Grundbegrie der Wahrscheinlichkeitsrechnung

Größe: px
Ab Seite anzeigen:

Download "Grundbegrie der Wahrscheinlichkeitsrechnung"

Transkript

1 Die Benutzung dieser Materialien ist auf Herbst 2017 beschränkt. Diese Hilfsmaterialien sind nur für unseren Studenten gemeint, dürfen also nicht weiterverteilt werden. Grundbegrie der Wahrscheinlichkeitsrechnung 1. Vorlesung am 04. September [1.A] Spielen mit zwei Würfeln [1.B] Die Modelle der Wahrscheinlichkeit [1.C] Fünf Modelle für zwei Würfeln [1.D] Die Kolmogorov'sche Axiome [1.E] Folgerungen von den Axiomen [2.A] Bedingte Wahrscheinlichkeit [2.B] Unabhängige Ereignisse [1.A] Spielen mit zwei Würfeln Wir werden die folgenden Fragen untersuchen. In der ersten Frage werfen wir mit einem Würfel, zweimal nacheinander. Wir beobachten die Summe der geworfenen Augenzahlen. Unsere erste Frage ist: Was ist die Wahrscheinlichkeit, dass diese Summe gröÿer als 8 ist? Das richtige Ergebnis ist leicht zu nden: Ein Doppelwurf bedeutet 6 6 = 36 verschiedene Möglichkeiten. Die Wahrscheinlichkeit aller einzelnen Fälle ist der gleiche: 1/36. Die Summe ist mehr als 8, wenn die Summe entweder 9, 10, 11 oder 12 ist. Wir können die Summe 12 als Summe mit zwei 6-er Würfe erreichen: 12 = Die Summe 11 ist auf zwei Arten erhältlich: 12 = = Die Summe 10 kann auf drei verschiedenen Arten erreicht werden:12 = 6+4 = 5+5 = 4+6 Die 9 als Summe kommt auf vier Arten vor: 9 = = = = Sie ergeben insgesammt =10 verschiedene Möglichkeiten. Also, für den Doppelwurf ist die Wahrscheinlichkeit, dass die Summe der Augenzahlen gröÿer als 8 ist, beträgt 10/36 28%. Damit haben wir die Frage beantwortet.

2 Das Problem ist zwar gelöst, wir sind aber nicht sicher, ob unsere Denkweise richtig war. Darum haben wir 5 neue Fragen. Frage 1. Warum haben wir die Möglichkeit zweimal 5 nur einmal gezählt und die Möglichkeit einmal 5 und einmal 6 zweimal gezählt? Unsere Lösung ist gut, die ausführliche Erklärung folgt später. Frage 2. Wie ändert sich das Ergebnis, falls wir statt einen Würfel zweimal zu werfen, zwei Würfel gleichzeitig, aber nur einmal werfen? Eigentlich ist diese Frage nicht eindeutig. Darum muss erst die nächste Frage geklärt werden. Frage 3. Ist es wichtig, wenn wir zwei Würfel werfen, ob die zwei Würfel unterscheidbar sind? Die zwei Würfel wissen nicht, ob wir sie unterscheiden können oder nicht. Das heisst, dass die Wahrscheinlichkeit davon nicht abhängen kann, ob wir zwischen den beiden Würfeln unterscheiden wollen oder nicht. Frage 4. Ist das Verhalten der Würfe zufällig, oder nicht? Kann es sein, dass dieses Verhalten tatsächlich deterministisch ist, aber ich es zufällig empnde, weil ich nicht genug Informationen habe? Diese Frage hat eine weitreichende Literatur. Kurz zusammengefasst, es ist üblicherweise angenommen, dass für Würfeln das stohastische Modell geeignet ist. Frage 5. Welches Modell ist geeignet? Zum Beispiel, unserem Modell entspricht, dass die Wahrscheinlichkeit aller 36 möglichen Elementarereignisse die gleiche ist. Aber, wir werden bald noch 3 weitere Modelle aufbauen, welche auch geeinet sind. Alle dieser 4 Modelle basieren auf dem Konzept des Urzufallmodells. Zum Zerstreuen der Zweifel, bauen und benutzen wir sogenannte Wahrscheinlichkeitsmodelle. Mit solcher Modelle können wir alle Probleme ohne Zweifel exakt beschreiben und lösen.

3 [1.B] Die Modelle der Wahrscheinlichkeit Die Struktur für die Analyse eines Zufallsvorgangs ist einen Wahrscheinlichkeitsraum (Ω, A, P. Zu diesem stochastischen Modell gehört eine Menge Ω, deren Elemente die möglichen Ausgänge des Zufallsvorgangs umfassen. Die Menge Ω wird als Ereignisraum oder Merkmalsraum bezeichnet, die Elemente ω von Ω heiÿen Elementarereignisse oder Merkmale. Ereignisse werden als Teilmengen von Ω modelliert. Ein Teilmenge A von Ω ist ein Ereignis genau dann, wenn A ein Element vom Ereignissystem A ist. Die Elemente des Ereignissystems A sind die Ereignisse. Wird bei einem Zufallsvorgang ein ω Ω Elementarereignis beobachtet, und dieses ω ist ein Element vom Ereignis A, so ist das Ereignis A eingetreten. Jedes Elementarereignis ω Ω erzeugt eine einelementige Teilmenge {ω} Ω. Es ist auch möglich, dass ω als einelementige Menge nicht im Ereignissystem A enthalten ist. Das Ereignissystem A enthält nicht unbedingt alle Teilmengen vom Ereignisraum Ω. Der Zweck der aktuellen Modellierung entscheidet welche Teilmengen des Ereignisraumes in das Ereignissystem aufgenommen werden. Die Mengenfunktion P : A [0, 1] R des Wahrscheinlichkeitsraumes ordnet dem Ereignis A eine Wahrscheinlichkeit P (A zu. Die Wahrscheinlichkeit, dass ein Ereignis A während eines Zufallsvorgangs eintritt, ist P (A. Solch eine Abbildung heiÿt Wahrscheinlichkeitsmaÿ. Es besteht ein Unterschied zwischen dem Elementarereignis ω Ω und dem Ereignis {ω} A. Ein ω Ω selbst besitzt keine Wahrscheinlichkeit, sondern nur das Ereignis {ω} A kann eine haben. Nur zu Ereignissen, welche zum Ereignissystem A gehören, werden Wahrscheinlichkeiten zugeordnet.

