Kapitel 5. Aufspaltung der Energiebänder; Grenzfall fast freier Elektronen. 5.1 Allgemeines

Größe: px
Ab Seite anzeigen:

Download "Kapitel 5. Aufspaltung der Energiebänder; Grenzfall fast freier Elektronen. 5.1 Allgemeines"

Transkript

1 Kapitel 5 Aufspaltung der Energiebänder; Grenzfall fast freier Eletronen 51 Allgemeines In diesem Abschnitt sollen fast freie Eletronen untersucht werden; es wird dabei angenommen, daß die Eletronen einem schwachen gitterperiodischen Potential V(r) ausgesetzt sind In diesem Fall ann die Schrödingergleichung (5) unter Verwendung der störungstheoretischen Methoden der Quantenmechani 1 näherungsweise gelöst werden Hierbei sind die ösungen des ungestörten Problems Ĥ 0 = mit Ĥ0 = ˆP /m aus der Sommerfeld-Theorie beannt: in der Ortsdarstellung handelt es sich bei den um ebene Wellen mit dem Wellenzahlvetor mit den zugehörigen Energieeigenwerten = ( /m) Um die mathematischen Probleme so lein wie möglich zu halten, beschränen wir uns im folgenden auf einen eindimensionalen Kristall In diesem Fall lauten die Eigenwerte und -funtionen des ungestörten Systems = 1 e ix und = m, (51) wobei das Grundgebiet ( Kettenlänge ) des eindimensionalen Kristalls charaterisiert Wir führen nun eine schwache Störung in Form des gitterperiodischen Potentials V(x) = V(x+a) mit der Gitteronstante a ein 1 siehe z B F Schwabl, Quantenmechani, Springer-Verlag Berlin, 1988, S 179ff 8

2 5 Störungstheorie erster Ordnung Die Energie-Korretur erster Ordnung zu einem ungestörten Zustand ist gegeben durch ǫ (1) = ˆV, (5) wobei ˆV den Störoperator, im onreten Fall das gitterperiodische Potential, bedeutet Das obige Matrixelement lautet in der Ortsdarstellung ˆV = 1 ()dxe ix V(x)e ix = 1 dxv(x) = V, () ist also unabhängig vom Blochindex Es ergibt sich somit ǫ (1) = V (53) Die Störungsrechnung erster Ordnung ergibt lediglich eine Verschiebung der ungestörten free-electron Bandstrutur um eine onstante Energie V, die den räumlichen Mittelwert des Kristallpotentials darstellt Physialisch ist diese Korretur von nur geringem Interesse 53 Störungstheorie zweiter Ordnung Die Energie-Korretur zweiter Ordnung zu einem ungestörten nicht entarteten Zustand ist gegeben durch ǫ () = ˆV (54) Das Matrixelement im Zähler des obigen Bruches lautet ˆV = 1 dxv(x)e i( )x (55) Nun gilt für die Fourier-Entwiclung des Störpotentials (s Kap 1) () V(x) = n v n e iknx, (56) wobei K n = (π/a)n mit n = 0,±1,±, der n-te reziproe Gitter vetor des Kristalls und v n der entsprechende Fourier-Koeffizient ist Einsetzen von (56) in (55) führt zu ˆV = 1 v n n dxe i( +K n)x () } {{ } δ,+kn = n v n δ,+k n 83

3 In der Formel (54) ommt das Absolutquadrat dieses Matrixelementes vor, das folgendermassen zu behandeln ist: ˆV = vn 1 v n δ,+k n1 δ,+k n n1 n Wegen der Identität δ,+k n1 δ,+k n = δ,+k n1 δ Kn1,K n reduziert sich die obige Doppelsumme zu ˆV = δ,+k n v n n Setzt man diesen Ausdruc in die Glg (54) ein, ergibt sich ǫ () = i n v n }{{} δ,+k n = n 0 v n +K n Setzt man in den Nenner dieses Ausdrucs die ungestörten Energiewerte (51) ein, erhält man das Ergebnis ǫ () = m 1 n 0 v n K n ( +K n /) (57) Wie man sofort sieht, gibt es bei der Auswertung der Korreturformel (57) ein ernstes Problem, nämlich Singularitäten an den Stellen = K n, also an den Grenzen der Brillouinzonen (s Abb 43 in diesem Sriptum) Dieses Versagen der Störungsrechnung zweiter Ordnung für alle an den Grenzen der Brillouinzonen ist darauf zurüczuführen, daß die ungestörten Energiewerte an diesem Stellen des reziproen Raumes entartet sind Es haben nämlich die ungestörten Eigenvetoren > und +K n > für = K n / denselben Energiewert = m ( Kn ) Die Konsequenz daraus lautet, daß man an diesen Stellen im -Raum eine Störungsrechnung für nicht-entartete Zustände durchführen darf 84

