmenau.de/iks 1 Hier fanden Sie uns bisher:
Digital Design 2 Schaltnetze (kombinatorische Logik) Digital Design
2 Schaltnetze (kombinatorische Logik) Schaltnetze realisieren eine Schalt- oder Vektorfunktion Y = F (X) X: Eingangsvektor mit den Variablen x 0, x 1, x n Y: Ausgabevektor mit den Variablen y 0, y 1, y
Rechnerorganisation. IHS 2015/2016 H.-D. Wuttke, K. Henke
Rechnerorganisation Mathematische Grundlagen (1) Boolesche Algebren: BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6,7) Sequentielle Schaltungen (8) Programmierbare Strukturen (9) Rechneraufbau
Technische Universität Ilmenau
Technische Universität Ilmenau Hier finden Sie uns: Informatikgebäude, 2. Etage, Sekretariat Zi. 215 Lehre und Forschung im Fachgebiet Integrierte Hard- und Softwaresysteme Prof. Dr.-Ing. habil. Andreas
DuE-Tutorien 17 und 18
DuE-Tutorien 17 und 18 Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery TUTORIENWOCHE 8 AM 23.12.2011 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum
F Programmierbare Logikbausteine
1 Einordnung Ebene 6 Problemorientierte Sprache Ebene 5 Assemblersprache F Programmierbare Logikbausteine Ebene 4 Ebene 3 Ebene 2 Ebene 1 Betriebssystem ISA (Instruction Set Architecture) Mikroarchitektur
Lehrveranstaltung: Digitale Systeme. KS-Praktikums-Vorbereitung Dipl.-Inf. Markus Appel , , ,
Lehrveranstaltung: Digitale Systeme KS-Praktikums-Vorbereitung Dipl.-Inf. Markus Appel 24.04.2012, 25.04.2012, 26.04.2012, 27.04.2012 Übersicht Kombinatorische Schaltungen n-bit-addierer Minimierungsverfahren
, SS2012 Übungsgruppen: Do., Mi.,
VU Technische Grundlagen der Informatik Übung 3: Schaltnete 83.579, SS202 Übungsgruppen: Do., 9.04. Mi., 25.04.202 Aufgab: Vereinfachung mittels KV-Diagramm Gegeben ist folgende Wahrheitstafel: e 0 Z Z
13. Vorlesung. Logix Klausuranmeldung nicht vergessen! Übungsblatt 3 Logikschaltungen. Multiplexer Demultiplexer Addierer.
13. Vorlesung Logix Klausuranmeldung nicht vergessen! Übungsblatt 3 Logikschaltungen Diode Transistor Multiplexer Demultiplexer Addierer 1 Campus-Version Logix 1.1 Vollversion Software und Lizenz Laboringenieur
Boolesche Algebra (1)
Boolesche Algebra (1) Definition 1: Sei B = Σ 2 = {0,1} das Alphabet mit den Elementen 0 und 1. Seien auf B die 3 Operatoren einer Algebra wie folgt definiert für x,y aus B: x+y := Max(x,y), x y := Min(x,y),
F Programmierbare Logikbausteine
1 Einordnung Ebene 6 Problemorientierte Sprache Ebene 5 Assemblersprache F Programmierbare Logikbausteine Ebene 4 Ebene 3 Ebene 2 Ebene 1 Betriebssystem ISA (Instruction Set Architecture) Mikroarchitektur
Übung zu Grundlagen der Technischen Informatik
Grundlagen der Technischen Informatik 9. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 9. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Multiplexer und De-Multiplexer
Fakultät für Informatik und Automatisierung Institut Technische Informatik und Ingenieurinformatik Fachgebiet Integrierte Kommunikationssysteme
Technische Universität Ilmenau Fakultät für Informatik und Automatisierung Institut Technische Informatik und Ingenieurinformatik Fachgebiet Integrierte Kommunikationssysteme Seminaraufgaben zur Lehrveranstaltung
Boolesche (Schalt-) Algebra (8)
Boolesche (Schalt-) Algebra (8) Karnaugh-Diagramm ist eine graphische Technik zur Darstellung und Vereinfachung von Booleschen Ausdrücken ist eine andere, zweidimensionale Darstellung von Wahrheitstabellen
GTI ÜBUNG 9. Multiplexer, demultiplexer, shifter, cmos und pal FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG JAN SPIECK 1
GTI ÜBUNG 9 Multiplexer, demultiplexer, shifter, cmos und pal FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG JAN SPIECK AUFGABE CMOS Beschreibung: Sei die Schaltfunktion f x 3, x 2, x, x 0 = x 0 x x
Rechnerstrukturen, Teil 1
Rechnerstrukturen, Teil 1 Vorlesung 4 SWS WS 18/19 Prof. Dr. Jian- Jia Chen Fakultät für Informatik Technische Universität Dortmund jian- [email protected] http://ls12- www.cs.tu-.de Übersicht 1. Organisatorisches
Programmierbare Logik CPLDs. Studienprojekt B Tammo van Lessen
Programmierbare Logik CPLDs Studienprojekt B Tammo van Lessen Gliederung Programmierbare Logik Verschiedene Typen Speichertechnologie Komplexe Programmierbare Logik System On a Chip Motivation Warum Programmierbare
Boolesche (Schalt-) Algebra (1)
Boolesche (Schalt-) Algebra (1) Definition 1: Sei B = SS 2 = 0,1 das Alphabet mit den Elementen 0 und 1. Seien auf BB die folgenden 3 Operatoren definiert für xx, yy B: xx + yy max xx, yy xx yy min xx,
FPGA Field Programmable Gate Array im Unterschied zu anderen PLD-Architekturen.
