Ein Beispiel von Differentialgleichungen unbestimmten Grades und deren Interpolation

Größe: px
Ab Seite anzeigen:

Download "Ein Beispiel von Differentialgleichungen unbestimmten Grades und deren Interpolation"

Transkript

1 Ein Beisiel von Differentialgleichungen unbestimmten Grades und deren Interolation Leonhard Euler Wann immer Differentialgleichungen nach dem Grad der Differentiale unterschieden werden, scheint die Natur der Sache Zwischengrade auszuschließen; weil man nämlich genauso viele Integrationen braucht, kann deren Anzahl gewiss nicht ganzzahlig sein. Ich bin dennoch neulich auf eine Differentialgleichung unbestimmten Grades gestoßen, deren Exonent auch eine gebrochene Zahl sein kann, und es war mir sogar möglich, ihr Integral anzugeben; weil das der ganzen Aufmerksamkeit würdig scheint, möchte ich die ganze Analysis, die ich gebraucht habe, hier ausführlich erörtern. Nachdem ich die wundersamen Eigenschaften der Binomialkoeffizienten, welche ich mit diesem Charakter zu bezeichnen flege, dessen Wert + ist, betrachtet hatte, kam mir die Idee, den Wert einer Formel dieser Art auf eine Integralformel zurückzuführen, woher auch die Fälle, in denen und keine ganzen Zahlen sind, angegeben werden können. Ich habe bemerkt, dass eine solche Reduktion nicht direkt gelingt, woher ich seinen reziroken Wert betrachtet habe, deren Wert +

2 ist. Für dieses Ziel setze ich x + s, sodass für x gesetzt der gewünschte Wert von : erhalten wird. Es sei nun der Kürze wegen N, sodass man s Nx + hat, bei deren Nenner festzuhalten ist, dass die Faktoren immer um die Einheit schrumfen. Wenn also diese Formel nun differenziert wird, wird s x Nx + hervorgehen; und so ist der erste Faktor des Nenners weggeschafft worden, und nach Ausführung einer erneuten Differentiation wird s x Nx + hervorgehen. Indem man also auf diese Weise immer weiter differentiert, werden alle Faktoren des Nenners weggeschafft werden und man wird schließlich zu dieser Gleichung gelangen: s x Nx. 4 Wir werden also, indem wir anstelle von N seinen Wert einsetzen, zu dieser Differentialgleichung gelangen s x x, die also sooft integriert werden müsste, wie Einheiten enthält, und die einzelnen Integrationen sind so aufzustellen, dass für x 0 alle Integrale verschwinden; und nachdem alle Integrationen ausgeführt worden waren, wird anstelle von x die Einheit geschrieben werden müssen, und auf diese

3 Weise wird der resultierende Wert von s den Wert der Formel : geben. Um aber diese Integrationen allgemeiner zu erledigen, wollen wir X anstelle von x schreiben, sodass wir nun diese Gleichung aufzulösen haben s x X. 5 Wir wollen diese Gleichung zuerst mit x multilizieren, und ihr Integral wird s x X x geben. Diese Gleichung wollen wir mit x multilizieren, und es wird durch Integration s x x X x x X x Xx x sein. Durch bekannte Reduktionen können nämlich wiederholt Integrale solcher Art auf einfache zurückgeführt werden können. Diese Gleichung wird nun mit x multiliziert und auf dieselbe Weise integriert s x 4 x X x x Xx x + Xx x liefern. Nun wird durch Multilizieren mit x und Integrieren 4 s x X x x Xx x + x Xx x 4 5 x 4 hervorgehen. Auf dieselbe Weise wird man 5 s x4 X x 4x Xx x + 6x 5 6 x 5 Xx x 4x Xx x Xx x + finden, und durch Benutzen unserer Charaktere wird im Allgemeinen sein. n x n X x x n n n x n 4 Xx x + etc n s nn + x n n Xx x + x n Xx x Xx 4 x