4 54 Störungstheorie erster Ordnung für entartete Zustände Für = K n / und K n 0 muß man die Eigenwerte der Säularmatrix in bezug auf den von und +K n gebildeten Eigen-Unterraum berechnen, d h, man stellt die Wellenfuntion des gestörten Zustandes durch eine inearombination der ungestörten Zustände > und +K n > dar: ϕ >= α > +β +K n > Setzt man diesen Ansatz in die Schrödingergleichung (Ĥ ǫ) ϕ >= 0 ein, so ergibt sich mit Ĥ = Ĥ0 + ˆV und ǫ = + ǫ (1) (Ĥ0 + ˆV ǫ (1) )[α > +β +K n >] = 0 Da > und + K n > Eigenvetoren von Ĥ0 zu sind, reduziert sich dieser Ausdruc zu (ˆV ǫ (1) )[α > +β +K n >] = 0 Erweitert man diese Gleichung von lins mit < bzw < +K n, so ergibt sich α < ˆV ǫ (1) > +β < ˆV ǫ (1) +K n >= 0 bzw α < +K n ˆV ǫ (1) > +β < +K n ˆV ǫ (1) +K n >= 0 Da die Vetoren > und +K n > Eigenvetoren desselben Operators Ĥ0 sind, müssen sie die Orthonormalitätsrelation < +K n >= δ Kn,0 erfüllen Nachdem aber am Beginn dieses Abschnittes ausdrüclich K n 0 gefordert wurde, fallen alle derartigen Vetorprodute weg, und die beiden linearen Gleichungen α < ˆV > α ǫ (1) < > +β < ˆV +K n > β ǫ (1) < +K n >= 0 und α < +K n ˆV > α ǫ (1) < +K n > +β < +K n ˆV +K n > vereinfachen sich zu β ǫ (1) < +K n +K n >= 0 α < ˆV > α ǫ (1) +β < ˆV +K n >= 0 und α < +K n ˆV > +β < +K n ˆV +K n > β ǫ (1) = 0 85

5 Unter Berücsichtigung der Orthonormalität von > und +K n > ergibt sich also das homogene, lineare Gleichungssystem ˆV ǫ (1) ˆV ( ) +K n α = 0, +K n ˆV +K n ˆV +K n β ǫ (1) und unter Berücsichtigung der Tatsache, dass die beiden Matrixelemente entlang der Hauptdiagonalen den Wert V haben, und dass weiters die Nichtdiagonalelemente den Fourieroeffizienten v n entsprechen: Det ˆV +K n = +K n ˆV = v n, erhält man für die Berechnung der Energieorreturen erster Ordnung das Eigenwertproblem ( ) (1) V ǫ v n mit den Ergebnissen v n V ǫ (1) ǫ (1) = V ± v n = ( V ǫ (1) ) v n = 0 Es tritt somit am (äußeren) Rand der n-ten Brillouinzone ein Energiesprung von der Größe v n auf Die Ergebnisse dieses Kapitels (s auch Abb 51) önnen demnach wie folgt zusammengefasst werden: ǫ = m + V m n 0 v n K n ( +K n /) ǫ = m + V ± v n für = K n für K n (58) (59) Wie man aus diesem Diagramm auch sieht, sind die orrigierten Energiewerte zweiter Ordnung nicht nur an den Brillouinzonen-Grenzen obsolet, sondern auch in der Nähe dieser Grenzen In diesen Bereichen müßte man offenbar die Ordnung des störungstheoretischen Ansatzes erhöhen Eine aufwändigere Bandstruturrechnung würde die Kurve ( ) ergeben 86

6 15 10 Energie (au) (au) Abbildung 51: Energiedispersion im extended eindimensionalen -Raum - und Energiewerte in atomaren Einheiten Die vertialen inien bedeuten die Grenzen der Brillouinzonen Strichlierte inie: Sommerfeld-Parabel; ausgezogene inie: Störungstheorie erster und zweiter Ordnung für einfache Zustände (58); : Störungstheorie erster Ordnung für entartete Zustände an den BZ-Grenzen (59); : aufwendigere Bandstruturrechnung (plane wave Rechnung) 87

Störungstheorie. Kapitel Motivation. 8.2 Zeitunabhängige Störungstheorie (Rayleigh-Schrödinger) nicht-entartete Störungstheorie

Störungstheorie. Kapitel Motivation. 8.2 Zeitunabhängige Störungstheorie (Rayleigh-Schrödinger) nicht-entartete Störungstheorie Kapitel 8 Störungstheorie 8.1 Motivation Die meisten quantenmechanischen Problemstellungen lassen sich (leider) nicht exakt lösen. So kommt zum Beispiel der harmonische Oszillator in der Natur in Reinform

Mehr

Theorie der Kondensierten Materie I WS 2017/2018

Theorie der Kondensierten Materie I WS 2017/2018 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theorie der Kondensierten Materie I WS 17/18 Prof. Dr. A. Mirlin, PD Dr. I. Gornyi Blatt 3 Dr. N. Kainaris, Dr. S. Rex,

Mehr

Die Lösungen der S.-Glg. für das freie Teilchen

Die Lösungen der S.-Glg. für das freie Teilchen Die Lösungen der S.-Glg. für das freie Teilchen Zeitabhängige S- G l g., ħ ħ x (, (, m i = + Vrt rt Analogie zu den eletromagnetischen Wellen, Materiewellen, intuitives Raten etc. Ansatz f ü r W e l l

Mehr

Theorie der Kondensierten Materie I WS 2017/2018

Theorie der Kondensierten Materie I WS 2017/2018 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theorie der Kondensierten Materie I WS 207/208 Prof. Dr. A. Mirlin, PD Dr. I. Gornyi Blatt 3 Dr. N. Kainaris, Dr. S. Rex,

Mehr

12.1 Grundidee der Zellen-Methoden

12.1 Grundidee der Zellen-Methoden Kapitel 12 Zellen-Methoden Bei den bisherigen Methoden zur Bandstrukturberechnung (PW, OPW, Pseudopotentiale) wurde jeweils ein Bloch-Ansatz gemacht, d.h. die berechnete Wellenfunktion war im gesamten

Mehr

Theoretische Physik II Quantenmechanik

Theoretische Physik II Quantenmechanik Michael Czopnik Bielefeld, 11. Juli 014 Fakultät für Physik, Universität Bielefeld Theoretische Physik II Quantenmechanik Sommersemester 014 Lösung zur Probeklausur Aufgabe 1: (a Geben Sie die zeitabhängige

Mehr

15 Zeitabhängige Störungstheorie

15 Zeitabhängige Störungstheorie Sript zur. Vorlesung Quantenmechani Freitag den 8. Juli 11. 15 Zeitabhängige Störungstheorie 15.1 Übergangswahrscheinlicheit Betrachten wir nun den abstraten Fall eines Teilchens mit Hamilton Operator

Mehr

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Sebastian Wild Freitag, 6.. Inhaltsverzeichnis Die WKB-Näherung. Grundlegendes............................. Tunnelwahrscheinlichkeit.......................