4 [1.C] Fünf Modelle für zwei Würfeln Es gibt unendlich viele (Ω, A, P Modelle, die unser Problem beschreiben können. Diese Modelle unterscheiden sich von der praktischen Seite: das eine Modell ist einfach vorzubereiten, aber es ist schwer zu verwenden, ein anderes Modell ist kompliziert aufzubauen, aber es ist leicht anzuwenden, ein weiteres Modell enthält überüssige Teile. Est hängt von uns ab, welches Modell wir wählen. Schauen wir jetzt 5 verschiedene Modelle für den Fall der zwei Würfe vom Anfang der Vorlesung an! Erstes Modell Der Ereignisraum Ω 1 vom ersten Modell besteht aus 36 Elementarereignissen: Ω 1 = {1, 2, 3, 4, 5, 6} {1, 2, 3, 4, 5, 6} = {(1, 1, (1, 2, (1, 3, (1, 4, (1, 5, (1, 6, (2, 1, (2, 2,..., (3, 1,..., (6, 6} Das Ereignissystem A 1 ist als die Potenzmenge von Ω 1 gewählt: A 1 = { A A Ω 1 } Das Wahrscheinlichkeitsmaÿ P 1 basiert auf der Annahme, dass der Würfel faire (gerecht ist, und das Resultat eines Wurfes unabhängig vom Resultat der anderen Würfe ist. Gemäÿ dieser Annahmen: P 1 ({ω} = P 1 ({ω } für belibige zwei einelementigen Ereignisse P 1 ({ω} = 1/36 wegen der Mächtigkeit Ω 1 = 36 P 1 (A = A /36 für alle Ereignisse 10/36 ist die Wahrscheinlichkeit, dass die gesuchte Summe gröÿer als 8 ist, weil das entsprechende Ereignis ein 10-elementige Teilmenge der Menge Ω 1 ist. Zweites Modell Das vorige Modell is ein bisschen zu groÿ, das Ereignissystem A 1 hat 2 36 Ereignisse < 2 12 = Auf gleicher Weise, wie beim vorigen Modell, kann man ein viel kleines Modell bauen, welche nur 2 11 Ereignisse hat. Ω 2 = Ω 1

5 Der Ereignisraum ist derselbe geblieben, jetzt werden aber nicht alle Teilmengen in das Ereignissystem A 2 aufgenommen. Sicherlich brauchen wir das gefragte Ereignis, gekennzeichnet mit F 8. { } F 8 = (x, y (x, y Ω 2 und 8 < x + y Weil die Wahrscheinlichkeit von F 8 von den einelementigen Teilmengen abgeleitet werden kann, brauchen wir auch die folgenden 10 einelementigen Ereignisse: E ω = {ω} für jede elemente ω von F 8 Schlieÿlich, weil das Ereignissystem eine boolesche Algebra sein soll, benutzen wir das folgende Ereignissystem A 2 : A 2 = { T T F 8 } { T (Ω 2 \ F 8 T F 8 } A 2 = = 2 11 Das Wahrscheinlichkeitsmaÿ P 2 ist ähnlich zu P 1 : P 2 (A = P 1 (A für jede A A 2 A 1 So ist es nicht überraschend, dass wir dasselbe Ergebnis bekommen, wie beim ersten Modell: P 2 (F 8 = 10/36. Drittes Modell Dieses Modell enthält nicht, welche von den beiden Würfen zum Beispiel 5 und welcher 4 wurde. Enthalten (im Modell ist nur, dass wir einmal 4 und einmal 5 geworfen haben. { } Ω 3 = [x, y] x y und x, y {1, 2, 3, 4, 5, 6} Ω 3 = 21 A 3 = { A A Ω 3 } A 3 = 2 21 Bei diesem Modell, ist das Wahrscheinlichkeitsmaÿ P 3 kompliezierter: P 3 ({[x, x]} = 1/36 x {1, 2, 3, 4, 5, 6} P 3 ({[x, y]} = 2/36 x < y und x, y {1, 2, 3, 4, 5, 6} ( ({ } P 3 G 8 = P 3 [x, y] [x, y] Ω 3 und 8 < x + y = { } P 3 ([x, y] [x, y] Ω3 und 8 < x + y = P 3 ([3, 6]+ P 3 ([4, 5]+ P 3 ([4, 6]+ P 3 ([5, 5]+ P 3 ([5, 6]+ P 3 ([6, 6] = 2/36 + 2/36 + 2/36 + 1/36 + 2/36 + 1/36 = 10/36

6 Viertes Modell Immerhin... uns interessiert eigentlich nur die Augenzahlsumme. Deshalb ist ein 11-elementiges Ω 4 genügend. Ω 4 = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} Ω 4 = 11 A 4 = { A A Ω 4 } A 4 = 2 11 In diesem Fall ist aber das Wahrscheinlichkeitsmaÿ P 4 noch komplizierter. P 4 ({2} = 1/36 P 4 ({3} = 2/36 P 4 ({4} = 3/36. P 4 ({7} = 6/36 P 4 ({8} = 5/36. P 4 ({12} = 1/36 ({ } P 4 (H 8 = P 4 x x Ω 4 und 8 < x = { } P 4 ({x} x Ω 4 und 8 < x = P 4 ({9} + P 4 ({10} + P 4 ({11} + P 4 ({12} = 4/36 + 3/36 + 2/36 + 1/36 = 10/36 Fünftes Modell = Fleiÿarbeit 1.1 Dieses Modell ist ein verrücktes Modell, es enthält überüssige Teile. Nehmen wir an, dass die Wahrscheinlichkeit, dass ein Wurf nicht auf dem Tisch bleibt, ist 1/100. Lass uns vom ersten Modell herauskommen! Erweiteren wir dieses Modell mit einer überüssigen Information: die Zahl der Würfe, bei welchem der Würfel nicht auf dem Tisch bleibt. Diese Zahl kann 0, 1 oder 2 sein. Schreiben Sie auf, wie (Ω 5, A 5, P 5 aussieht. Geben Sie die alle Elemente vom Ereignis an, bei welchen die Summe der Augenzahlen gröÿer als 8 ist. Überprüfen Sie, dass dieses Modell ebenfalls das Ergebnis 10/36 ergibt.

