Technische Informatik (RO)

Größe: px
Ab Seite anzeigen:

Download "Technische Informatik (RO)"

Transkript

1 Technische Informatik (RO) Informationskodierung (1) Boolesche Algebren: BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6) Sequentielle Schaltungen (7) Ablaufsteuerung (8) Fortsetzung Teil Rechnerarchitektur, Prof. Fengler 6. Dezember 2016

2 Bonusklausur Spielregeln: Bis zu10% Bonus zum Ergebnis der Prüfung addiert z.b. 50 Punkte Prüfung =100% => 10% Bonus = 5 Prüfungspunkte nicht da > kein Nachholen > kein Bonus > kein Problem, da > keine Prüfungsvoraussetzung Wiederholer starten neu, d.h. ohne Boni, nur Prüfung Inhalt: Kombinatorische Funktionen (Wertetabelle <> Ausdruck <> Schaltung) Boolesche Algebra (Kürzen, Erweitern) Kombinatorische Strukturen

3 Karnaugh-Veith-Diagramme benachbarte Belegungen grafisch so anordnen, dass Nachbarn nebeneinander liegen, Matrix, Nachbarschaft je Spalte und je Zeile Funktionswerte

4 Karnaugh-Veith-Diagramme Andere Reihenfolge der Belegungen pro Spalte bzw. Spalte und Zeile

5 Kürzen Erweitern Kürzen x3*x0+x3*x1+x2*x1

6 Karnaugh-Veith-Diagramme Beispiel : I={10,11,15,13,9,7,6,14} 1 1 Funktionswerte

7 Karnaugh-Veith-Diagramme z.b. k 13 k 9

8 Karnaugh-Veith-Diagramme Gleiches Beispiel - andere Kürzung x3&x2&x1&/x0+x3&x2&x1&x0=x3&x2&x1 k 11 k 10 x3&/x2&x1&x0+x3&/x2&x1&/x0=x3&/x2&x1 x3&x2&x1+x3&/x2&x1*x0 = x3&x1 => 4er Block

9 Karnaugh-Veith-Diagramme benachbarte Belegungen können gekürzt werden. Kürzung: 1 Variable => 2er Block 2 Variable => 4er Block 3 Variable => 8er Block 4 Variable =>16er Block... x 3 /x 2 /x 1 Applet H.-D. Wuttke 14

10 Karnaugh-Veith-Diagramme Bei 6 Variablen: Applet zum Üben

11 Karnaugh-Veith-Diagramme Weitere Darstellungen, (nur für DNF) x 0 x 1 x 2 x 3

12 Technische Informatik 4. Vorlesung 3. Struktur digitaler Schaltungen: Strukturdefinition, elementare Strukturen, Struktursynthese, Strukturanalyse

13 Strukturelement: Modul

14 Strukturdefinition eindeutig

15 Technische Informatik 4. Vorlesung 3. Struktur digitaler Schaltungen: Strukturdefinition, elementare Strukturen, Struktursynthese, Strukturanalyse

16 Modul Beispiele (Arbbl. Seite 9)

17 Elementare Strukturen: Basissysteme AND OR NOT (DNF; KNF) NOR (NONF) NAND (NANF)

18 Technische Informatik I 4. Vorlesung 3. Struktur digitaler Schaltungen: Strukturdefinition, elementare Strukturen, Struktursynthese, Strukturanalyse

19 Struktursynthese strukturgleiche Schaltung strukturgleicher Ausdruck

20 Technische Informatik (RO) 4. Vorlesung 3. Struktur digitaler Schaltungen: Strukturdefinition, elementare Strukturen, Struktursynthese, Strukturanalyse

21 Strukturanalyse strukturgleiche Schaltung strukturgleicher Ausdruck

22 Elementare Strukturen

23 Technische Informatik 5. Vorlesung 3. Struktur digitaler Schaltungen: kombinatorische Strukturen, programmierbare Strukturen,

24 kombinatorische Strukturen Torschaltung i: Information (0 bzw. 1) s: Steuerbit 0: Tor geschlossen 1: Tor offen, a=i a: Ausgangsinformation, gültig für s=1 Anmerkung: normales AND-Gatter, spezielle Interpretation der Funktion

25 Dekoder 1 Tor für je eine Elementarkonjunktion => für jede Eingangsbelegung öffnet sich genau ein Tor, Kode X 1 =[0,...,0,0,1] am Eingang wird dekodiert => Dekoder Kode=Eingangsbelegung X 10 =[0,...,0,0,1] =[0,...,0,0,0]

26 Multiplexer Demultiplexer Ursprüngliche Verwendung: Vermittlungstechnik mehrere Teilnehmer nutzen eine Leitung Teilnehmer 0 [0,0] mit Teilnehmer 2 [1,0] verbunden