Mehr

Ŵ schreiben, wobei einerseits. 2m m!2ˆx 2, einen eindimensionalen harmonischen Oszillator beschreibt, dessen Eigenenergien. ~! (VIII.

Ŵ schreiben, wobei einerseits. 2m m!2ˆx 2, einen eindimensionalen harmonischen Oszillator beschreibt, dessen Eigenenergien. ~! (VIII. 0 Näherungsmethoden in der Quantenmechanik VIII.. c :::::::: :::::::::::::::::::::::::::::::::::::: Beispiel: anharmonischer Oszillator Als Beispiel für die in den vorigen Paragraphen entwickelten Störungsrechnung

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 1

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 1 Prof.. Greiner, Dr. H. van Hees Sommersemester 214 Übungen zur Theoretischen Physi 2 Lösungen zu Blatt 1 Aufgabe 1: Differentialoperatoren der Vetoranalysis (a) Aus der Definition des Nabla-Operators folgt

Mehr

I. Grundlagen der Quantenphysik I.1 Einleitung I.2 Historisches I.3 Die Schrödinger-Gleichung I.4 Die Wellenfunktion I.5 Das freie quantenmechanische

I. Grundlagen der Quantenphysik I.1 Einleitung I.2 Historisches I.3 Die Schrödinger-Gleichung I.4 Die Wellenfunktion I.5 Das freie quantenmechanische I. Grundlagen der Quantenphysi I.1 Einleitung I. Historisches I.3 Die Schrödinger-Gleichung I.4 Die Wellenfuntion I.5 Das freie quantenmechanische Eletron I.6 Erwartungswerte Quantenmechanische Erwartungswerte

Mehr

Chemische Bindungsanalyse in Festkörpern

Chemische Bindungsanalyse in Festkörpern Faultät Mathemati und Naturwissenschaften Fachrichtung Chemie und Lebensmittel Chemie Professur AC2 Dr. habil. Alexey I. Baranov Chemische Bindungsanalyse in Festörpern Sommersemester 2016 2 Kurs im Überblic:

Mehr

Hauptachsentransformation: Eigenwerte und Eigenvektoren

Hauptachsentransformation: Eigenwerte und Eigenvektoren Hauptachsentransformation: Eigenwerte und Eigenvektoren die bisherigen Betrachtungen beziehen sich im Wesentlichen auf die Standardbasis des R n Nun soll aufgezeigt werden, wie man sich von dieser Einschränkung

Mehr

Theoretische Chemie (TC II) Computational Chemistry

Theoretische Chemie (TC II) Computational Chemistry Theoretische Chemie (TC II) Computational Chemistry Lecture 2 28/10/2011 Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Vorlesung: Mi 11h30-13h, Fr 8h-9h30 Praktikum (gemäß Ankündigung, statt Vorlesung):

Mehr

Näherungsmethoden in der Quantenmechanik

Näherungsmethoden in der Quantenmechanik KAPITEL VIII Näherungsmethoden in der Quantenmechanik In diesem Kapitel werden verschiedene Verfahren eingeführt, die Näherungslösungen von quantenmechanischen Problemen liefern. In der Quantenmechanik

Mehr

Stark-Effekt für entartete Zustände

Stark-Effekt für entartete Zustände Stark-Effekt für entartete Zustände Die Schrödingergleichung für das Elektron im Wasserstoff lautet H nlm = n nlm mit H = p2 e2 2 m e 4 r Die Eigenfunktion und Eigenwerte dieses ungestörten Systems sind

Mehr

Atome im elektrischen Feld

Atome im elektrischen Feld Kapitel 3 Atome im elektrischen Feld 3.1 Beobachtung und experimenteller Befund Unter dem Einfluss elektrischer Felder kommt es zur Frequenzverschiebung und Aufspaltung in optischen Spektren. Dieser Effekt

Mehr

8. Woche. 8.1 Operatoren für physikalische Größen in Ortsdarstellung. 8.2 Die Mittelwerte der Funktionen von Koordinaten und Impulsen

8. Woche. 8.1 Operatoren für physikalische Größen in Ortsdarstellung. 8.2 Die Mittelwerte der Funktionen von Koordinaten und Impulsen 8. Woche 8.1 Operatoren für physialische Größen in Ortsdarstellung Als wir die Schrödinger-Gl. betrachtet haben, haben wir die Operatoren für die Koordinaten und die Impulse definiert: Die Operatoren der

Mehr

11.2 Störungstheorie für einen entarteten Energie-Eigenwert E (0)

11.2 Störungstheorie für einen entarteten Energie-Eigenwert E (0) Skript zur 6. Vorlesung Quantenmechanik, Freitag den. Juni,.. Störungstheorie für einen entarteten Energie-Eigenwert E () n Sei E n () eing-fachentartetet Eigenwert desoperatorsĥ undsei ψ nα, () α =,...,g