7 [1.D] Die Kolmogorov'sche Axiome Andrei Nikolajewitsch Kolmogorow war ein sowjetischer Mathematiker. Sein Familienname Kolmogorov hat drei verschiedenen Schreibweisen: Kolmogoro Kolmogorow Kolmogorov... damals hat er seinen Namen auf dieser Weise benutzt... nach der akademischen Rechtschreibung... so wird sein Name im Alltag geschrieben Er war einer der bedeutendsten Mathematiker des 20. Jahrhunderts. Er wurde im Jahre 1903 geboren, und starb im Jahre 1987, in Moskau. Seine bekannteste mathematische Leistung war die Axiomatisierung der Wahrscheinlichkeitstheorie. In den Jahren zwischen 1931 und 1933 hat Kolmogorow gelegt. die maÿtheoretische Fundierung der modernen Wahrscheinlichkeitstheorie Die Urquelle der modernen Wahrscheinlichkeitstheorie wurde in deutscher Sprache geschrieben. Die von Kolmogorow aufgestellten sechs Axiome führen zum Begri des Wahrscheinlichkeitsfeldes als Triplett (Ω, A, P. Dieses Modell besteht aus einer, in heutiger Sprechweise, Mengenalgebra A über einer beliebigen nichtleeren Menge Ω, und aus einem auf A denierten Wahrscheinlichkeitsmaÿ P. Die Mengenalgebra A ist eine boolesche Algebra von ausgewählten Teilmengen der Ω enthält das sicheres Ereignis Ω, und das unmögliches Ereignis, die Nullmenge ist auch eine σ-algebra, das heiÿt, dass die Vereinigung von abzählbar vielen ihrer Teilmengen auch in der Mengenalgebra enthalten ist Das Wahrscheinlichkeitsmaÿ P ist eine Abbildung von A nach [0, 1] R erfüllt P (Ω = 1 ist additiv, das heiÿt, dass P (A B = P (A + P (B für Ereignisse, welche disjunkt sind ist auch σ-additiv, das heiÿt, dass das Wahrscheinlichkeitsmaÿ nicht nur für zwei, sondern auch für abzählbar viele Teilmengen additiv ist. Zeichen + und wird in der Fachliteratur oft anstelle von beziehungsweise verwendet. Zum Beispiel: P (A + B = P (A ( + P (B für Ereignisse die disjunkt sind, oder für mehrere Ereignisse: P i=0 A i = i=0 P (A i.

8 [1.E] Folgerungen von den Axiomen Die trivialen Ereignisse Die A A Ereignisse für welche P (A = 0 oder P (A = 1 gilt, sind die trivialen Ereignisse. P (A = 0 oder P (A = 1 P (A (P (A 1 = 0 (P (A 2 = P (A Aus P (A = 0 folgt nicht, dass A =, und aus P (A = 1 folgt nicht, dass A = Ω. Zum Beispiel, wählen wir eine reelle Zahl ξ auf dem Intervall [0, 2π mit einer konstanten Wahrscheinlichkeitsdichte. Dann es ist nicht unmöglich, dass diese gewählte Zahl ξ eine ganze Zahl wird. Aber die Wahrscheinlichkeit von diesem Ereignis ist Null. Es ist nicht sicher, daÿ diese gewählte Zahl ξ is eine nicht ganze Zahl wird. Aber die Wahrscheinlichkeit dieses Ereignisses ist 1. Folgerung 1. Für die leere Menge A gilt P ( = 0. Das heiÿt: die Wahrschenlichkeit des unmöglichen Ereignisses ist gleich Null. Der Beweis ist ganz einfach: P (Ω = P ( Ω Folgerung 2. weil Ω = Ω = P (Ω + P ( weil Ω = 0 = P (..., genau, was wir beweisen wollten. P (A \ B = P (A P (A B gilt für jede zwei beliebige Ereignisse. ( P (A = P (A \ B (A B weil A = (A \ B (A B = P ( A \ B + P ( A B weil (A \ B (A B = P (A \ B = P (A P (A B nach Umstellung der Gleichung Folgerung 3. P (A B = P (A P (A B + P (B ( P (A B = P (A \ B B gilt für jede zwei beliebige Ereignisse. weil A B = (A \ B B = P ( A \ B + P ( B weil (A \ B B = = P (A P (A B + P (B wegen Folgerung 2. Folgerung 4. = Fleiÿarbeit 1.2 Finden Sie die Verallgemeinerung der dritten Folgerung für P (A B C.

Data Mining: Einige Grundlagen aus der Stochastik

Data Mining: Einige Grundlagen aus der Stochastik Data Mining: Einige Grundlagen aus der Stochastik Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 21. Oktober 2015 Vorwort Das vorliegende Skript enthält eine Zusammenfassung verschiedener

Mehr

Wahrscheinlichkeitstheorie. Zapper und

Wahrscheinlichkeitstheorie. Zapper und Diskrete Wahrscheinlichkeitsräume Slide 1 Wahrscheinlichkeitstheorie die Wissenschaft der Zapper und Zocker Diskrete Wahrscheinlichkeitsräume Slide 2 Münzwürfe, Zufallsbits Elementarereignisse mit Wahrscheinlichkeiten

Mehr

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0.