4 6 Wir wollen nun n setzen, und weil 0 s s ist, wird diese endliche Gleichung entstehen: s x X x x Xx x + x Xx x etc, deren einzelne Glieder so integriert werden müssen, dass sie für x 0 gesetzt verschwinden, was immer assieren wird, wenn nur > 0 war, weswegen nur diese Integralformeln selbst X x, Xx x, etc ohne Hinzufügung der Konstante integriert werden müssen. Auch wenn nämlich auf diese Weise x vielleicht in den Nenner eingeht, wird es durch eine Potenz von x, mit welcher sie multiliziert werden muss, wiederum weggeschafft werden. 7 Nachdem diese Dinge über die einzelnen Integrale bemerkt worden sind, wird sich außerhalb der Integralzeichen nun x setzen lassen, welches natürlich der Fall der vorgelegten Frage ist; und so wird man : X x [ x + x ] x + etc finden, der Wert welcher Reihe natürlich x ist, sodass wir diesen bestimmten Wert haben: X x x, deren Wert also sogar in den Fällen, in denen keine ganze Zahl ist, durch Quadraturen beschafft werden kann; und so haben wir das Integral einer Differentialgleichung unbestimmten Grades s NX x glücklich gefunden; da X x ist, werden alle Koeffizienten auf diese Weise auf Integralformen x x x zurückgeführt werden, und weil die Exonenten von x und x vertauscht werden können, wird auch x x x sein und diese Formel habe ich aus einem ganz anderen Prinzi vor nicht allzu langer Zeit erhalten. 4

5 THEOREM 8 Der Wert dieses Charakters kann auf eine Integralformel zurückgeführt werden, weil x x x ist, wenn natürlich dieses Integral von x 0 bis x erstreckt wird. 9 Für 0 genommen wird also 0 sein. Ich habe aber einst gezeigt, dass KOROLLAR x x x x x x ist, woher also 0 sin π π werden wird. π sin π KOROLLAR 0 Darauf findet man durch eine bekannte Reduktion der Integrale x x x π, sin π dessen Wert also, sooft eine ganze Zahl ist, absolut angegeben werden kann, weshalb im Allgemeinen sin π : π sein wird. 5

6 Weil also umgekehrt KOROLLAR x x x ist, wenn wir f anstelle von schreiben und g anstelle von, werden wir x f x x g + f f +g+ f + haben. BEMERKUNG Weil wir ja also diese Integralformel aus einer Integralgleichung unbestimmten Grades erhalten haben, wollen wir dieselbe Untersuchung weiter im folgenden Problem ausdehnen. PROBLEM Nachdem diese entweder endliche oder unendliche Reihe S A + B + C + D + etc vorgelegt wurde, ist ihr Wert durch eine Integralformel auszudrücken. LÖSUNG Wir wollen den einzelnen Termen Potenzen von x zuteilen und S Ax + Bx+ + Cx+ + etc + + setzen, welche Reihe also für x gesetzt die vorgelegte Reihe selbst liefern wird. Dort ist zu bemerken, dass bei allen Termen der Buchstabe denselben Wert beibehalten wird, der andere aber immer um eine Einheit vermehrt 6

7 wird, woher das unbestimmte Produkt N in allen Termen denselben Wert beibehalten wird. Weil wir daher aus der oberen Gleichung s x dieser Differentialgleichung unbestimmten Grades s x Nx abgeleitet haben, wird aus den einzelnen Termen unserer Reihe dasselbe Differential resultieren, wenn wir nur den Exonenten um eine Einheit vermehren, woher wir also finden werden. S x NAx + NBx + + etc 4 Wir wollen nun setzen und es wird A + Bx + Cx + Dx + etc V S N x x V sein; wenn wir deswegen x V X setzen, werden wir die schon zuvor behandelte Gleichung S x X haben, deren Integration mal wiederholt uns auf diesen Ausdruck führt S X x x, woher wir also durch Einsetzen der Werte für X und V die gesuchte Summe S erhalten werden, natürlich S x xa + Bx + Cx + Dx + etc x, wenn nur das Integral von x 0 bis x erstreckt wird, oder, wie wir zuvor gefunden haben, wenn nur in der Integration keine Konstante beigefügt wird, darauf aber x genommen wird. 7

8 5 Es sei V x n, sodass A, B ist und die vorgelegte Reihe s BEISPIEL n, C + n + + n n, D, etc n + n sein wird, dann wird also die Summe dieser Reihe S x x x +n + etc + sein, oder nach Vertauschen der Exonenten von x und x wird auch S x +n x x sein. Nun ist aber ersichtlich, dass diese Integralformel wiederum auf den hier benutzen Charakter zurückgeführt werden kann; mit Hilfe von wird nämlich f + n und g sein, und daher wird S + n +n +n hervorgehen. Daher werden wir also auch durch Integralformeln die Summation dieser höchst bemerkenswerten Reihe haben n n n n etc n +n +n KOROLLAR 6 Wenn also n 0 war, entsteht natürlich die identische Gleichung. Aber wenn n, geht