27 Multiplexer Demultiplexer Teilnehmer 0 [0,0] mit Teilnehmer 1 [0,1] verbunden 0 1 [0,...,0] [0,...,1]

28 Demultiplexer Dekoder + Programmiereingang p Schaltzeichen A DX

29 Technische Informatik 5. Vorlesung 3. Struktur digitaler Schaltungen:... kombinatorische Strukturen, programmierbare Strukturen,

30 Programmierbare Strukturen Programmierbarer Datenspeicher Read Only Memory ROM Adresse 5: [101] <5>: Inhalt von Adresse 5: [1010]

31 ROM Dekoder + programmierbare Matrix Programmierung

32 ROM Dekoder + programmierbare Matrix X 01 =[0,...,0,0] =[0,...,0,1] (X 01 )=Y [ ] 1]

33 ROM Dekoder + programmierbare Matrix Problem bei praktischer Realisierung der Matrix: Alle auf 1 programmierten Ausgänge sind verbunden!! Als Struktur verboten!! je Ausgang y und je Adresse 1 separate Leitung Verknüpft über ein ODER-Gatter ODER-Matrix 3

34 kombinatorische Strukturen Dekoder + ODER = Multiplexer

35 kombinatorische Strukturen Dekoder + progr. ODER-Matrix = ROM

36 ROM

37 ROM Vereinfachte Darstellung

38 PLA Vereinfachte Darstellung Programable Logic Array

39 PAL/GAL Vereinfachte Darstellung Programable Array Logic, Gate AL

40 PAL/GAL x1 Fuses AND x2 OR y AND

41 Zusammenfassung ROM PLA GAL Applet:

42 Kombinatorische Struktur

43 Das war s für heute Viel Spaß beim Wiederholen! Kap , 3.6.5, 4.1, 4.2

Technische Informatik (RO)

Technische Informatik (RO) Technische Informatik (RO) Informationskodierung (1) Boolesche Algebren: BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6) Sequentielle Schaltungen (7) Ablaufsteuerung (8) Fortsetzung Teil

Mehr

Technische Informatik (RO)

Technische Informatik (RO) Technische Informatik (RO) Informationskodierung (1) Boolesche Algebren: BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6) Sequentielle Schaltungen (7) Ablaufsteuerung (8) Fortsetzung Teil

Mehr

Rechnerorganisation. (10,11) Informationskodierung (12,13,14) TECHNISCHE UNIVERSITÄT ILMENAU. IHS, H.- D. Wuttke 08

Rechnerorganisation. (10,11) Informationskodierung (12,13,14) TECHNISCHE UNIVERSITÄT ILMENAU. IHS, H.- D. Wuttke 08 Rechnerorganisation Mathematische Grundlagen (1) Boolesche Algebren: : BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6,7) Sequentielle Schaltungen (8) Programmierbare Strukturen (9) Rechneraufbau

Mehr

Rechnerorganisation 5. Vorlesung

Rechnerorganisation 5. Vorlesung Rechnerorganisation 5. Vorlesung Mathematische Grundlagen (1) Boolesche Algebren: BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6,7) Sequentielle Schaltungen (8) Programmierbare Strukturen

Mehr

Rechnerorganisation. H.-D. Wuttke `

Rechnerorganisation. H.-D. Wuttke ` Rechnerorganisation Mathematische Grundlagen (1) Boolesche Algebren: BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6,7) Sequentielle Schaltungen (8) Programmierbare Strukturen (9) Rechneraufbau

Mehr

Rechnerorganisation 5. Vorlesung

Rechnerorganisation 5. Vorlesung Rechnerorganisation 5. Vorlesung Mathematische Grundlagen (1) Boolesche Algebren: BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6,7) Sequentielle Schaltungen (8) Programmierbare Strukturen

Mehr

Technische Informatik I 4. Vorlesung. 2. Funktion digitaler Schaltungen... wertverlaufsgleiche Umformungen

Technische Informatik I 4. Vorlesung. 2. Funktion digitaler Schaltungen... wertverlaufsgleiche Umformungen Technische Informatik I 4. Vorlesung 2. Funktion digitaler Schaltungen... wertverlaufsgleiche Umformungen...... H.-D. Wuttke 09 Karnaugh-Veith Veith-Diagramme, 3. Struktur digitaler Schaltungen: Strukturdefinition,

Mehr

Technische Informatik (RO)

Technische Informatik (RO) Technische Informatik (RO) Zahlensysteme, Digitale Systeme (1) Boolesche Algebren: BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten, Sequentielle Schaltungen (6) Informationskodierung (7,8) Fortsetzung

Mehr

Technische Informatik (RO)

Technische Informatik (RO) Technische Informatik (RO) Informationskodierung (1) Boolesche Algebren: BMA, BAA (2,3) Kombinatorische Schaltungen (4) Automaten (5) Sequentielle Schaltungen (6,7) Ablaufsteuerung (8) Fortsetzung Teil