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0. 1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem Folg. 2 Sei (Ω, E, P) W.-raum. Seien A, B,A 1,...,A n Ereignisse. Es gelten die folgenden Aussagen: 1. P(A) = 1 P(A). 2. Für das unmögliche Ereignis gilt:

Mehr

Übungen zur Mathematik für Pharmazeuten

Übungen zur Mathematik für Pharmazeuten Blatt 1 Aufgabe 1. Wir betrachten den Ereignisraum Ω = {(i,j) 1 i,j 6} zum Zufallsexperiment des zweimaligem Würfelns. Sei A Ω das Ereignis Pasch, und B Ω das Ereignis, daß der erste Wurf eine gerade Augenzahl

Mehr

Grundlagen. Wozu Wahrscheinlichkeitsrechnung? Definition und Begriff der Wahrscheinlichkeit. Berechnung von Laplace-Wahrscheinlichkeiten

Grundlagen. Wozu Wahrscheinlichkeitsrechnung? Definition und Begriff der Wahrscheinlichkeit. Berechnung von Laplace-Wahrscheinlichkeiten Teil 2: Wahrscheinlichkeitsrechnung 326 Grundlagen Wozu Wahrscheinlichkeitsrechnung? Definition und egriff der Wahrscheinlichkeit erechnung von Laplace-Wahrscheinlichkeiten Rechnen mit einfachem Mengenkalkül

Mehr

Statistik 1: Einführung

Statistik 1: Einführung Seite Stat- Statistik : Einführung Die mathematische Disziplin der Stochastik, die die Teilgebiete Wahrscheinlichkeitstheorie und mathematische Statistik umfaßt, beschäftigt sich mit der Beobachtung, Aufzeichnung

Mehr

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen

Mehr

15.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit

15.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit 5.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit Einführendes Beispiel ( Erhöhung der Sicherheit bei Flugreisen ) Die statistische Wahrscheinlichkeit, dass während eines Fluges ein Sprengsatz an Bord

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 07. Mai 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 5 1 Klassische Wahrscheinlichkeitsdefinition

Mehr

Notizen zu "Mathematische Grundlagen der Finanzwirtschaft"

Notizen zu Mathematische Grundlagen der Finanzwirtschaft Notizen zu "Mathematische Grundlagen der Finanzwirtschaft" PD Dr. habil. Thomas Kalmes Sommersemester 5 Version vom 5. Juli 5 Einleitung 2 Einleitung Ich kam zu der Überzeugung, dass mathematische Analysis

Mehr

Mengensysteme, Wahrscheinlichkeitsmaße

Mengensysteme, Wahrscheinlichkeitsmaße Kapitel 1 Mengensysteme, Wahrscheinlichkeitsmaße Der Großteil der folgenden fundamentalen Begriffe sind schon aus der Vorlesung Stochastische Modellbildung bekannt: Definition 1.1 Eine Familie A von Teilmengen

Mehr

6 Mehrstufige zufällige Vorgänge Lösungshinweise

6 Mehrstufige zufällige Vorgänge Lösungshinweise 6 Mehrstufige zufällige Vorgänge Lösungshinweise Aufgabe 6.: Begründen Sie, warum die stochastische Unabhängigkeit zweier Ereignisse bzw. zufälliger Vorgänge nur ein Modell der Realität darstellen kann.

Mehr

Skript zur Statistik II (Wahrscheinlickeitsrechnung und induktive Statistik)

Skript zur Statistik II (Wahrscheinlickeitsrechnung und induktive Statistik) Prof. Dr. Reinhold Kosfeld Fachbereich Wirtschaftswissenschaften Skript zur Statistik II (Wahrscheinlickeitsrechnung und induktive Statistik) 1. Einleitung Deskriptive Statistik: Allgemeine und spezielle

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

y 1 2 3 4 5 6 P (Y = y) 1/6 1/6 1/6 1/6 1/6 1/6

y 1 2 3 4 5 6 P (Y = y) 1/6 1/6 1/6 1/6 1/6 1/6 Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 jutta.arrenberg@fh-koeln.de Übungen zur Statistik für Prüfungskandidaten und Prüfungskandidatinnen Unabhängigkeit

Mehr

6.1 Grundlagen der Wahrscheinlichkeitsrechnung 6.1.1 Definitionen und Beispiele Beispiel 1 Zufallsexperiment 1,2,3,4,5,6 Elementarereignis

6.1 Grundlagen der Wahrscheinlichkeitsrechnung 6.1.1 Definitionen und Beispiele Beispiel 1 Zufallsexperiment 1,2,3,4,5,6 Elementarereignis 1 6.1 Grundlagen der Wahrscheinlichkeitsrechnung 6.1.1 Definitionen und Beispiele Spiele aus dem Alltagsleben: Würfel, Münzen, Karten,... u.s.w. sind gut geeignet die Grundlagen der Wahrscheinlichkeitsrechnung

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Dr. C.J. Luchsinger 1 Wahrscheinlichkeit Literatur Kapitel 1 * gelegentlich lesen: Statistik in Cartoons: Kapitel 1 und 2 (diese Fragen behandle ich in meiner Vlsg nicht) *

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Dr. C.J. Luchsinger 2 Zufallsgrössen Literatur Kapitel 2 * Statistik in Cartoons: Kapitel 4 * Krengel: 3.1 und 3.2 in 3 und (Honours Program) 10 sowie 11.1, 11.2 und 11.3 in

Mehr

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses.