9 hervor. Wenn n ist, wird werden KOROLLAR 7 Damit die Übereinstimmung mit der Wahrheit klarer wird, wollen wir den bestimmten Fall entwickeln, indem,, n 4 ist und es wird + n + n 7 7 und 7 + n 6 sein. Darauf wird, , sein, was die Progression der Triagonalzahlen ist; dann wird aber n n n n 4, 6, 4, sein. Nach Einsetzen dieser Werte wird also sein, was hervorragend übereinstimmt. 5 0, BEISPIEL 8 Wir wollen V + x setzen, sodass S x x xx wird, dann wird aber A, B, C, D, etc 9

10 sein und so wird die vorgelegte Reihe S etc sein. Es ist aber ersichtlich klar, dass diese Integralformel auch auf unsere Charaktere zurückgeführt werden kann. Wir wollen nämlich xx y setzen, es wird S y y y sein, oder nach Vertauschen der Exonenten S y y y, die mit verglichen f, g gibt, nach Einsetzen welcher Werte man S berechnet, oder wenn man + r setzt, wird sein. S + r etc + etc KOROLLAR 9 Hier wird im Fall die gefundene Summe dem ersten Term gleich. Wir wollen aber nehmen, es wird sein, das heißt 4 + +, 0

11 woher klar ist, dass diese Summation mit der Wahrheit verträglich ist, worüber weiter kein Zweifel bestehen kann, sooft eine ganze ositive Zahl ist; deswegen wollen wir bestimmte Fälle betrachten, wo sie nicht eine solche ist. KOROLLAR 0 Damit aber die Entwicklung leichter wird, wollen wir den Fall betrachten, in dem r ist, sodass r wird; dann wird aber + sein und daher +, + + +, + nach Einsetzen welcher Reihe diese Reihe entstehen wird etc, + +, welche Reihe höchst bemerkenswert ist, weil ihre Summe immer ist, welcher Wert auch immer dem Buchstaben zugeteilt werde. Wenn nämlich 0 ist, wird man etc haben, welches die allbekannte Reihe ist. Es sei nun, und wegen + 0 wollen wir alle Terme mit + multilizieren und es wird diese Reihe hervorgehen etc, wie durch Nehmen der Differenzen leicht klar ist. Wir wollen setzen und es wird diese Reihe hervorgehen Weil also etc., 4 5 5, , und so weiter ist, wird nach Einsetzen davon diese Reihe hervorgehen etc.

12 Aber wenn wir nehmen, wird etc sein, was durch Differenzen klar wird. KOROLLAR Wir wollen nun r 0 nehmen, sodass wird. Ich habe aber bewiesen, dass 0 ist, woher sin π π π sin π etc entstehen wird, wovon es der Mühe wert sein wird, den Fall entwickelt zu haben, denn die linke Seite wird nämlich π 4. Für die rechte Seite werden wir aber, 4, 5 4 6, etc haben, dann aber für die Nenner,, 5 4, , etc, nach Einsetzen welcher Werte diese Reihe entstehen wird π etc, welche Reihe allbekannt ist. Wir wollen aber noch setzen und die linke Seite wird wie zuvor π 4 sein; für die rechte Seite wird aber, 5 4, , etc sein, dann 4, 5 4 6, , etc,

13 daher π etc, deren Gültigkeit so gezeigt wird. Weil 4, , , ist, wird jene Reihe dieser gleich sein π etc, welche Reihe man in diese zwei aufteile { π etc etc Von der oberen bemerke man, dass ihre Summe durch Differenzen mit etc gefunden wurde; die Summe der unteren Reihe wird aber aus der oberen gefunden, in welcher π etc war, es wird etc π 4 sein, woher schon klar ist, dass etc + π 4 π 4 ist. Daher ist also klar, dass für auch negative Zahlen und sogar gebrochene angegeben werden können.

14 ALLGEMEINES THEOREM Wenn X irgendeine Funktion von x bezeichnet, und diese Differentialgleichung irgendeines Grades vorgelegt war y X x, wo der Exonent irgendwelche entweder gebrochenen oder ganze ositive oder negative Zahlen bezeichnet, die Auflösung welcher Gleichung also genauso viele Integrationen erfordert, wird, wenn diese einzelnen von x 0 begonnen werden und nach Ausführung aller x gesetzt wird, dann immer y X x x sein, nachdem natürlich dieses Integral von x 0 bis x erstreckt wurde. 4

Ein neuer Beweis, dass die Newton sche Entwicklung der Potenzen des Binoms auch für gebrochene Exponenten gilt