Mehr

Technische Informatik I

Technische Informatik I Technische Informatik I Mathematische Grundlagen (1) Boolesche Algebren: BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6,7) Sequentielle Schaltungen (8) Programmierbare Strukturen (9) Rechneraufbau

Mehr

Technische Informatik 3. Vorlesung

Technische Informatik 3. Vorlesung Technische Informatik 3. Vorlesung Mathematische Grundlagen (1) Boolesche Algebren: BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6,7) Sequentielle Schaltungen (8) Programmierbare Strukturen

Mehr

Rechnerorganisation. (10,11) Informationskodierung (12,13,14) TECHNISCHE UNIVERSITÄT ILMENAU. IHS, H.- D. Wuttke 08

Rechnerorganisation. (10,11) Informationskodierung (12,13,14) TECHNISCHE UNIVERSITÄT ILMENAU. IHS, H.- D. Wuttke 08 Rechnerorganisation Mathematische Grundlagen (1) Boolesche Algebren: : BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6,7) Sequentielle Schaltungen (8) Programmierbare Strukturen (9) Rechneraufbau

Mehr

Rechnerorganisation 2.Vorlesung

Rechnerorganisation 2.Vorlesung Rechnerorganisation 2.Vorlesung Begriffe, Mathematische Grundlagen (1) Boolesche Algebren, Normalformen (2,3) Kombinatorische Schaltungen (4) Programmierbare Strukturen (5) Automaten, Sequentielle Schaltungen

Mehr

Technische Informatik 1

Technische Informatik 1 Technische Informatik 1 Mathematische Grundlagen (1) Boolesche Algebren: : BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6,7) Sequentielle Schaltungen (8) Programmierbare Strukturen (9) Rechneraufbau

Mehr

Teil 1: Digitale Logik

Teil 1: Digitale Logik Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Tri-State Ausgangslogik Ausgang eines

Mehr

Rechnerorganisation 8. Vorlesung

Rechnerorganisation 8. Vorlesung Rechnerorganisation 8. Vorlesung Mathematische Grundlagen (1) Boolesche Algebren: BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6,7) Sequentielle Schaltungen (8) Programmierbare Strukturen

Mehr

Technische Informatik (RO)

Technische Informatik (RO) Technische Informatik (RO) Zahlensysteme, Digitale Systeme (1) Boolesche Algebren: BMA, BAA (2,3) Kombinatorische Schaltungen (4) Automaten (5,6) Informationskodierung (7) Sequentielle Schaltungen (6)

Mehr

Rechnerorganisation. (10,11) Informationskodierung (12,13,14) TECHNISCHE UNIVERSITÄT ILMENAU. IHS, H.- D. Wuttke 08

Rechnerorganisation. (10,11) Informationskodierung (12,13,14) TECHNISCHE UNIVERSITÄT ILMENAU. IHS, H.- D. Wuttke 08 Rechnerorganisation Mathematische Grundlagen (1) Boolesche Algebren: : BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6,7) Sequentielle Schaltungen (8) Programmierbare Strukturen (9) Rechneraufbau

Mehr

Inhaltsverzeichnis. 1 Boolesche Algebra, Schaltalgebra - Begriffsbestimmung 1. 2 Operationssystem der Schaltalgebra 4. 3 Boolesche Funktionen 6

Inhaltsverzeichnis. 1 Boolesche Algebra, Schaltalgebra - Begriffsbestimmung 1. 2 Operationssystem der Schaltalgebra 4. 3 Boolesche Funktionen 6 Inhaltsverzeichnis 1 Boolesche Algebra, Schaltalgebra - Begriffsbestimmung 1 2 Operationssystem der Schaltalgebra 4 3 Boolesche Funktionen 6 4 Boolesche Funktionen kombinatorischer Schaltungen 8 4.1 Begriffsbestimmung

Mehr

Boolesche (Schalt-) Algebra (1)

Boolesche (Schalt-) Algebra (1) Boolesche (Schalt-) Algebra (1) Definition 1: Sei B = SS 2 = 0,1 das Alphabet mit den Elementen 0 und 1. Seien auf BB die folgenden 3 Operatoren definiert für xx, yy B: xx + yy max xx, yy xx yy min xx,

Mehr

Heinz-Dietrich Wuttke Karsten Henke. Schaltsysteme. Eine automatenorientierte Einführung. Pearson Studium

Heinz-Dietrich Wuttke Karsten Henke. Schaltsysteme. Eine automatenorientierte Einführung. Pearson Studium Heinz-Dietrich Wuttke Karsten Henke Schaltsysteme Eine automatenorientierte Einführung Pearson Studium ein Imprint der Pearson Education Deutschland GmbH 1 2 2.1 2.2 2.3 2.4 Vorwort Einleitung Mathematische

Mehr

Teil 1: Digitale Logik

Teil 1: Digitale Logik Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Tri-State Ausgangslogik Ausgang eines