Mehr

[5], [0] v 4 = + λ 3

[5], [0] v 4 = + λ 3 Aufgabe 9. Basen von Untervektorräumen. Bestimmen Sie Basen von den folgenden Untervektorräumen U K des K :. K = R und U R = span,,,,,.. K = C und U C = span + i, 6, i. i i + 0. K = Z/7Z und U Z/7Z = span

Mehr

I.4 Das freie quantenmechanische Elektron

I.4 Das freie quantenmechanische Elektron I.4 Das freie quantenmechanische Eletron Zeitabhängige S-Glg. x ψ ( xt, ) j = + V( x,t) ψ ( x, t) t m x Analogie zu den eletromagnetischen Wellen, Materiewellen, intuitives Raten etc. Wellenansatz: ψ (

Mehr

1.5. Quantenmechanische Erwartungswerte

1.5. Quantenmechanische Erwartungswerte 1.5. Quantenmechanische Erwartungswerte Mit der Kenntnis eines quantenmechanischen Zustandes und der Schrödinger- Gleichung ist die Zeitentwiclung der Wellenfuntion im Prinzip für alle Zeiten beannt. In

Mehr

Übungsblatt

Übungsblatt Übungsblatt 3 3.5.27 ) Die folgenden vier Matrizen bilden eine Darstellung der Gruppe C 4 : E =, A =, B =, C = Zeigen Sie einige Gruppeneigenschaften: a) Abgeschlossenheit: Berechnen Sie alle möglichen

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Topic: Helium-Atom Vorlesung: Mo 10h-12h, Do9h-10h Übungen: Do 8h-9h Web site: http://www.theochem.uni-frankfurt.de/tc1

Mehr

12 Lineare Differentialgleichungen mit periodischen Koeffizienten

12 Lineare Differentialgleichungen mit periodischen Koeffizienten 56 Gewöhnliche Differentialgleichungen / Sommersemester 28 12 Lineare Differentialgleichungen mit eriodischen Koeffizienten 12.1 Homogene lineare Systeme mit eriodischen Koeffizienten haben für > die Form

Mehr

1.4. Das freie quantenmechanische Elektron

1.4. Das freie quantenmechanische Elektron 1.4. Das freie quantenmechanische Eletron 1.4.1. Dispersionsrelation Im letzten Kapitel wurde die Basis gelegt, um sich mit den grundlegenden Eigenschaften eines quantenmechanischen Teilchens vertraut

Mehr

6.7 Delta-Funktion Potentialbarriere

6.7 Delta-Funktion Potentialbarriere Skript zur 9. Vorlesung Quantenmechanik, Montag den 6. Mai, 0. 6.7 Delta-Funktion Potentialbarriere Betrachten wir nun eine negative) δ-funktion Potentialbarriere mit dem Potential V) = v 0 δ a). V 0 a

Mehr

Partialbruchzerlegung

Partialbruchzerlegung Partialbruchzerlegung Lucas Kunz 27. Januar 207 Inhaltsverzeichnis Theorie 2. Definition.................................... 2.2 Nullstellen höheren Grades........................... 2.3 Residuen-Formel................................

Mehr

Elektron-Bindungsenergien und -Orbits im Atom und Ion

Elektron-Bindungsenergien und -Orbits im Atom und Ion Eletron-Bindungsenergien und -Orbits im Atom und Ion Die Bindungs-Energie B ( Z, K ) des Ions mit Z Protonen und K ( Z ) Eletronen und die lassischen Eletronen-Orbits im Ion werden mit von Z unabhängigen

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 213 Prof. Dr. Erich Walter Farkas Kapitel 7: Lineare Algebra Kapitel 7.5: Eigenwerte und Eigenvektoren einer quadratischen Matrix Prof. Dr. Erich Walter Farkas Mathematik

Mehr

Übungen zu Splines Lösungen zu Übung 20

Übungen zu Splines Lösungen zu Übung 20 Übungen zu Splines Lösungen zu Übung 20 20.1 Gegeben seien in der (x, y)-ebene die 1 Punkte: x i 6 5 4 2 1 0 1 2 4 5 6 y i 1 1 1 1 1 + 5 1 + 8 4 1 + 8 1 + 5 1 1 1 1 (a) Skizzieren Sie diese Punkte. (b)

Mehr

7 Diracs Bracket-Notation

7 Diracs Bracket-Notation 7 Diracs Bracket-Notation 71 Entwicklungen nach Eigenfunktionen 711 Oszillator-Eigenfunktionen Die Oszillator-Eigenfunktionen Φ n (x), Φ n (x) = N n H ( x) n e x 2 /2a 2, N n = a 1 2 n n! πa (n = 0, 1,

Mehr

Für die Matrikelnummer M = Dann sind durch A =

Für die Matrikelnummer M = Dann sind durch A = Musterlösung zum. Blatt 9. Aufgabe: Gegeben seien m 3 + 2 m m 3 m 2 m 4 + m 7 m 3 A := m m 2 m 2 + 2 m 2 m 4 + m 5 und b := m 6 m 4 + a) Finden Sie eine Lösung x R 7 für die Gleichung Ax =. b) Finden Sie

Mehr

Grundlagen der Theoretischen Chemie (TC 1)

Grundlagen der Theoretischen Chemie (TC 1) Grundlagen der Theoretischen Chemie (TC 1) Vorlesung: Mo 10h-12h, Do 9h-10h Übungen: Do 8h-9h (2 Gruppen: H1, B3; Betreuung: J. Plötner, IB) Vorlesungsmaterial + Übungen: http://www.chimie.ens.fr/umr8642/quantique/tc1-l6.pdf