Ein neuer Beweis, dass die Newton sche Entwicklung der Potenzen des Binoms auch für gebrochene Exponenten gilt Ein neuer Beweis, dass die Newton sche Entwicklung der Potenzen des Binoms auch für gebrochene Exponenten gilt Leonhard Euler 1 Wann immer in den Anfängen der Analysis die Potenzen des Binoms entwickelt

Mehr

in eine einfache Reihe

in eine einfache Reihe Entwicklung des unendlichen Produkts (1 x)(1 xx)(1 x 3 )(1 x 4 )(1 x 5 )(1 x 6 ) etc in eine einfache Reihe Leonhard Euler 1 Nachdem s = (1 x)(1 xx)(1 x 3 )(1 x 4 )etc gesetzt worden ist, ist leicht klar,

Mehr

Eine kurze Methode, Summen unendlicher Reihen durch Differentialformeln zu untersuchen

Eine kurze Methode, Summen unendlicher Reihen durch Differentialformeln zu untersuchen Eine kurze Methode, Summen unendlicher Reihen durch Differentialformeln zu untersuchen Leonhard Euler Auch wenn ich diesen Gegenstand schon des Öfteren betrachtet habe, sind die meisten Dinge, die sich

Mehr

Über transzendente Progressionen oder deren allgemeine Terme algebraisch nicht gegeben werden können

Über transzendente Progressionen oder deren allgemeine Terme algebraisch nicht gegeben werden können Über transzendente Progressionen oder deren allgemeine Terme algebraisch nicht gegeben werden können Leonhard Euler Als ich neulich bei der Gelegenheit derer, die der hochgeehrte Goldbach über Reihen der

Mehr

Verschiedene Bemerkungen über unendliche Reihen

Verschiedene Bemerkungen über unendliche Reihen Verschiedene Bemerkungen über unendliche Reihen Leonhard Euler Die Bemerkungen, die ich hier vorzutragen beschlossen habe, kreisen größtenteils um Reihen solcher Art, die von denen vollkommen verschieden

Mehr

Entwicklung der von der Grenze x = 0 bis hin zu x = 1 erstreckten Integralformel x

Entwicklung der von der Grenze x = 0 bis hin zu x = 1 erstreckten Integralformel x Entwicklung der von der Grenze x = 0 bis hin zu x = erstreckten Integralformel x ( x + ) Leonhard Euler Diese Integralformel ist umso bemerkenswerter, weil ich gezeigt habe, dass ihr Wert mit dem zusammenfällt,

Mehr

Partialbruchzerlegung für Biologen

Partialbruchzerlegung für Biologen Partialbruchzerlegung für Biologen Rationale Funktionen sind Quotienten zweier Polynome, und sie tauchen auch in der Biologie auf. Die Partialbruchzerlegung bedeutet, einen einfacheren Ausdruck für eine

Mehr

Integration dieser Differentialgleichung dy + yydx =

Integration dieser Differentialgleichung dy + yydx = Integration dieser Differentialgleichung A (a+bx+cxx) 2 Leonhard Euler 1 Aus der Form dieser Gleichung ist sofort klar, wenn sie ein rationales Integral hat, dass es notwendigerweise diese Gestalt haben

Mehr

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. F. Hettlich Dr. S. Schmitt Dipl.-Math. J. Kusch Karlsruhe, den 09.06.20 Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik

Mehr

$Id: integral.tex,v /05/05 14:57:29 hk Exp hk $ ln(1 + t) 2 = ln 2 ln 3 + ln 2 = ln

$Id: integral.tex,v /05/05 14:57:29 hk Exp hk $ ln(1 + t) 2 = ln 2 ln 3 + ln 2 = ln $Id: integral.tex,v.5 2009/05/05 4:57:29 hk Exp hk $ 2 Integralrechnung 2.3 Die Integrationsregeln Wir wollen noch eine letzte kleine Anmerkung zur Substitutionsregel machen. Der letzte Schritt bei der

Mehr

Bernoullipolynome und Bernoullizahlen

Bernoullipolynome und Bernoullizahlen Bernoullipolynome und Bernoullizahlen Artjom Zern Ausarbeitung zum Vortrag im Proseminar Analysis (Sommersemester 9, Leitung Prof. Dr. Eberhard Freitag) Zusammenfassung: Wie aus dem Titel ersichtlich ist

Mehr

Das Quadratische Reziprozitätsgesetz. Stefanie Beule Sebastian Schrage

Das Quadratische Reziprozitätsgesetz. Stefanie Beule Sebastian Schrage Das Quadratische Rezirozitätsgesetz Stefanie Beule Sebastian Schrage 06. November 007 Inhaltsverzeichnis 3 Das Quadratische Rezirozitätsgesetz Notation.............................................. A Das