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses. XI. Binomialverteilung ================================================================== 11.1 Definitionen -----------------------------------------------------------------------------------------------------------------

Mehr

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1 Übungen zur Stochastik - Lösungen 1. Ein Glücksrad ist in 3 kongruente Segmente aufgeteilt. Jedes Segment wird mit genau einer Zahl beschriftet, zwei Segmente mit der Zahl 0 und ein Segment mit der Zahl

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

Einführung in die Stochastik

Einführung in die Stochastik Einführung in die Stochastik Josef G. Steinebach Köln, WS 2009/10 I Wahrscheinlichkeitsrechnung 1 Wahrscheinlichkeitsräume, Urnenmodelle Stochastik : Lehre von den Gesetzmäßigkeiten des Zufalls, Analyse

Mehr

Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff

Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff Zufallsgrößen 2.5 Zufallsgrößen 2.5.1 Verteilungsfunktion einer Zufallsgröße 2.5.2 Wahrscheinlichkeits- und Dichtefunktion Wahrscheinlichkeitsfunktion einer diskreten Zufallsgröße Dichtefunktion einer

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

Bedingte Wahrscheinlichkeit

Bedingte Wahrscheinlichkeit Bedingte Wahrscheinlichkeit In einem Laden ist eine Alarmanlage eingebaut. Bei Einbruch gibt sie mit 99%-iger Wahrscheinlichkeit Alarm. Wenn in einer bestimmten Nacht kein Einbruch stattfindet, gibt sie

Mehr

Name:... Matrikel-Nr.:... 3 Aufgabe Handyklingeln in der Vorlesung (9 Punkte) Angenommen, ein Student führt ein Handy mit sich, das mit einer Wahrscheinlichkeit von p während einer Vorlesung zumindest

Mehr

Übungsaufgaben Wahrscheinlichkeit

Übungsaufgaben Wahrscheinlichkeit Übungsaufgaben Wahrscheinlichkeit Aufgabe 1 (mdb500405): In einer Urne befinden sich gelbe (g), rote (r), blaue (b) und weiße (w) Kugel (s. Bild). Ohne Hinsehen sollen aus der Urne in einem Zug Kugeln

Mehr

Lehrstuhl IV Stochastik & Analysis. Stochastik I. Wahrscheinlichkeitsrechnung. Skriptum nach einer Vorlesung von Hans-Peter Scheffler

Lehrstuhl IV Stochastik & Analysis. Stochastik I. Wahrscheinlichkeitsrechnung. Skriptum nach einer Vorlesung von Hans-Peter Scheffler Fachschaft Mathematik Uni Dortmund Lehrstuhl IV Stochastik & Analysis Stochastik I Wahrscheinlichkeitsrechnung Skriptum nach einer Vorlesung von Hans-Peter Scheffler Letzte Änderung: 8. November 00 Gesetzt

Mehr

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis Aufgabe 2. Ergebnis, Ergebnismenge, Ereignis Ergebnis und Ergebnismenge Vorgänge mit zufälligem Ergebnis, oft Zufallsexperiment genannt Bei der Beschreibung der Ergebnisse wird stets ein bestimmtes Merkmal

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

MATHEMATIK UND VERSICHERUNGEN EINE ALLIANZ FÜRS LEBEN. Mitglied im DFG-Forschungszentrum Mathematik für Schlüsseltechnologien

MATHEMATIK UND VERSICHERUNGEN EINE ALLIANZ FÜRS LEBEN. Mitglied im DFG-Forschungszentrum Mathematik für Schlüsseltechnologien MATHEMATIK UND VERSICHERUNGEN EINE ALLIANZ FÜRS LEBEN Teilnehmer: Thomas Benkert Sebastian Flach Wolfgang Schmidt Philip Wanninger Sebastian Schubert Gruppenleiter: Peggy Daume Graf-Münster-Gymnasium Graf-Münster-Gymnasium

Mehr

Knut Bartels / Hans Gerhard Strohe. Arbeitsblätter. zur Vorlesung im Wintersemester 2005/06. Statistik II Induktive Statistik

Knut Bartels / Hans Gerhard Strohe. Arbeitsblätter. zur Vorlesung im Wintersemester 2005/06. Statistik II Induktive Statistik Knut Bartels / Hans Gerhard Strohe Arbeitsblätter zur Vorlesung im Wintersemester 2005/06 Induktive Statistik Dies ist kein Vorlesungsskript Wirtschafts- und Sozialwissenschaftliche Fakultät Lehrstuhl

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

Risiko und Versicherung - Übung

Risiko und Versicherung - Übung Sommer 2009 Risiko und Versicherung - Übung Entscheidungstheoretische Grundlagen Renate Bodenstaff Vera Brinkmann r.bodenstaff@uni-hohenheim.de vera.brinkmann@uni-hohenheim.de https://insurance.uni-hohenheim.de

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik für die Studiengänge Ingenieur-Informatik berufsbegleitendes Studium Lehramt Informatik (Sekundar- und Berufsschule) http://theo.cs.uni-magdeburg.de/lehre04s/ Lehrbeauftragter:

Mehr

Sprechen wir über Zahlen (Karl-Heinz Wolff)

Sprechen wir über Zahlen (Karl-Heinz Wolff) Sprechen wir über Zahlen (Karl-Heinz Wolff) Die Überschrift ist insoweit irreführend, als der Autor ja schreibt und nicht mit dem Leser spricht. Was Mathematik im allgemeinen und Zahlen im besonderen betrifft,

Mehr

Statistische Verfahren in der Computerlinguistik. Einführung in die Computerlinguistik Sommersemester 2009 Peter Kolb

Statistische Verfahren in der Computerlinguistik. Einführung in die Computerlinguistik Sommersemester 2009 Peter Kolb Statistische Verfahren in der Computerlinguistik Einführung in die Computerlinguistik Sommersemester 2009 Peter Kolb Übersicht Statistische vs. symbolische Verfahren in der CL Statistik beschreibende Statistik

Mehr

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Künstliche Intelligenz Unsicherheit Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Rückblick Agent in der Wumpuswelt konnte Entscheidungen