Mehr

Lehrveranstaltung: Digitale Systeme. KS-Praktikums-Vorbereitung Dipl.-Inf. Markus Appel , , ,

Lehrveranstaltung: Digitale Systeme. KS-Praktikums-Vorbereitung Dipl.-Inf. Markus Appel , , , Lehrveranstaltung: Digitale Systeme KS-Praktikums-Vorbereitung Dipl.-Inf. Markus Appel 24.04.2012, 25.04.2012, 26.04.2012, 27.04.2012 Übersicht Kombinatorische Schaltungen n-bit-addierer Minimierungsverfahren

Mehr

Schaltsysteme Eine automatenorientierte Einführung

Schaltsysteme Eine automatenorientierte Einführung Heinz-Dietrich Wuttke Karsten Henke Schaltsysteme Eine automatenorientierte Einführung ein Imprint der Pearson Education Deutschland GmbH Schaltsysteme - PDF Inhaltsverzeichnis Schaltsysteme - Eine automatenorientierte

Mehr

Teil 1: Digitale Logik

Teil 1: Digitale Logik Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Analoge und digitale Hardware bei

Mehr

Rechnerstrukturen, Teil 1

Rechnerstrukturen, Teil 1 Rechnerstrukturen, Teil 1 Vorlesung 4 SWS WS 18/19 Prof. Dr. Jian- Jia Chen Fakultät für Informatik Technische Universität Dortmund jian- [email protected] http://ls12- www.cs.tu-.de Übersicht 1. Organisatorisches

Mehr

Digital Design 2 Schaltnetze (kombinatorische Logik) Digital Design

Digital Design 2 Schaltnetze (kombinatorische Logik) Digital Design 2 Schaltnetze (kombinatorische Logik) Schaltnetze realisieren eine Schalt- oder Vektorfunktion Y = F (X) X: Eingangsvektor mit den Variablen x 0, x 1, x n Y: Ausgabevektor mit den Variablen y 0, y 1, y

Mehr

, SS2012 Übungsgruppen: Do., Mi.,

, SS2012 Übungsgruppen: Do., Mi., VU Technische Grundlagen der Informatik Übung 3: Schaltnete 83.579, SS202 Übungsgruppen: Do., 9.04. Mi., 25.04.202 Aufgab: Vereinfachung mittels KV-Diagramm Gegeben ist folgende Wahrheitstafel: e 0 Z Z

Mehr

Synthese und Analyse Digitaler Schaltungen

Synthese und Analyse Digitaler Schaltungen Synthese und Analyse Digitaler Schaltungen von Prof. Dr.-Ing. habil. Gerd Scarbata Technische Universität Ilmenau 2., überarbeitete Auflage Oldenbourg Verlag München Wien V Inhaltsverzeichnis Seite Boolesche

Mehr

Boolesche Algebra (1)

Boolesche Algebra (1) Boolesche Algebra (1) Definition 1: Sei B = Σ 2 = {0,1} das Alphabet mit den Elementen 0 und 1. Seien auf B die 3 Operatoren einer Algebra wie folgt definiert für x,y aus B: x+y := Max(x,y), x y := Min(x,y),

Mehr

Seminaraufgaben. zur Lehrveranstaltung. Technische Informatik Teil RO (EIT, FZT, LAE, LAM, MB, MT, MTR, OST, TKS, WI, WSW) (Ausgabe Oktober 2018)

Seminaraufgaben. zur Lehrveranstaltung. Technische Informatik Teil RO (EIT, FZT, LAE, LAM, MB, MT, MTR, OST, TKS, WI, WSW) (Ausgabe Oktober 2018) Technische Universität Ilmenau Fakultät für Informatik und Automatisierung Institut für Technische Informatik und Ingenieurinformatik Fachgebiet Integrierte Kommunikationssysteme Seminaraufgaben zur Lehrveranstaltung

Mehr

Grundlagen der Informationsverarbeitung:

Grundlagen der Informationsverarbeitung: Grundlagen der Informationsverarbeitung: Schaltungsentwurf und Minimierungsverfahren Prof. Dr.-Ing. habil. Ulrike Lucke Durchgeführt von Prof. Dr. rer. nat. habil. Mario Schölzel Maximaler Raum für Titelbild

Mehr

Boolesche (Schalt-) Algebra (8)

Boolesche (Schalt-) Algebra (8) Boolesche (Schalt-) Algebra (8) Karnaugh-Diagramm ist eine graphische Technik zur Darstellung und Vereinfachung von Booleschen Ausdrücken ist eine andere, zweidimensionale Darstellung von Wahrheitstabellen

Mehr

Kapitel 6 Programmierbare Logik. Literatur: Kapitel 6 aus Oberschelp/Vossen, Rechneraufbau und Rechnerstrukturen, 9. Auflage