Mehr

2. Spezielle anwendungsrelevante Funktionen

2. Spezielle anwendungsrelevante Funktionen 2. Spezielle anwendungsrelevante Funktionen (1) Affin-lineare Funktionen Eine Funktion f : R R heißt konstant, wenn ein c R mit f (x) = c für alle x R existiert linear, wenn es ein a R mit f (x) = ax für

Mehr

Quadratische Gleichungen

Quadratische Gleichungen Quadratische Gleichungen TEIL 1: Die Quadratische Funktion und die Quadratische Gleichung Bei linearen Funktionen kommt nur in der 1. Potenz vor. Bei quadratischen Funktion kommt in der. Potenz vor. Daneben

Mehr

= 3 e e x 1 + 2x 2. + x 2. = x. x 1 = 5 x 2 = 2

= 3 e e x 1 + 2x 2. + x 2. = x. x 1 = 5 x 2 = 2 Lösungsvorschläge zu Blatt 7: ) x ( ) 3 3 e + e ( ) ( ) ( )! x x + x + x x + x x x Wir haben hier also zwei verschiedene Darstellungen für einen Vektor, da zwei verschiedene Basen verwendet werden. b b

Mehr

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil April (Voll-) Klausur Analysis I für Ingenieure en Rechenteil Aufgabe 7 Punkte (a) Skizzieren Sie die 4-periodische Funktion mit f() = für und f() = für (b) Berechnen Sie für diese Funktion die Fourierkoeffizienten

Mehr

Konvergenz im quadratischen Mittel - Hilberträume

Konvergenz im quadratischen Mittel - Hilberträume CONTENTS CONTENTS Konvergenz im quadratischen Mittel - Hilberträume Contents 1 Ziel 2 1.1 Satz........................................ 2 2 Endlich dimensionale Vektorräume 2 2.1 Defintion: Eigenschaften

Mehr

Terme und Formeln Grundoperationen

Terme und Formeln Grundoperationen Terme und Formeln Grundoperationen Die Vollständige Anleitung zur Algebra vom Mathematiker Leonhard Euler (*1707 in Basel, 1783 in Petersburg) prägte den Unterricht und die Lehrmittel für lange Zeit. Euler

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Allgemeiner Maschinenbau Fahrzeugtechnik Dresden 2002

Mehr

Integralrechnung. Petra Grell, WS 2004/05

Integralrechnung. Petra Grell, WS 2004/05 Integralrechnung Petra Grell, WS 2004/05 1 Einführung Bei den Rechenoperationen, die wir im Laufe der Zeit kennengelernt haben, kann man feststellen, dass es immer eine Umkehrung gibt: + : log a aˆ So

Mehr

15ab 21bc 9b = 3b 5a 7c 3

15ab 21bc 9b = 3b 5a 7c 3 4 4.1 Einführung Haben alle Summanden einer algebraischen Summe einen gemeinsamen Faktor, so kann man diesen gemeinsamen Faktor ausklammern. Die Summe wird dadurch in ein Produkt umgewandelt. Tipp: Kontrolle

Mehr

L Hospitial - Lösungen der Aufgaben

L Hospitial - Lösungen der Aufgaben A ln - (Zähler und Nenner müssen gegen gehen, wenn gegen geht): Für geht der Zähler gegen ln Für geht der Nenner gegen - ( ln ) ' ( )' - L'Hospital darf angewendet werden Zähler und Nenner differenzieren

Mehr

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005 Einführung in die Integralrechnung Mag. Mone Denninger. November 5 INHALTSVERZEICHNIS 8. Klasse Inhaltsverzeichnis Einleitung Berechnung einfacher Stammfunktionen. Integrationsregeln.........................

Mehr

Quadratische Funktionen und Gleichungen Mathematik Jahrgangsstufe 9 (G8) Bergstadt-Gymnasium Lüdenscheid. Friedrich Hattendorf

Quadratische Funktionen und Gleichungen Mathematik Jahrgangsstufe 9 (G8) Bergstadt-Gymnasium Lüdenscheid. Friedrich Hattendorf Mathematik Jahrgangsstufe 9 (G8) Lüdenscheid Friedrich Hattendorf 4. September 2014 Vorbemerkung Die Datei entsteht noch; noch nicht alles ist optimal Hinweis zum Ausdruck: (Fast) Alles sollte noch gut

Mehr

Partielle Integration

Partielle Integration Partielle Integration 1 Motivation Eine der wichtigsten Methoden der Integralrechnung ist die partielle Integration. Mit ihr lassen sich Funktionen integrieren, die ein Produkt zweier Funktionen sind.