Mehr

Statistik II für Betriebswirte Vorlesung 3

Statistik II für Betriebswirte Vorlesung 3 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 3 5. November 2013 Beispiel: Aktiensplit (Aczel & Sounderpandan, Aufg. 14-28) Ein Börsenanalyst

Mehr

Aufgabe 3: Übersetzen Sie die folgenden natürlich-sprachlichen Aussagen in die Sprache der

Aufgabe 3: Übersetzen Sie die folgenden natürlich-sprachlichen Aussagen in die Sprache der Aufgabe 1: Sind die folgenden Abbildungen jeweils injektiv, surjektiv und/oder bijektiv? (a) f 1 (x) = x, mit f 1 : R + R + (b) f (x) = x, mit f : R R (c) f 3 (x) = x, mit f 3 : R R (d) f 4 (x) = 3x, mit

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Monte-Carlo Simulation

Monte-Carlo Simulation Monte-Carlo Simulation Sehr häufig hängen wichtige Ergebnisse von unbekannten Werten wesentlich ab, für die man allerhöchstens statistische Daten hat oder für die man ein Modell der Wahrscheinlichkeitsrechnung

Mehr

(für Grund- und Leistungskurse Mathematik) 26W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP

(für Grund- und Leistungskurse Mathematik) 26W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP .RPELQDWRULN (für Grund- und Leistungsurse Mathemati) 6W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP Nach dem Studium dieses Sripts sollten folgende Begriffe beannt sein: n-menge, Kreuzprodut, n-tupel Zählprinzip

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Der vierseitige DNA-Würfel

Der vierseitige DNA-Würfel Der vierseitige DN-Würfel enomische Datenanalyse 2. Kaitel In der letzten Vorlesung haben wir mit statistischen Untersuchungen an der humanen enomsequenz die Islands entdeckt. Normale enomsequenz meidet

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015. Vorlesung 5, Donnerstag, 20.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015. Vorlesung 5, Donnerstag, 20. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 5, Donnerstag, 20. November 2014 (Wie baut man eine Hash Map, Universelles Hashing)

Mehr

Rekursionen (Teschl/Teschl 8.1-8.2)

Rekursionen (Teschl/Teschl 8.1-8.2) Rekursionen (Teschl/Teschl 8.1-8.2) Eine Rekursion kter Ordnung für k N ist eine Folge x 1, x 2, x 3,... deniert durch eine Rekursionsvorschrift x n = f n (x n 1,..., x n k ) für n > k, d. h. jedes Folgenglied

Mehr

3.8 Wahrscheinlichkeitsrechnung III

3.8 Wahrscheinlichkeitsrechnung III 3.8 Wahrscheinlichkeitsrechnung III Inhaltsverzeichnis ufallsgrössen Der Erwartungswert 3 3 Die Binomialverteilung 6 4 Die kumulierte Binomialverteilung 8 4. Die Tabelle im Fundamentum (oder Formeln und

Mehr

Programmiersprachen und Übersetzer

Programmiersprachen und Übersetzer Programmiersprachen und Übersetzer Sommersemester 2010 19. April 2010 Theoretische Grundlagen Problem Wie kann man eine unendliche Menge von (syntaktisch) korrekten Programmen definieren? Lösung Wie auch

Mehr

Ein möglicher Unterrichtsgang

Ein möglicher Unterrichtsgang Ein möglicher Unterrichtsgang. Wiederholung: Bernoulli Experiment und Binomialverteilung Da der sichere Umgang mit der Binomialverteilung, auch der Umgang mit dem GTR und den Diagrammen, eine notwendige

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Einführung Statistik und Wahrscheinlichkeitsrechnung Lukas Meier Teilweise basierend auf Vorlesungsunterlagen von Marloes Maathuis, Hansruedi Künsch, Peter Bühlmann und Markus Kalisch. Fehler und Anregungen

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

Gibt es verschiedene Arten unendlich? Dieter Wolke

Gibt es verschiedene Arten unendlich? Dieter Wolke Gibt es verschiedene Arten unendlich? Dieter Wolke 1 Zuerst zum Gebrauch des Wortes unendlich Es wird in der Mathematik in zwei unterschiedlichen Bedeutungen benutzt Erstens im Zusammenhang mit Funktionen

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00.

Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00. 1 Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00. Bitte unbedingt beachten: a) Gewertet werden alle 9 gestellten Aufgaben. b) Lösungswege sind anzugeben. Die Angabe des Endergebnisses

Mehr

Warteschlangen. Vier Doppelstunden in der Carl-Bantzer-Schule Ziegenhain von Johannes Becker

Warteschlangen. Vier Doppelstunden in der Carl-Bantzer-Schule Ziegenhain von Johannes Becker Warteschlangen Vier Doppelstunden in der Carl-Bantzer-Schule Ziegenhain von Johannes Becker Inhaltsverzeichnis 1. Einleitung...1 2. Aufgaben...2 3. Simulation einer Warteschlange mit dem Würfel...2 4.

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Das Kugel-Fächer-Modell - Arbeitsblätter rür den Unterricht

Das Kugel-Fächer-Modell - Arbeitsblätter rür den Unterricht 38 Das Kugel-Fächer-Modell - Arbeitsblätter rür den Unterricht Heinz Klaus Strick, Leverkusen In (Strick 1994) wurde dargestellt, wie Aufgaben vom Typ "Geburtstagsproblem", "Rosinenproblem", "Problem der

Mehr

Hans Irtel. Entscheidungs- und testtheoretische Grundlagen der Psychologischen Diagnostik

Hans Irtel. Entscheidungs- und testtheoretische Grundlagen der Psychologischen Diagnostik Hans Irtel Entscheidungs- und testtheoretische Grundlagen der Psychologischen Diagnostik Universität Mannheim 1995 Vorwort Dieses Buch ist ein Kompendium grundlegender Konzepte der Test- und Entscheidungstheorie,

Mehr

Einführung in die Computerlinguistik Statistische Grundlagen

Einführung in die Computerlinguistik Statistische Grundlagen Statistik 1 Sommer 2015 Einführung in die Computerlinguistik Statistische Grundlagen Laura Heinrich-Heine-Universität Düsseldorf Sommersemester 2015 Statistik 2 Sommer 2015 Überblick 1. Diskrete Wahrscheinlichkeitsräume

Mehr

34 5. FINANZMATHEMATIK

34 5. FINANZMATHEMATIK 34 5. FINANZMATHEMATIK 5. Finanzmathematik 5.1. Ein einführendes Beispiel Betrachten wir eine ganz einfache Situation. Wir haben einen Markt, wo es nur erlaubt ist, heute und in einem Monat zu handeln.