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Kapitel 2 Lineare Gleichungssysteme 21 Lineare Gleichungssysteme und Matrizen Lernziele 2 Lineare Gleichungssysteme definieren Matrizen, Matrizen definieren lineare Abbildungen, Lösen von linearen Gleichungssystemen

Mehr

3.3 Die Hedin-Gleichungen für das räumlich inhomogene Elektronengas

3.3 Die Hedin-Gleichungen für das räumlich inhomogene Elektronengas 3.3 Die Hedin-Gleichungen für das räumlich inhomogene Eletronengas Wie bereits in diesem Sriptum auf den Seiten 98ff für den Spezialfall des räumlich und zeitlich homogenen Eletronengases ausgeführt wurde,

Mehr

Bandstrukturmethoden Entwicklung nach ebenen Wellen (PW-Methode)

Bandstrukturmethoden Entwicklung nach ebenen Wellen (PW-Methode) Kapitel 9 Bandstrukturmethoden Entwicklung nach ebenen Wellen (PW-Methode) 9.1 Allgemeines Wie bereits im Abschnitt 1.1 dieses Skriptums grundsätzlich erläutert wurde, versteht man unter der elektronischen

Mehr

Übungen zur Theoretischen Physik F SS 08. c γα c αγ = δ γ,γ γ γ = δ γ,γ

Übungen zur Theoretischen Physik F SS 08. c γα c αγ = δ γ,γ γ γ = δ γ,γ Universität Karlsruhe Institut für Theorie der Kondensierten Materie Übungen zur Theoretischen Physik F SS 08 Prof. Dr. P. Wölfle Musterlösung Dr. M. Greiter Blatt 7 1. Berechnung der Spur (1 Punkt) (i)

Mehr

T2 Quantenmechanik Lösungen 7

T2 Quantenmechanik Lösungen 7 T2 Quantenmechanik Lösungen 7 LMU München, WS 7/8 7.. Lineare Algebra Prof. D. Lüst / Dr. A. Schmidt-May version: 28.. Gegeben sei ein komplexer Hilbert-Raum H der Dimension d. Sei { n } mit n,..., d eine

Mehr

Ferienkurs Quantenmechanik 2011

Ferienkurs Quantenmechanik 2011 Ferienkurs Quantenmechanik 11 Vorlesungsskript für den 8. September 11 Kapitel 1 bis 3: Max Knötig Kapitel 4: Matthias Herzog nach Wachter, Hoeber: Repetitorium der Theoretischen Physik, Springer 5 Inhaltsverzeichnis

Mehr

Vorlesung 21. Identische Teilchen und das Pauli-Prinzip

Vorlesung 21. Identische Teilchen und das Pauli-Prinzip Vorlesung 1 Identische Teilchen und das Pauli-Prinzip Identische Teilchen: Jede Art von Teilchen in der Natur definieren wir durch ihre Eigenschaften, z.b. Massen, Spins, Ladungen usw. Das bedeutet, dass

Mehr

Zusammenfassung. n k+1 j k! j ( k + 1 j )! 2 + k

Zusammenfassung. n k+1 j k! j ( k + 1 j )! 2 + k Aussagenlogi Tobias Krähling email: Homepage: 7.. Version. Zusammenfassung Im vorliegenden Doument soll die Potenzsummenformel i= i = n+ n + + n + j= a

Mehr

Ferienkurs Quantenmechanik 2009

Ferienkurs Quantenmechanik 2009 Ferienkurs Quantenmechanik 9 Quantenmechanik mit Näherungsmethoden, oder: Wie rechne ich etwas aus? Vorlesungskript für den 6. August 9 Max Knötig Inhaltsverzeichnis Einführung Zeitunabhängige, nicht-entartete

Mehr

Übungen zur Theoretischen Festkörperphysik: Vertiefung (TV-2) P10 Quantentrog in zwei Dimensionen

Übungen zur Theoretischen Festkörperphysik: Vertiefung (TV-2) P10 Quantentrog in zwei Dimensionen Übungen zur Theoretischen Festörperphysi: Vertiefung (TV-) 6. Präsenzübung am 5. Juni 4 P Quantentrog in zwei Dimensionen Wir betrachten einen zylindersymmetrischen, zweidimensionalen Quantentrog, in dem

Mehr

Bandstrukturen von Halbleitern. Ansätze

Bandstrukturen von Halbleitern. Ansätze Bandstruturen von Halbleitern Ansätze 1. letron in periodischem Potential letron als Welle in periodischem Potential => Änderung der Dispersion des letrons, es ommt zur Bildung von nergiebändern und Bandlücen.

Mehr

(a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m = 1t, v = 100km/h) keine Rolle?

(a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m = 1t, v = 100km/h) keine Rolle? FK Ex 4-07/09/2015 1 Quickies (a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m = 1t, v = 100km/h) keine Rolle? (b) Wie groß ist die Energie von Lichtquanten mit einer Wellenlänge von

Mehr

5. Nicht wechselwirkende Elektronen im Festkörper

5. Nicht wechselwirkende Elektronen im Festkörper 5. Nicht wechselwirende Eletronen im Festörper Das Thema dieses und der folgenden Kapitel ist die eletronische Strutur des Festörpers. Dabei nehmen wir zunächst an, dass das Gitter starr ist, d.h. dass

Mehr

Ferienkurs Quantenmechanik - Probeklausur

Ferienkurs Quantenmechanik - Probeklausur Seite Ferienkurs Quantenmechanik - Sommersemester 5 Fabian Jerzembeck und Sebastian Steinbeiÿer Fakultät für Physik Technische Universität München Aufgabe FRAGEN ( BE): a) Wie lautet die zeitabhängige