Mehr

Identitätssatz für Potenzreihen

Identitätssatz für Potenzreihen Identitätssatz für Potenzreihen Satz 3.56 Seien f (z) = a n z n und g(z) = b n z n zwei Potenzreihen mit positiven Konvergenzradien R f > 0 und R g > 0. Gilt f (z) = g(z) für alle z mit 0 z < min{r f,

Mehr

2 Polynome und rationale Funktionen

2 Polynome und rationale Funktionen Gleichungen spielen auch in der Ingenieurmathematik eine große Rolle. Sie beschreiben zum Beispiel Bedingungen, unter denen Vorgänge ablaufen, Gleichgewichtszustände, Punktmengen. Gleichungen für eine

Mehr

Formelanhang Mathematik II

Formelanhang Mathematik II Formelanhang Mathematik II Mechatronik 2. Sem. Prof. Dr. K. Blankenbach Wichtige Formeln: - Euler: e j = cos() + j sin() ; e -j = cos() - j sin() - Sinus mit Phase: Übersicht Differentialgleichungen (DGL)

Mehr

Folgen und Reihen von Funktionen

Folgen und Reihen von Funktionen Folgen und Reihen von Funktionen Sehr häufig treten in der Mathematik Folgen bzw. Reihen von Funktionen auf. Ist etwa (f n ) eine Folge von Funktionen, dann können wir uns für ein festes x fragen, ob die

Mehr

27 Taylor-Formel und Taylor-Entwicklungen

27 Taylor-Formel und Taylor-Entwicklungen 136 IV. Unendliche Reihen und Taylor-Formel 27 Taylor-Formel und Taylor-Entwicklungen Lernziele: Konzepte: klein o - und groß O -Bedingungen Resultate: Taylor-Formel Kompetenzen: Bestimmung von Taylor-Reihen

Mehr

6.5 Die Taylor-Reihe. Start: Erinnerung an den Satz über die geometrische Reihe. Für die endliche geometrische Reihe gilt die Summenformel

6.5 Die Taylor-Reihe. Start: Erinnerung an den Satz über die geometrische Reihe. Für die endliche geometrische Reihe gilt die Summenformel 6.5 Die Taylor-Reihe Start: Erinnerung an den Satz über die geometrische Reihe. Für die endliche geometrische Reihe gilt die Summenformel N q n = qn+ q für q C \ {}. Für q < ist die unendliche geometrische

Mehr

konvergent falls Sei eine allgemeine ("gutmütige") Funktion. Frage: kann man sie in der Nähe des Punktes darstellen mittels einer Potenzreihe in

konvergent falls Sei eine allgemeine (gutmütige) Funktion. Frage: kann man sie in der Nähe des Punktes darstellen mittels einer Potenzreihe in C5 Funktionen: Reihenentwicklungen C5.1 Taylorreihen Brook Taylor (1685-1731) (Analysis-Vorlesung: Konvergenz von Reihen und Folgen) Grundlegende Frage: Wann / unter welchen Voraussetzungen lässt sich

Mehr

Ableitungsübungen. W. Kippels 16. Mai 2011

Ableitungsübungen. W. Kippels 16. Mai 2011 Ableitungsübungen W. Kippels 16. Mai 2011 Inhaltsverzeichnis 1 Einleitung 3 2 Übungsaufgaben 3 2.1 Funktion 1................................... 3 2.2 Funktion 2................................... 3 2.3

Mehr

Musterlösungen zu Blatt 15, Analysis I

Musterlösungen zu Blatt 15, Analysis I Musterlösungen zu Blatt 5, Analysis I WS 3/4 Inhaltsverzeichnis Aufgabe 85: Konvergenzradien Aufgabe 86: Approimation von ep() durch Polynome Aufgabe 87: Taylorreihen von cos 3 und sin Aufgabe 88: Differenzenquotienten

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Teil

Mehr

6 Reelle und komplexe Zahlenfolgen

6 Reelle und komplexe Zahlenfolgen Mathematik für Physiker I, WS 200/20 Freitag 0.2 $Id: folgen.tex,v. 200/2/06 :2:5 hk Exp $ $Id: reihen.tex,v. 200/2/0 4:4:40 hk Exp hk $ 6 Reelle und komplexe Zahlenfolgen 6. Cauchyfolgen Wir kommen nun

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen Komplexe Zahlen Allgemeines Definition Eine komplexe Zahl z x + y i besteht aus einem Realteil Re(z) x und einem Imaginärteil Im(z) y. Der Imaginärteil wird mit der Imaginären-Einheit i multipliziert.