Kapitel 6 Programmierbare Logik. Literatur: Kapitel 6 aus Oberschelp/Vossen, Rechneraufbau und Rechnerstrukturen, 9. Auflage Kapitel 6 Programmierbare Logik Literatur: Kapitel 6 aus Oberschelp/Vossen, Rechneraufbau und Rechnerstrukturen, 9. Auflage Kapitel 6: Programmierbare Logik und VLSI Seite Kapitel 6: Programmierbare Logik

Mehr

DuE-Tutorien 17 und 18

DuE-Tutorien 17 und 18 DuE-Tutorien 17 und 18 Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery TUTORIENWOCHE 8 AM 23.12.2011 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

F Programmierbare Logikbausteine

F Programmierbare Logikbausteine 1 Einordnung Ebene 6 Problemorientierte Sprache Ebene 5 Assemblersprache F Programmierbare Logikbausteine Ebene 4 Ebene 3 Ebene 2 Ebene 1 Betriebssystem ISA (Instruction Set Architecture) Mikroarchitektur

Mehr

Technische Informatik (RO)

Technische Informatik (RO) Technische Informatik (RO) Zahlensysteme, Digitale Systeme (1) Boolesche Algebren: BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten, Sequentielle Schaltungen (6) Informationskodierung (7,8) Fortsetzung

Mehr

Kapitel 3 - PLA und Flip-Flops

Kapitel 3 - PLA und Flip-Flops Kapitel 3 - PLA und Flip-Flops Programmable Logic Array (PLA) Die Idee eines PLAs ist, dass bei der Chipherstellung ein homogenes Feld von Transistoren erzeugt wird. Die eigentliche Funktionalität wird

Mehr

Eingebettete Systeme

Eingebettete Systeme Einführung in Eingebettete Systeme Vorlesung 7 Bernd Finkbeiner 03/12/2014 [email protected] Prof. Bernd Finkbeiner, Ph.D. [email protected] 1 Schaltfunktionen! Schaltfunktion:

Mehr

3 Boole'sche Algebra und Aussagenlogik

3 Boole'sche Algebra und Aussagenlogik 3 Boole'sche Algebra und Aussagenlogik 3- Boole'sche Algebra Formale Grundlagen der Informatik I Herbstsemester 22 Robert Marti Vorlesung teilweise basierend auf Unterlagen von Prof. emer. Helmut Schauer

Mehr

2. Funktionen und Entwurf digitaler Grundschaltungen

2. Funktionen und Entwurf digitaler Grundschaltungen 2. Funktionen und Entwurf digitaler Grundschaltungen 2.1 Kominatorische Schaltungen Kombinatorische Schaltungen - Grundlagen 1 Grundgesetze der Schaltalgebra UND-Verknüpfung ODER-Verknüpfung NICHT-Verknüpfung

Mehr

GTI ÜBUNG 9. Multiplexer, demultiplexer, shifter, cmos und pal FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG JAN SPIECK 1

GTI ÜBUNG 9. Multiplexer, demultiplexer, shifter, cmos und pal FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG JAN SPIECK 1 GTI ÜBUNG 9 Multiplexer, demultiplexer, shifter, cmos und pal FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG JAN SPIECK AUFGABE CMOS Beschreibung: Sei die Schaltfunktion f x 3, x 2, x, x 0 = x 0 x x

Mehr

Aussagenlogik. Formale Methoden der Informatik WiSe 2012/2013 teil 6, folie 1

Aussagenlogik. Formale Methoden der Informatik WiSe 2012/2013 teil 6, folie 1 Aussagenlogik Formale Methoden der Informatik WiSe 22/23 teil 6, folie Teil VI: Aussagenlogik. Einführung 2. Boolesche Funktionen 3. Boolesche Schaltungen Franz-Josef Radermacher & Uwe Schöning, Fakultät

Mehr

Darstellung von negativen binären Zahlen

Darstellung von negativen binären Zahlen Darstellung von negativen binären Zahlen Beobachtung für eine beliebige Binärzahl B, z.b. B=110010: B + NOT(B) ---------------------------------------------- = B + NOT(B) 1 + (Carry) ----------------------------------------------

Mehr

Übung zu Grundlagen der Technischen Informatik

Übung zu Grundlagen der Technischen Informatik Grundlagen der Technischen Informatik 9. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 9. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Multiplexer und De-Multiplexer

Mehr

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 14/15

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 14/15 Rechnerstrukturen, Teil 1 Vorlesung 4 SWS WS 14/15 Prof. Dr Jian-Jia Chen Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund [email protected] http://ls1-www.cs.tu-.de Übersicht

Mehr

f ist sowohl injektiv als auch surjektiv.

f ist sowohl injektiv als auch surjektiv. Bemerkungen: Wir erinnern uns an folgende Definitionen: Eine Funktion f : U V heißt injektiv, wenn gilt: ( x, y U)[x y f(x) f(y)] Eine Funktion f : U V heißt surjektiv, wenn gilt: ( y V x U)[y = f(x)]