Mehr

Vorlesung 17. Quantisierung des elektromagnetischen Feldes

Vorlesung 17. Quantisierung des elektromagnetischen Feldes Vorlesung 17 Quantisierung des elektromagnetischen Feldes Wir wissen, dass man das elektromagnetische Feld als Wellen oder auch als Teilchen die Photonen beschreiben kann. Die Verbindung zwischen Wellen

Mehr

Basen. Inhaltsverzeichnis

Basen. Inhaltsverzeichnis Vortrag zum Seminar zur Funtionentheorie, 15.07.2009 Benjamin Laumen Diese Ausarbeitung beruht auf Kapitel III, Paragraph 4 Unterpunt 1 3 aus dem Buch: Elliptische Funtionen und Modulformen von M. Koecher

Mehr

Vorlesung 18. Spontane Abstrahlung, Multipolentwicklung

Vorlesung 18. Spontane Abstrahlung, Multipolentwicklung Vorlesung 8 Spontane Abstrahlung, Multipolentwiclung Wir betrachten das Wasserstoffatom im P -Zustand. Falls wir ein Wasserstoffatom in Isolation betrachten, ist der P -Zustand stabil. Wie wir aber schon

Mehr

Moderne Theoretische Physik II. V: Prof. Dr. D. Zeppenfeld, Ü: Dr. M. Rauch. Klausur 2 Lösung. 04. April 2017, 11:00-13:00 Uhr

Moderne Theoretische Physik II. V: Prof. Dr. D. Zeppenfeld, Ü: Dr. M. Rauch. Klausur 2 Lösung. 04. April 2017, 11:00-13:00 Uhr KIT WS 6/7 Moderne Theoretische Physik II V: Prof. Dr. D. Zeppenfeld, Ü: Dr. M. Rauch Klausur Lösung 4. April 7, :-: Uhr Aufgabe : Störung zum zweidimensionalen harmonischen Oszillator ++7 Punkte a Die

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr)

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) WS 2011/12 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2011ws/ds/uebung/ 18. Januar 2012 ZÜ DS ZÜ XII

Mehr

11.4. Lineare Differentialgleichungen höherer Ordnung

11.4. Lineare Differentialgleichungen höherer Ordnung 4 Lineare Differentialgleichungen höherer Ordnung Bei vielen geometrischen, physikalischen und technischen Problemen hat man nicht nur eine Funktion (in einer Variablen) und ihre Ableitung zueinander in

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

1-D photonische Kristalle

1-D photonische Kristalle 1-D photonische Kristalle Berechnung der Dispersionsrelation und der Zustandsdichte für elektromagnetische Wellen Antonius Dorda 15.03.09 Inhaltsverzeichnis 1 Einleitung 2 2 Herleitung der Relationen 2

Mehr

Wichtige Kenntnisse der Linearen Algebra

Wichtige Kenntnisse der Linearen Algebra Wichtige Kenntnisse der Linearen Algebra In Kapitel 3 der Vorlesung werden wir sehen (und in Kapitel 6 vertiefen, dass zur Beschreibung von Quantensystemen mathematische Begriffe aus dem Gebiet der Linearen

Mehr

Vermischte Aufgaben zu Mathematische Grundlagen der Ökonomie

Vermischte Aufgaben zu Mathematische Grundlagen der Ökonomie Aufgabe : Vermischte Aufgaben zu Mathematische Grundlagen der Ökonomie Bilden die Lösungsmengen der folgenden linearen Gleichungssysteme jeweils einen Unterraum des IR 3? Begründen Sie. (i) (ii) + 3 =

Mehr

Nachklausur: Quantentheorie I, WS 07/08

Nachklausur: Quantentheorie I, WS 07/08 Nachklausur: Quantentheorie I, WS 7/8 Prof. Dr. R. Friedrich Aufgabe : [ P.] Betrachten Sie die Bewegung eines Teilchens im konstanten Magnetfeld B = [,, b] a)[p.] Zeigen Sie, dass ein zugehöriges Vektorpotential

Mehr

NAE Nachrichtentechnik und angewandte Elektronik

NAE Nachrichtentechnik und angewandte Elektronik Inhaltsverzeichnis: NAE Nachrichtentechni und angewandte Eletroni hema Unterpunt Seite Deinitionen zur Fourier-Analse Grundschwingung 5- eilschwingungen 5- Oberwellen 5- Harmonische 5- Amplitude und Phasenlage

Mehr

Das Deuteronen Potential

Das Deuteronen Potential Das Deuteronen Potential N. Dorfinger, S. Gerber, G. Heinrich, O. Huber, N. Stevanecz, J. Weingrill 29. Mai 2004 Gesucht ist die Lösung des folgenden Potentials: 1 Aufgabenstellung Abbildung 1: Das Potential

Mehr

7.4 Gekoppelte Schwingungen

7.4 Gekoppelte Schwingungen 7.4. GEKOPPELTE SCHWINGUNGEN 333 7.4 Gekoppelte Schwingungen Als Beispiel für 2 gekoppelte Schwingungen betrachten wir das Doppelpendel, das in Abb. 7.19 dargestellt ist. Zunächst vernachlässigen wir die

Mehr

3. Musterlösung zu Mathematik für Informatiker II, SS 2004

3. Musterlösung zu Mathematik für Informatiker II, SS 2004 . Musterlösung zu Mathemati für Informatier II, SS 004 PETER SCHEIBLECHNER &MICHAEL NÜSKEN Aufgabe. (Differenzen). Bestimme die Differenz f für f : Z! R mit (4 Punte) (i) f (n) n(n ) n. ( f )(n) (n +)n

Mehr

Zeilenstufenform eines Gleichungssystems

Zeilenstufenform eines Gleichungssystems Zeilenstufenform eines Gleichungssystems Ein lineares Gleichungssystem mit einer m n-koeffizientenmatrix lässt sich mit Gauß-Transformationen auf Zeilenstufenform (Echelon-Form) transformieren: Ax = b...