Mehr

WURZEL Werkstatt Mathematik Polynome Grundlagen

WURZEL Werkstatt Mathematik Polynome Grundlagen Die WURZEL Werkstatt Mathematik Polynome Grundlagen Wer lange genug über hunderten von Problemen gebrütet hat, kann bei vielen bereits erraten, aus welchem Land sie kommen. So lieben die Briten etwa die

Mehr

Analysis I. 4. Beispielklausur mit Lösungen

Analysis I. 4. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein

Mehr

Erzeugende Funktionen

Erzeugende Funktionen Hallo! Erzeugende Funktionen sind ein Mittel um lineare Rekursionen schneller ausrechnen zu können. Es soll die Funktion nicht mehr als Rekursion angeschrieben werden, sondern so, dass man nur n einsetzen

Mehr

UND MOSES SPRACH AUCH DIESE GEBOTE

UND MOSES SPRACH AUCH DIESE GEBOTE UND MOSES SPRACH AUCH DIESE GEBOTE 1. Gebot: Nur die DUMMEN kürzen SUMMEN! Und auch sonst läuft bei Summen und Differenzen nichts! 3x + y 3 darfst Du NICHT kürzen! x! y. Gebot: Vorsicht bei WURZELN und

Mehr

In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y

In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y Approximationen In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y y = f (x) x Um das Arbeiten mit einer komplizierten Funktion zu vermeiden, können wir versuchen, diese Funktion

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

00. Einiges zum Vektorraum R n

00. Einiges zum Vektorraum R n 00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen

Mehr

Das heißt, Γ ist der Graph einer Funktion von d 1 Veränderlichen.

Das heißt, Γ ist der Graph einer Funktion von d 1 Veränderlichen. Kapitel 2 Der Gaußsche Satz Partielle Differentialgleichung sind typischerweise auf beschränkten Gebieten des R d, d 1, zu lösen. Dabei sind die Eigenschaften dieser Gebiete von Bedeutung, insbesondere

Mehr

Thema 10 Gewöhnliche Differentialgleichungen

Thema 10 Gewöhnliche Differentialgleichungen Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;

Mehr

Beobachtung über Reihen, deren Terme nach den Sinus oder Kosinus vielfacher Winkel fortschreiten

Beobachtung über Reihen, deren Terme nach den Sinus oder Kosinus vielfacher Winkel fortschreiten Beobachtug über Reihe, dere Terme ach de Sius oder Kosius vielfacher Wikel fortschreite arxiv:0.000v [math.ho] 3 Ja 0 Leohard Euler We also die Summatio dieser Reihe A+ Bx+Cxx+Dx 3 + etc bekat war, sodass,

Mehr

Basistext Lineare Gleichungssysteme. Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=%

Basistext Lineare Gleichungssysteme. Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=% Basistext Lineare Gleichungssysteme Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=% Mit zwei Unbekannten gibt es die allgemeine Form:! #+% '=( Gelten mehrere dieser Gleichungen

Mehr

Polynomgleichungen. Gesetzmäßigkeiten

Polynomgleichungen. Gesetzmäßigkeiten Polynomgleichungen Gesetzmäßigkeiten Werden zwei Terme durch ein Gleichheitszeichen miteinander verbunden, so entsteht eine Gleichung. Enthält die Gleichung die Variable x nur in der 1. Potenz, so spricht

Mehr

Arbeitsblatt 1. Ergebnisse: a) Schätzen:... b) Abzählen:... c) Berechnen: (unter Angabe der geometrischen Figuren)

Arbeitsblatt 1. Ergebnisse: a) Schätzen:... b) Abzählen:... c) Berechnen: (unter Angabe der geometrischen Figuren) Arbeitsblatt 1 Für das nächste Frequency-Festival pachtet der Veranstalter zusätzliche Fläche für die Besucherzelte beim benachbarten Landwirt. Zur Ermittlung des Pachtpreises muss die Fläche ausgemessen

Mehr

Potenzreihen. Potenzreihen sind Funktionenreihen mit einer besonderen Gestalt.