FPGA Field Programmable Gate Array im Unterschied zu anderen PLD-Architekturen. Kasdaghli Ameni Inhalt. Die Klassifizierung von ASIC 2. Simple Programmable Logic Device SPLD 3. Complex Programmable Logic
Synthese digitaler Schaltungen Aufgabensammlung
Technische Universität Ilmenau Fakultät für Elektrotechnik und Informationstechnik Fachgebiet Elektronische Schaltungen und Systeme Dr. Ing. Steffen Arlt Synthese digitaler Schaltungen Aufgabensammlung.
Schaltsysteme Eine automatenorientierte Einführung
Heinz-Dietrich Wuttke Karsten Henke Schaltssteme Eine automatenorientierte Einführung ein Imprint der Pearson Education Deutschland GmbH 6 Kapitel 3 Entwurf kombinatorischer Schaltungen Die Definition
Teil 1: Digitale Logik
Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Tri-State Ausgangslogik Ausgang eines
Programmierbare Logik
Programmierbare Logik Programmierung Input PLD Programmable Logic Device Output Liers - PEG-Vorlesung WS2000/2001 - Institut für Informatik - FU Berlin 1 /X X Grundgedanke Input Matrix Logikverknüpfung
Eingebettete Systeme
Einführung in Eingebettete Systeme Vorlesung 7 Bernd Finkbeiner 03/12/2014 [email protected] Prof. Bernd Finkbeiner, Ph.D. [email protected] 1 Schaltfunktionen! Schaltfunktion:
N Bit binäre Zahlen (signed)
N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101
Praktikumsanleitung. "Technische Informatik"
Praktikumsanleitung "Technische Informatik" Studiengang: WIW Dr. K. Debes FG Neuroinformatik Kognitive Robotik Dr. K. Henke FG Integrierte Hard- und Softwaresysteme Versuch: Kombinatorische Schaltungen
Auswertung. Hinweise. Einführung in die Technische Informatik WS 2006/2007 Probeklausur. Aachen, 02. November 2006 SWS: V2/Ü2, ECTS: 4
Professor Dr.-Ing. Stefan Kowalewski Dipl.-Inform. Andreas Polzer Dipl.-Inform. Ralf Mitsching LEHRSTUHL INFORMATIK XI SOFTWARE FÜR EINGEBETTETE SYSTEME Aachen, 02. November 2006 SWS: V2/Ü2, ECTS: 4 Einführung
Teil 1: Digitale Logik
Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Analoge und digitale Hardware bei
Schaltalgebra und kombinatorische Logik
Schaltalgebra und kombinatorische Logik. Digitale elektrische Schaltungen 2. Beschreibung durch logische Ausdrücke 3. Boolesche Algebra 4. Schaltfunktionen 5. Synthese von Schaltungen 6. Schaltnetze *Die
Rechnerstrukturen Winter 2015 4. WICHTIGE SCHALTNETZE. (c) Peter Sturm, University of Trier 1
4. WICHTIGE SCHALTNETZE (c) Peter Sturm, University of Trier 1 Wichtige Schaltnetze Häufig verwendete Grundfunktionen Umwandeln (Decoder) Verteilen (Multiplexer) und Zusammenfassen (Demultiplexer) Arithmetisch-
13 Programmierbare Speicher- und Logikbausteine
13 Programmierbare Speicher- und Logikbausteine Speicherung einer Tabelle (Programm) Read Only Memory (ROM) Festwertspeicher Nichtflüchtig Nichtlöschbar: ROM PROM bzw. OTP-ROM Anwender programmierbares
kanonische disjunktive Normalform (KDNF, DKF) Disjunktion einer Menge von Mintermen mit gleichen Variablen
5.6 Normalformen (4) Noch mehr aber besonders wichtige Begriffe kanonische disjunktive Normalform (KDNF, DKF) Disjunktion einer Menge von Mintermen mit gleichen Variablen Beispiel: KDNF zur Funktion f(,,,
C.34 C Normalformen (4) 5.7 Hauptsatz der Schaltalgebra. 5.7 Hauptsatz der Schaltalgebra (2) 5.7 Hauptsatz der Schaltalgebra (3)
5.6 Normalformen (4) Noch mehr aber besonders wichtige Begriffe kanonische disjunktive Normalform (KDNF, DKF) Disjunktion einer Menge von Mintermen mit gleichen Variablen Beispiel: KDNF zur Funktion f(,,,
Kapitel 3 - PLA und Flip-Flops