Mehr

Variationen Permutationen Kombinationen

Variationen Permutationen Kombinationen Variationen Permutationen Kombinationen Mit diesen Rechenregeln lässt sich die Wahrscheinlichkeit bestimmter Ereigniskombinationen von gleichwahrscheinlichen Elementarereignissen ermitteln, und erleichtert

Mehr

Einführung in die schließende Statistik - Von der Wahrscheinlichkeit zur Hypothese mit Beispielen in R und SPSS

Einführung in die schließende Statistik - Von der Wahrscheinlichkeit zur Hypothese mit Beispielen in R und SPSS Einführung in die schließende Statistik - Von der Wahrscheinlichkeit zur Hypothese mit Beispielen in R und SPSS Version 0.9 (7.5.204) Haiko Lüpsen Universität zu Köln Regionales Rechenzentrum (RRZK) Kontakt:

Mehr

6.4 Bedeutungsaspekte ausgewählter Begriffe 6.4.1 Zahlbegriffe und Rechenoperationen

6.4 Bedeutungsaspekte ausgewählter Begriffe 6.4.1 Zahlbegriffe und Rechenoperationen 6.4 Bedeutungsaspekte ausgewählter Begriffe 6.4.1 Zahlbegriffe und Rechenoperationen a) Natürliche Zahl Entspricht Bedeutung des Wortes ZAHL beim Schüler bis Kl. 5 Bedeutungen entwickeln sich durch entsprechende

Mehr

Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling

Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling Approximationsalgorithmen: Klassiker I Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling VO Approximationsalgorithmen WiSe 2011/12 Markus Chimani

Mehr

Stefan Lucks Krypto und Mediensicherheit (2009) 4: Stromchiffren

Stefan Lucks Krypto und Mediensicherheit (2009) 4: Stromchiffren 4: Stromchiffren Zwei Grundbausteine der symmetrischen Kryptographie: Stromchiffren Verschlüsseln beliebig langer Klartexte, interner Zustand Blockchiffren Verschlüsseln von Blocks einer festen Größe,

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Reelle Zahlen. Mathematische Grundlagen Lernmodul 4. Stand: Oktober 2010

Reelle Zahlen. Mathematische Grundlagen Lernmodul 4. Stand: Oktober 2010 Mathematische Grundlagen Lernmodul 4 Reelle Zahlen Stand: Oktober 200 Autoren: Prof. Dr. Reinhold Hübl, Professor Fakultät für Technik, Wissenschaftliche Leitung ZeMath, E-Mail: huebl@dhbw-mannheim.de

Mehr

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Die Poisson-Verteilung Jianmin Lu RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Ausarbeitung zum Vortrag im Seminar Stochastik (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In der Wahrscheinlichkeitstheorie

Mehr

13. Abzählen von Null- und Polstellen

13. Abzählen von Null- und Polstellen 13. Abzählen von Null- und Polstellen 77 13. Abzählen von Null- und Polstellen Als weitere Anwendung des Residuensatzes wollen wir nun sehen, wie man ot au einache Art berechnen kann, wie viele Null- bzw.

Mehr

Elementare statistische Methoden

Elementare statistische Methoden Elementare statistische Methoden Vorlesung Computerlinguistische Techniken Alexander Koller 28. November 2014 CL-Techniken: Ziele Ziel 1: Wie kann man die Struktur sprachlicher Ausdrücke berechnen? Ziel

Mehr

Mathematik-Dossier. Die lineare Funktion

Mathematik-Dossier. Die lineare Funktion Name: Mathematik-Dossier Die lineare Funktion Inhalt: Lineare Funktion Lösen von Gleichungssystemen und schneiden von Geraden Verwendung: Dieses Dossier dient der Repetition und Festigung innerhalb der

Mehr

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56 5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten

Mehr

Trainingsaufgaben zur Klausurvorbereitung in Statistik I und II Thema: Satz von Bayes

Trainingsaufgaben zur Klausurvorbereitung in Statistik I und II Thema: Satz von Bayes Trainingsaufgaben zur Klausurvorbereitung in Statistik I und II Thema: Satz von Bayes Aufgabe 1: Wetterbericht Im Mittel sagt der Wetterbericht für den kommenden Tag zu 60 % schönes und zu 40% schlechtes

Mehr

Versuch: Zufälliges Ziehen aus der Population

Versuch: Zufälliges Ziehen aus der Population Wahrscheinlichkeit Ein Test diagnostiziert Kranke zu 99% richtig Gesunde zu 90% richtig 5% der Bevölkerung ist krank? Wie wahrscheinlich ist es, dass jemand krank ist, wenn der Test dies diagnostiziert?

Mehr

Einführung in die Stochastik. Dr. Lothar Schüler

Einführung in die Stochastik. Dr. Lothar Schüler Einführung in die Stochastik für Studierende der Informatik im Bachelorstudiengang TU Braunschweig SS 2007 Dr. Lothar Schüler Institut für Mathematische Stochastik Technische Universität Braunschweig Pockelsstr.