Mehr

Rechnerorganisation 12. Vorlesung

Rechnerorganisation 12. Vorlesung Rechnerorganisation 12. Vorlesung Mathematische Grundlagen (1) Boolesche Algebren: BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6,7) Sequentielle Schaltungen (8) Programmierbare Strukturen

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

F Programmierbare Logikbausteine

F Programmierbare Logikbausteine 1 Einordnung Ebene 6 Problemorientierte Sprache Ebene 5 Assemblersprache F Programmierbare Logikbausteine Ebene 4 Ebene 3 Ebene 2 Ebene 1 Betriebssystem ISA (Instruction Set Architecture) Mikroarchitektur

Mehr

2.4. Das Karnaugh Veitch Diagramm ( KV Diagramm )

2.4. Das Karnaugh Veitch Diagramm ( KV Diagramm ) 2.4. Das Karnaugh Veitch Diagramm ( KV Diagramm ) Mit dem KV-Diagramm sollen Sie ein Verfahren kennen lernen, mit dem Funktionsgleichungen vereinfacht werden können. Dazu wird jeder Eingangskombination

Mehr

Schaltfunktion, Definition

Schaltfunktion, Definition Schaltfunktion, Definition Sei S = { 0,1}. Dann heißt eine Abbildung f: S n S eine Schaltfunktion. = f(x n-1,x n-2,...,,, ), x n-1, x n-2,...,,, S x i X = (x n-1,x n-2,...,,, ) Eingangsvariable Eingangsvektor

Mehr

Rechnerorganisation. IHS 2018/2019 H.-D. Wuttke, K. Henke

Rechnerorganisation. IHS 2018/2019 H.-D. Wuttke, K. Henke Rechnerorganisation Mathematische Grundlagen (1) Boolesche Algebren: BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6,7) Sequentielle Schaltungen (8) Programmierbare Strukturen (9) Rechneraufbau

Mehr

Rechnerorganisation. (10,11) Informationskodierung (12,13,14) TECHNISCHE UNIVERSITÄT ILMENAU. IHS, H.- D. Wuttke `09

Rechnerorganisation. (10,11) Informationskodierung (12,13,14) TECHNISCHE UNIVERSITÄT ILMENAU. IHS, H.- D. Wuttke `09 Rechnerorganisation Mathematische Grundlagen (1) Boolesche Algebren: : BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6,7) Sequentielle Schaltungen (8) Programmierbare Strukturen (9) Rechneraufbau

Mehr

13. Vorlesung. Logix Klausuranmeldung nicht vergessen! Übungsblatt 3 Logikschaltungen. Multiplexer Demultiplexer Addierer.

13. Vorlesung. Logix Klausuranmeldung nicht vergessen! Übungsblatt 3 Logikschaltungen. Multiplexer Demultiplexer Addierer. 13. Vorlesung Logix Klausuranmeldung nicht vergessen! Übungsblatt 3 Logikschaltungen Diode Transistor Multiplexer Demultiplexer Addierer 1 Campus-Version Logix 1.1 Vollversion Software und Lizenz Laboringenieur

Mehr

BOOLSCHE ALGEBRA / SCHALTUNGSALGEBRA

BOOLSCHE ALGEBRA / SCHALTUNGSALGEBRA BOOLSCHE ALGEBRA / SCHALTUNGSALGEBRA 1. Digitale Grundschaltungen 1.1 UND/AND-SCHALTUNG 0 0 0 1 0 0 0 1 0 1 1 1 x = a /\ b 1.2 ODER/OR-SCHALTUNG 0 0 0 0 1 1 1 0 1 1 1 1 x = a \/ b NICHT/NOT-SCHALTUNG A

Mehr

Technische Informatik I

Technische Informatik I Rechnerstrukturen Dario Linsky Wintersemester 200 / 20 Teil 2: Grundlagen digitaler Schaltungen Überblick Logische Funktionen und Gatter Transistoren als elektronische Schalter Integrierte Schaltkreise

Mehr

Auswertung. Hinweise. Einführung in die Technische Informatik WS 2006/2007 Probeklausur. Aachen, 02. November 2006 SWS: V2/Ü2, ECTS: 4

Auswertung. Hinweise. Einführung in die Technische Informatik WS 2006/2007 Probeklausur. Aachen, 02. November 2006 SWS: V2/Ü2, ECTS: 4 Professor Dr.-Ing. Stefan Kowalewski Dipl.-Inform. Andreas Polzer Dipl.-Inform. Ralf Mitsching LEHRSTUHL INFORMATIK XI SOFTWARE FÜR EINGEBETTETE SYSTEME Aachen, 02. November 2006 SWS: V2/Ü2, ECTS: 4 Einführung