Kapitel 3 - PLA und Flip-Flops Programmable Logic Array (PLA) Die Idee eines PLAs ist, dass bei der Chipherstellung ein homogenes Feld von Transistoren erzeugt wird. Die eigentliche Funktionalität wird
Darstellung von negativen binären Zahlen
Darstellung von negativen binären Zahlen Beobachtung für eine beliebige Binärzahl B, z.b. B=110010: B + NOT(B) ---------------------------------------------- = B + NOT(B) 1 + (Carry) ----------------------------------------------
Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 14/15
Rechnerstrukturen, Teil 1 Vorlesung 4 SWS WS 14/15 Prof. Dr Jian-Jia Chen Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund [email protected] http://ls1-www.cs.tu-.de Übersicht
ASIC. Application-Specific Integrated Circuit. Technische Informatik K. Slotala
ASIC Application-Specific Integrated Circuit Technische Informatik K. Slotala Was ist ASIC? Anwendungsspezifische Schaltung, die fest im Schaltkreis integriert ist An die Anforderungen der Anwender angepasst
Lösung 2.1 PROM - Dual-zu-Siebensegmentdecoder
Lösung 2. PROM - Dual-zu-Siebensegmentdecoder Die Ziffern bzw. Buchstaben sollen auf der Siebensegmentanzeige gemäß der Abbildung dargestellt werden: 0 2 3 4 5 6 7 8 9 0 2 3 4 5 Die Ansteuerung der Leuchtsegmente
2.3 Logikoptimierung. Überblick digitale Synthese. Logikoptimierung
2.3 Logikoptimierung Logikoptimierung Überblick digitale Synthese Logikoptimierung Begriffe Mehrstufige Logik Zweistufige Logik:..Exakte Verfahen..Heuristische Verfahren..Expansion/ Reduktion..Streichen
Systemorientierte Informatik 1
Systemorientierte Informatik. Grundlagen Digitaler Schaltungen.8 Schaltnetze aus Gattern und Leitungen.9 Boole sche Algebra. Minimierung Boole scher Funktionen. CMOS Komplegatter Die nächste Funktion,
Einführung in die technische Informatik
Einführung in die technische Informatik hristopher Kruegel [email protected] http://www.auto.tuwien.ac.at/~chris Logische Schaltungen System mit Eingängen usgängen interne Logik die Eingänge auf
4.Vorlesung Rechnerorganisation
[email protected], 22. April 2004 1 Inhalt: 4.Vorlesung Rechnerorganisation technischer Hintergrund der von uns verwendeten Experimentierhardware kurze Einführung in das Altera Entwicklungssystem
Grundlagen der Digitaltechnik
Grundlagen der Digitaltechnik Eine systematische Einführung von Prof. Dipl.-Ing. Erich Leonhardt 3., bearbeitete Auflage Mit 326 Bildern, 128 Tabellen, zahlreichen Beispielen und Übungsaufgaben mit Lösungen
1 Analogtechnik und Digitaltechnik. C Schaltalgebra und kombinatorische Logik. 2 Digitale elektrische Schaltungen
Analogtechnik und Digitaltechnik C Schaltalgebra und kombinatorische Logik bei analoger Technik kontinuierliche Signale. Analog- und Digitaltechnik 2. Digitale elektrische Schaltungen 3. Logische Schaltungen
5. Vorlesung: Normalformen
5. Vorlesung: Normalformen Wiederholung Vollständige Systeme Minterme Maxterme Disjunktive Normalform (DNF) Konjunktive Normalform (KNF) 1 XOR (Antivalenz) X X X X X X ( X X ) ( X X ) 1 2 1 2 1 2 1 2 1
Schaltalgebra und kombinatorische Logik
Schaltalgebra und kombinatorische Logik. Digitale elektrische Schaltungen 2. Beschreibung durch logische Ausdrücke 3. Boolesche Algebra 4. Schaltfunktionen 5. Synthese von Schaltungen 6. Schaltnetze Wintersemester
Grundlagen der Technischen Informatik
Dirk W. Hoffmann Grundlagen der Technischen Informatik 3., neu bearbeitete Auflage Mit 356 Bildern, 57 Tabellen und 95 Aufgaben HANSER Inhaltsverzeichnis 1 Einführung 11 1.1 Was ist technische Informatik?