Mehr

6. Orbits und die Runge-Lenz Vektor

6. Orbits und die Runge-Lenz Vektor Übungen zur T: Theoretische Mechani, SoSe3 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physi.uni-muenchen.de 6. Orbits und die Runge-Lenz Vetor Übung 6.: Die Rücehr der Kanonenugel

Mehr

1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von

1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von 1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von Wachstumsraten Bestimmung von Maximal- und Minimalwerten von

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

UNIVERSITÄT LEIPZIG, ITP Quantenmechanik II, WS2009/2010

UNIVERSITÄT LEIPZIG, ITP Quantenmechanik II, WS2009/2010 UNIVERSITÄT LEIPZIG, ITP Quantenmechanik II, WS009/00 Übungsblatt 5: Musterlösungen Aufgabe 3 Die Lösung des ungestörten Problems ist wohl bekannt; wir führen die dimensionslose Koordinate: und finden

Mehr

Damit läßt sich die Aufgabe durch einfaches Rechnen zeigen: k=1

Damit läßt sich die Aufgabe durch einfaches Rechnen zeigen: k=1 Aufgabe (4 Punte) Sei A eine n m-matrix Die Matrix A T ist die m n-matrix, die durch Vertauschen der Zeilen und Spalten aus A hervorgeht (dh: aus Zeilen werden Spalten, und umgeehrt) Die Matrix A T heißt

Mehr

Mathematik I+II Frühlingsemester 2019 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik I+II Frühlingsemester 2019 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik I+II Frühlingsemester 219 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 46 8. Lineare Algebra: 5. Eigenwerte und

Mehr

4. Transiente Analyse

4. Transiente Analyse 4. Transiente Analyse Bei der transienten Analyse wird der zeitliche Verlauf der Antwort auf eine zeitlich veränderliche Last bestimmt. Die zu lösende Bewegungsgleichung lautet: [ M ] [ü ]+[ D ] [ u ]+

Mehr

Quasi-exakt lösbare quantenmechanische Potentiale

Quasi-exakt lösbare quantenmechanische Potentiale Quasi-exakt lösbare quantenmechanische Potentiale Ausarbeitung zum Seminar zur Theorie der Atome, Kerne und kondensierten Materie vom.10.014 Philipp Marauhn p_mara01@uni-muenster.de Inhaltsverzeichnis

Mehr

Quadratische Funktion

Quadratische Funktion Quadratische Funktion Wolfgang Kippels 6. Oktober 018 Inhaltsverzeichnis 1 Vorwort Zusammenstellung der Grundlagen 3.1 Nullstellen................................... 3. Scheitelpunkt.................................

Mehr

UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK

UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK Quantenmechanik II Übungsblatt 10 Solutions 7. Wenn die zeitabhängige Störung periodisch in der Zeit ist, V = αx cos(ωt), mit einer Zahl α und einem

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

3.6. BLOCH WELLEN 151

3.6. BLOCH WELLEN 151 3.6. BLOCH WELLEN 151 3.6 Bloch Wellen Das Thema dieses Abschnittes sind die stationären Lösungen der Schrödinger Gleichung für Teilchen, also im Fall der Festkörper Elektronen, die sich in einem periodischen

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

11. Darstellung von Kurven und Flächen

11. Darstellung von Kurven und Flächen H.J. Oberle Approximation WS 23/4. Darstellung von Kurven und Flächen Bézier Kurven. Unser Ziel ist es, polynomiale Kurven auf dem Rechner möglichst effizient darzustellen. Hierzu nutzen wir die Basisdarstellung

Mehr

PC2: Spektroskopie Störungsrechnung

PC2: Spektroskopie Störungsrechnung PC: Spektroskopie Störungsrechnung (neu überarbeitet im SS 014, nach: Wedler-Freund, Physikalische Chemie) Wir betrachten ein System aus quantenchemischen Zuständen m, n, zwischen denen durch die Absorption

Mehr

Vertiefende Theoretische Chemie Übungen

Vertiefende Theoretische Chemie Übungen Universität eipzig Studiengang Chemie (Bachelor) Sommersemester 5 Vertiefende Theoretische Chemie Übungen Inhaltsverzeichnis Teilchen im Kasten. Translation: Teilchen im Kasten............................................

Mehr

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C.

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C. Die omplexen Zahlen und Salarprodute Kurze Wiederholung des Körpers der omplexen Zahlen C. Erinnerung an die Definition von exp, sin, cos als Potenzreihen C C Herleitung der Euler Formel Definition eines

Mehr

Theoretische Physik II: Quantenmechanik

Theoretische Physik II: Quantenmechanik Theoretische Physik II: Quantenmechanik Hans-Werner Hammer Marcel Schmidt (mschmidt@theorie.ikp.physik.tu-darmstadt.de) Wintersemester 2016/17 Probeklausur 12./13. Januar 2017 Name: Matrikelnummer: Studiengang:

Mehr

Lineare Differenzengleichungen

Lineare Differenzengleichungen Lineare Differenzengleichungen Die Fibonacci-Zahlen F n sind definiert durch F 0 = 0 F 1 = 1 F n = F n 1 +F n 2 für n >= 2 Die letzte Zeile ist ein Beispiel für eine homogene lineare Differenzengleichung