Mehr

Seminaraufgaben. zur Lehrveranstaltung. Technische Informatik. (Basic Engineering School) (Ausgabe April 2017)

Seminaraufgaben. zur Lehrveranstaltung. Technische Informatik. (Basic Engineering School) (Ausgabe April 2017) Technische Universität Ilmenau Fakultät für Informatik und Automatisierung Institut für Technische Informatik und Ingenieurinformatik Fachgebiet Integrierte Kommunikationssysteme Seminaraufgaben zur Lehrveranstaltung

Mehr

Aussagenlogik. Formale Methoden der Informatik WiSe 2010/2011 teil 7, folie 1 (von 50)

Aussagenlogik. Formale Methoden der Informatik WiSe 2010/2011 teil 7, folie 1 (von 50) Aussagenlogik Formale Methoden der Informatik WiSe 2/2 teil 7, folie (von 5) Teil VII: Aussagenlogik. Einführung 2. Boolesche Funktionen 3. Boolesche Schaltungen Franz-Josef Radermacher & Uwe Schöning,

Mehr

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 15/16

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 15/16 Rechnerstrukturen, Teil Vorlesung 4 SWS WS 5/6 Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund [email protected] http://ls-www.cs.tu-.de Übersicht. Organisatorisches 2.

Mehr

Synthese digitaler Schaltungen Aufgabensammlung

Synthese digitaler Schaltungen Aufgabensammlung Technische Universität Ilmenau Fakultät für Elektrotechnik und Informationstechnik Fachgebiet Elektronische Schaltungen und Systeme Dr. Ing. Steffen Arlt Synthese digitaler Schaltungen Aufgabensammlung.

Mehr

Fakultät für Informatik und Automatisierung Institut Technische Informatik und Ingenieurinformatik Fachgebiet Integrierte Kommunikationssysteme

Fakultät für Informatik und Automatisierung Institut Technische Informatik und Ingenieurinformatik Fachgebiet Integrierte Kommunikationssysteme Technische Universität Ilmenau Fakultät für Informatik und Automatisierung Institut Technische Informatik und Ingenieurinformatik Fachgebiet Integrierte Kommunikationssysteme Seminaraufgaben zur Lehrveranstaltung

Mehr

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 14/15

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 14/15 Rechnerstrukturen, Teil 1 Vorlesung 4 SWS WS 14/15 Prof. Dr Jian-Jia Chen Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund [email protected] http://ls1-www.cs.tu-.de Übersicht

Mehr

FPGA Field Programmable Gate Array im Unterschied zu anderen PLD-Architekturen.

FPGA Field Programmable Gate Array im Unterschied zu anderen PLD-Architekturen. FPGA Field Programmable Gate Array im Unterschied zu anderen PLD-Architekturen. Kasdaghli Ameni Inhalt. Die Klassifizierung von ASIC 2. Simple Programmable Logic Device SPLD 3. Complex Programmable Logic

Mehr

Digitaltechnik II SS 2007

Digitaltechnik II SS 2007 Digitaltechnik II SS 27 Vorlesung mit begleitendem Praktikum Klaus Kasper Achtung! Vorlesung am 3.4.27 fällt aus! Nächste Vorlesung am 2.4.27! Organisation des Praktikums Betreuung: Michael Müller, Klaus

Mehr

kanonische disjunktive Normalform (KDNF, DKF) Disjunktion einer Menge von Mintermen mit gleichen Variablen

kanonische disjunktive Normalform (KDNF, DKF) Disjunktion einer Menge von Mintermen mit gleichen Variablen 5.6 Normalformen (4) Noch mehr aber besonders wichtige Begriffe kanonische disjunktive Normalform (KDNF, DKF) Disjunktion einer Menge von Mintermen mit gleichen Variablen Beispiel: KDNF zur Funktion f(,,,

Mehr

C.34 C Normalformen (4) 5.7 Hauptsatz der Schaltalgebra. 5.7 Hauptsatz der Schaltalgebra (2) 5.7 Hauptsatz der Schaltalgebra (3)

C.34 C Normalformen (4) 5.7 Hauptsatz der Schaltalgebra. 5.7 Hauptsatz der Schaltalgebra (2) 5.7 Hauptsatz der Schaltalgebra (3) 5.6 Normalformen (4) Noch mehr aber besonders wichtige Begriffe kanonische disjunktive Normalform (KDNF, DKF) Disjunktion einer Menge von Mintermen mit gleichen Variablen Beispiel: KDNF zur Funktion f(,,,

Mehr

Aufgabe 3.1 Schaltalgebra - Schaltnetze

Aufgabe 3.1 Schaltalgebra - Schaltnetze Aufgabe 3.1 Schaltalgebra - Schaltnetze Zeichnen Sie die folgenden Funktionen als Zusammenschaltung von AND-, OR- und Invertergattern: a) b) F = X ( Y Z) F = EN ( X Y) ( Y Z) zur Lösung 3.1 Aufgabe 3.2