Mehr

Mathematik I Internationales Wirtschaftsingenieurwesen

Mathematik I Internationales Wirtschaftsingenieurwesen Mathematik I Internationales Wirtschaftsingenieurwesen Integralrechnung 03.12.08 Das unbestimmte Integral/Stammfunktion Das bestimmte Integral/Flächenberechnung Integral als Umkehrung der Ableitung Idee:

Mehr

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper 32 Andreas Gathmann 3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper Wir haben bisher von den reellen Zahlen nur die Körpereigenschaften, also die Eigenschaften der vier Grundrechenarten ausgenutzt

Mehr

Einführung in die Statistik für Biologen. Jörg Witte

Einführung in die Statistik für Biologen. Jörg Witte Einführung in die Statistik für Biologen Jörg Witte 1997 Inhaltsverzeichnis 1 Endliche Wahrscheinlichkeitstheorie 3 1.1 Grundbegriffe........................ 3 1.2 Zufallsgrößen und Verteilungsfunktionen.........

Mehr

Vorlesung Theoretische Informatik

Vorlesung Theoretische Informatik Vorlesung Theoretische Informatik Automaten und Formale Sprachen Hochschule Reutlingen Fakultät für Informatik Masterstudiengang Wirtschaftsinformatik überarbeitet von F. Laux (Stand: 09.06.2010) Sommersemester

Mehr

Einführung in die. Wahrscheinlichkeitstheorie und Statistik

Einführung in die. Wahrscheinlichkeitstheorie und Statistik Institut für Mathematische Stochastik Einführung in die Wahrscheinlichkeitstheorie und Statistik (Kurzskript zur Vorlesung Wintersemester 2014/15 von Prof. Dr. Norbert Gaffke Inhaltsverzeichnis 1 Wahrscheinlichkeitsräume

Mehr

3 Quellencodierung. 3.1 Einleitung

3 Quellencodierung. 3.1 Einleitung Source coding is what Alice uses to save money on her telephone bills. It is usually used for data compression, in other words, to make messages shorter. John Gordon 3 Quellencodierung 3. Einleitung Im

Mehr

3.7 Wahrscheinlichkeitsrechnung II

3.7 Wahrscheinlichkeitsrechnung II 3.7 Wahrscheinlichkeitsrechnung II Inhaltsverzeichnis 1 bedingte Wahrscheinlichkeiten 2 2 unabhängige Ereignisse 5 3 mehrstufige Zufallsversuche 7 1 Wahrscheinlichkeitsrechnung II 28.02.2010 Theorie und

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Wintersemester 0/0 Wirtschaftsinformatik Bachelor IW Informatik Bachelor IN Vorlesung Mathematik Mathematik Lösungsvorschläge zum Übungsblatt

Mehr

Schlussrechnung, Modellbildung und Interpolation

Schlussrechnung, Modellbildung und Interpolation Schlussrechnung, Modellbildung und Interpolation Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 13, A-6020 Innsbruck, Österreich. Franz.Pauer@uibk.ac.at 1 Einleitung Schlussrechnungen

Mehr

Im Original veränderbare Word-Dateien

Im Original veränderbare Word-Dateien Binärsystem Im Original veränderbare Word-Dateien Prinzipien der Datenverarbeitung Wie du weißt, führen wir normalerweise Berechnungen mit dem Dezimalsystem durch. Das Dezimalsystem verwendet die Grundzahl

Mehr

5.Unsicherheit. 5.1WahrscheinlichkeitundRisiko

5.Unsicherheit. 5.1WahrscheinlichkeitundRisiko 1 5.Unsicherheit Bisher sind wir von vollständiger Planungssicherheit seitens der Entscheidungsträger ausgegangen. Dies trifft in vielen Fällen natürlich nicht den Kern eines Entscheidungsproblems.Wennz.B.eineEntscheidungfürdenKaufvonAktiengetroffen

Mehr

Einführung Statistik Weiterbildungs-Lehrgang 2015 2017. Markus Kalisch, Lukas Meier, Peter Bühlmann, Hansruedi Künsch und Alain Hauser

Einführung Statistik Weiterbildungs-Lehrgang 2015 2017. Markus Kalisch, Lukas Meier, Peter Bühlmann, Hansruedi Künsch und Alain Hauser Einführung Statistik Weiterbildungs-Lehrgang 2015 2017 Markus Kalisch, Lukas Meier, Peter Bühlmann, Hansruedi Künsch und Alain Hauser April 2015 Inhaltsverzeichnis 1 Einführung (Stahel, Kap. 1) 1 1.1

Mehr

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann Abiturvorbereitung Mathematik -Dierentialrechnungc Max Hoffmann 1 Ganzrationale Funktionen Im Folgenden wollen wir uns mit ganzrationale Funktionen und der Untersuchung solcher beschäftigen. Dabei werden

Mehr

1.) Wie viele verschiedene Anordnungen mit drei unterschiedlichen Buchstaben lassen sich aus acht verschiedenen Buchstaben bilden?

1.) Wie viele verschiedene Anordnungen mit drei unterschiedlichen Buchstaben lassen sich aus acht verschiedenen Buchstaben bilden? Aufgaben zur Kombinatorik, Nr. 1 1.) Wie viele verschiedene Anordnungen mit drei unterschiedlichen Buchstaben lassen sich aus acht verschiedenen Buchstaben bilden? 2.) Jemand hat 10 verschiedene Bonbons

Mehr

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Einführung in die Wahrscheinlichkeitstheorie

Einführung in die Wahrscheinlichkeitstheorie Anton Bovier Einführung in die Wahrscheinlichkeitstheorie Vorlesung Winter 2012/13, Bonn 15. Februar 2013 Inhaltsverzeichnis 1 Wahrscheinlichkeit........................................ 1 1.1 Zufallsexperimente

Mehr

Grammatiken. Einführung

Grammatiken. Einführung Einführung Beispiel: Die arithmetischen Ausdrücke über der Variablen a und den Operationen + und können wie folgt definiert werden: a, a + a und a a sind arithmetische Ausdrücke Wenn A und B arithmetische

Mehr