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwerte und Eigenvektoren Siehe Analysis (von der Hude, Folie 20: Definition 2.3. Ein Vektor x R n heißt Eigenvektor der quadratischen n n-matrix A zum Eigenwert λ R, wenn gilt Ax = λx Die Eigenwerte

Mehr

102 KAPITEL 14. FLÄCHEN

102 KAPITEL 14. FLÄCHEN 102 KAPITEL 14. FLÄCHEN Definition 14.3.1 (Kurve) Es sei M eine k-dimensionale Untermannigfaltigkeit des R n. Eine C 1 - Kurve γ : ( a, a) R n mit γ(( a, a)) M heißt Kurve auf M durch x 0 = γ(0). Definition

Mehr

3. Übungsblatt Aufgaben mit Lösungen

3. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sind zwei Teilmengen von R : E := {x R : x x = }, und F ist eine Ebene durch die Punkte A = ( ), B = ( ) und C = ( ). (a) Stellen Sie diese Mengen

Mehr

2. Methode der Randelemente

2. Methode der Randelemente 2. Methode der Randelemente Bei allgemeinen Schall abstrahlenden Flächen lässt sich der Schalldruck an einem beliebigen Punkt im Raum aus einem Integral über auf der Fläche definierte Funktionen berechnen.

Mehr

Prof. Steinwart Höhere Mathematik I/II Musterlösung A =

Prof. Steinwart Höhere Mathematik I/II Musterlösung A = Prof. Steinwart Höhere Mathematik I/II Musterlösung 7..7 Aufgabe ( Punkte) (a) Bestimmen Sie die Eigenwerte und Eigenräume der Matrix A mit 3 3 A = 3 Ist die Matrix A diagonalisierbar? (b) Die Matrix A

Mehr

Klausur zur T1 (Klassische Mechanik)

Klausur zur T1 (Klassische Mechanik) Klausur zur T1 (Klassische Mechanik) WS 2006/07 Bearbeitungsdauer: 120 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

Fakultät Grundlagen. - s s Periodendauer T

Fakultät Grundlagen. - s s Periodendauer T Ingenieurpädagogi uer-chool Experientierfeld 3 Pendel und geoppelte chwingungen 1. Einführung Bei einer gleichförig rotierenden cheibe durchläuft ein beliebiger Massenpunt der cheibe in onstanten Zeitabständen

Mehr

eine vom Nullvektor verschiedene Lösung hat. r heisst in diesem Fall Eigenvektor der Matrix A zum Eigenwert λ.

eine vom Nullvektor verschiedene Lösung hat. r heisst in diesem Fall Eigenvektor der Matrix A zum Eigenwert λ. Eigenwert, Eigenvektor In der Regel hat bei einer linearen Abbildung das Bild eines Vektors eine andere Richtung als das Original r. Bei der Untersuchung der geometrischen Eigenschaften von linearen Abbildungen

Mehr

Zusatzmaterial zu Kapitel 6

Zusatzmaterial zu Kapitel 6 ZU KAPITEL 62: METHODEN ZUR STABILITÄTSPRÜFUNG Zusatzmaterial zu Kapitel 6 Zu Kapitel 62: Methoden zur Stabilitätsprüfung Einleitung Bei der Feststellung der asymptotischen Stabilität (siehe Kapitel 63)

Mehr

Ferienkurs Quantenmechanik

Ferienkurs Quantenmechanik PHYSIKDEPARTMENT TECHNISCHE UNIVERSITÄT MÜNCHEN Felix Rucker, Matthias Herzog Übungsklausur 9.9. Kurze Fragen (6 Punkte) Ferienkurs Quantenmechanik Übungsklausur a) Wie ist ein quantenmechanischer Drehimpuls

Mehr

Übungen zur Vorlesung Theoretische Chemie II Übungsblatt 1 SoSe 2015 Lösungen Ĥ Ψ = E Ψ (1) c b

Übungen zur Vorlesung Theoretische Chemie II Übungsblatt 1 SoSe 2015 Lösungen Ĥ Ψ = E Ψ (1) c b Übungen zur Vorlesung Theoretische Chemie II Übungsblatt SoSe 205 Lösungen. H 2 + Molekülion a) Konstruieren Sie die Schrödingergleichung in Matrixdarstellung. Zunächst geht man von der stationären Schrödinger-Gleichung

Mehr

Kapitel 9 Räumlicher Spannungszustand

Kapitel 9 Räumlicher Spannungszustand Kapitel 9 Räumlicher Spannungszustand 9 9 9 Räumlicher Spannungszustand 9.1 Problemdefinition... 297 9.2 Die Grundgleichungen des räumlichen Problems... 297 9.2.1 Die Feldgleichungen des räumlichen Problems...

Mehr

Übungen zu Kurvenintegralen Lösungen zu Übung 12

Übungen zu Kurvenintegralen Lösungen zu Übung 12 Übungen zu Kurvenintegralen Lösungen zu Übung. Sei der obere Halbreis mit dem Radius r um (, ), und sei f(x, y) : y. Berechnen Sie f(x, y) ds. Das ist jetzt eine leine Aufgabe zum Aufwärmen. Guter Tric:

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

3 Lineare Differentialgleichungen

3 Lineare Differentialgleichungen 3 Lineare Differentialgleichungen In diesem Kapitel behandeln wir die allgemeine Theorie linearer Differentialgleichungen Sie werden zahlreiche Parallelen zur Theorie linearer Gleichungssysteme feststellen,

Mehr