Mehr

Teil 1: Digitale Logik

Teil 1: Digitale Logik Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Tri-State Ausgangslogik Ausgang eines

Mehr

Programmierbare Logik

Programmierbare Logik Programmierbare Logik Programmierung Input PLD Programmable Logic Device Output Liers - PEG-Vorlesung WS2000/2001 - Institut für Informatik - FU Berlin 1 /X X Grundgedanke Input Matrix Logikverknüpfung

Mehr

Schaltsysteme Eine automatenorientierte Einführung

Schaltsysteme Eine automatenorientierte Einführung Heinz-Dietrich Wuttke Karsten Henke Schaltssteme Eine automatenorientierte Einführung ein Imprint der Pearson Education Deutschland GmbH 6 Kapitel 3 Entwurf kombinatorischer Schaltungen Die Definition

Mehr

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik WS 2013/14 Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 21. Oktober 2013 1/33 1 Boolesche

Mehr

Teil III. Schaltnetze und ihre Optimierung

Teil III. Schaltnetze und ihre Optimierung Teil III Schaltnetze und ihre Optimierung 1 Teil III.1 Schaltnetze 2 Beispiel 1 Schaltnetz für xor mit {+,, } x y x y 0 0 0 0 1 1 1 0 1 1 1 0 DNF: x y = xy + xy 3 Beispiel 2 xor mittels nand-verknüpfung;

Mehr

Arbeitsblatt Logische Verknüpfungen Schaltnetzsynthese

Arbeitsblatt Logische Verknüpfungen Schaltnetzsynthese Einleitung Zur Aktivitätsanzeige der 3 Gehäuselüfter (Signale a - c) eines PC-Systems soll eine Logikschaltung entwickelt werden, die über drei Signalleuchten (LEDs) anzeigt, ob ein beliebiger (LED1 x),

Mehr

Teil 1: Digitale Logik

Teil 1: Digitale Logik Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Analoge und digitale Hardware bei

Mehr

Praktikumsanleitung. "Technische Informatik"

Praktikumsanleitung. Technische Informatik Praktikumsanleitung "Technische Informatik" Studiengang: WIW Dr. K. Debes FG Neuroinformatik Kognitive Robotik Dr. K. Henke FG Integrierte Hard- und Softwaresysteme Versuch: Kombinatorische Schaltungen

Mehr

Technische Informatik I, SS03. Boole sche Algebra, Kombinatorische Logik

Technische Informatik I, SS03. Boole sche Algebra, Kombinatorische Logik Übung zur Vorlesung Technische Informatik I, SS03 Ergänzung Übungsblatt 1 Boole sche Algebra, Kombinatorische Logik Guenkova, Schmied, Bindhammer, Sauer {guenkova@vs., schmied@vs., bindhammer@vs., dietmar.sauer@}

Mehr

Programmierbare Logik CPLDs. Studienprojekt B Tammo van Lessen

Programmierbare Logik CPLDs. Studienprojekt B Tammo van Lessen Programmierbare Logik CPLDs Studienprojekt B Tammo van Lessen Gliederung Programmierbare Logik Verschiedene Typen Speichertechnologie Komplexe Programmierbare Logik System On a Chip Motivation Warum Programmierbare

Mehr

Grundlagen der Informationsverarbeitung:

Grundlagen der Informationsverarbeitung: Grundlagen der Informationsverarbeitung: Boolesche Funktionen, Schaltnetze und Schaltwerke Prof. Dr.-Ing. habil. Ulrike Lucke Durchgeführt von Prof. Dr. rer. nat. habil. Mario Schölzel Maximaler Raum für

Mehr

5 Zusammengesetzte und reguläre Schaltungsstrukturen

5 Zusammengesetzte und reguläre Schaltungsstrukturen 5 Zusammengesetzte und reguläre Schaltungsstrukturen regelmäßig aufgebaute (reguläre) Schaltungsstrukturen implementieren jeweils eine größere Zahl an Gatterfunktionen wichtigste Vertreter: Speicher, programmierbare

Mehr

Grundlagen der Digitaltechnik

Grundlagen der Digitaltechnik Grundlagen der Digitaltechnik Eine systematische Einführung von Prof. Dipl.-Ing. Erich Leonhardt 3., bearbeitete Auflage Mit 326 Bildern, 128 Tabellen, zahlreichen Beispielen und Übungsaufgaben mit Lösungen

Mehr

2.3 Logikoptimierung. Überblick digitale Synthese. Logikoptimierung

2.3 Logikoptimierung. Überblick digitale Synthese. Logikoptimierung 2.3 Logikoptimierung Logikoptimierung Überblick digitale Synthese Logikoptimierung Begriffe Mehrstufige Logik Zweistufige Logik:..Exakte Verfahen..Heuristische Verfahren..Expansion/ Reduktion..Streichen

Mehr