Potenzreihen. Potenzreihen sind Funktionenreihen mit einer besonderen Gestalt. Potenzreihen Potenzreihen sind Funtionenreihen mit einer besonderen Gestalt. Definition. Ist (a ) eine Folge reeller (bzw. omplexer) Zahlen und x 0 R (bzw. z 0 C), dann heißt die Reihe a (x x 0 ) (bzw.

Mehr

15ab 21bc 9b = 3b 5a 7c 3

15ab 21bc 9b = 3b 5a 7c 3 4 4.1 Einführung Haben alle Summanden einer algebraischen Summe einen gemeinsamen Faktor, so kann man diesen gemeinsamen Faktor ausklammern. Die Summe wird dadurch in ein Produkt umgewandelt. Tipp: Kontrolle

Mehr

Terme und Gleichungen

Terme und Gleichungen Terme und Gleichungen Rainer Hauser November 00 Terme. Rekursive Definition der Terme Welche Objekte Terme genannt werden, wird rekursiv definiert. Die rekursive Definition legt zuerst als Basis fest,

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 1. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 1. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 014 Höhere Mathematik II für die Fachrichtung Informatik Lösungsvorschläge zum 1. Übungsblatt Aufgabe

Mehr

Thema aus dem Bereich Algebra lineare Gleichungen und Ungleichungen

Thema aus dem Bereich Algebra lineare Gleichungen und Ungleichungen Thema aus dem Bereich Algebra - 1.1 lineare Gleichungen und Ungleichungen Inhaltsverzeichnis 1 allgemeine Gleichungen 2 2 lineare Gleichungen mit einer Variabeln 2 3 allgemeingültige und nichterfüllbare

Mehr

1.Rationale und irrationale Zahlen. Quadratwurzel.

1.Rationale und irrationale Zahlen. Quadratwurzel. 1.Rationale und irrationale Zahlen 1.1Quadratwurzeln Die Quadratwurzel aus einer rationalen Zahl 5 = 5; denn 5 = 5 und 5 > 0 r > 0 (geschrieben r ) ist diejenige nichtnegative Zahl, deren Quadrat r ergibt.

Mehr

Über die Transformation der divergenten Reihe 1 mx + m(m + n)x 2 m(m + n)(m + 2n)x 3 + etc in einen Kettenbruch

Über die Transformation der divergenten Reihe 1 mx + m(m + n)x 2 m(m + n)(m + 2n)x 3 + etc in einen Kettenbruch Über die Transformation der divergenten Reihe mx + m(m + n)x 2 m(m + n)(m + 2n)x 3 + etc in einen Kettenbruch Leonhard Euler Nachdem ich einst die Form divergenter Reihen solcher Art gründlicher untersucht

Mehr

Download. Basics Mathe Gleichungen mit Klammern und Binomen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen.

Download. Basics Mathe Gleichungen mit Klammern und Binomen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen. Download Michael Franck Basics Mathe Gleichungen mit Klammern und Binomen Einfach und einprägsam mathematische Grundfertigkeiten wiederholen Downloadauszug aus dem Originaltitel: Basics Mathe Gleichungen

Mehr

Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya

Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya Differentialgleichungen Aufgaben mit Lösungen Jörg Gayler, Lubov Vassilevskaya ii Inhaltsverzeichnis. Tabelle unbestimmter Integrale............................... iii.. Integrale mit Eponentialfunktionen........................

Mehr

2. Quadratische Lagrangefunktionen und Fourierreihe.

2. Quadratische Lagrangefunktionen und Fourierreihe. 0. Einführung Wir haben gerade das klassische Wirkungsprinzip betrachtet, nachdem wir wissen, dass der dynamische Verlauf eines Teilchens in dem Diagramm die Kurve darstellen soll, die die minimale Wirkung

Mehr

Höhere Mathematik I/II

Höhere Mathematik I/II Markus Stroppel Höhere Mathematik I/II Z. Zusätze. Z.. Skalarprodukte in Funktionenräumen. Wir wollen an einigen Beispielen zeigen, dass es nützlich sein kann, Skalarprodukte auch in ganz allgemeinen (reellen)

Mehr

10.6. Implizite ebene Kurven und Tangenten

10.6. Implizite ebene Kurven und Tangenten 0.6. Implizite ebene Kurven und Tangenten Im Gegensatz zu expliziten Darstellungen sind weder implizite noch Parameterdarstellungen einer Kurve eindeutig. Der Übergang von impliziten zu expliziten Darstellungen

Mehr

Musterlösung zu Blatt 12 der Vorlesung Analysis I WS08/09

Musterlösung zu Blatt 12 der Vorlesung Analysis I WS08/09 Musterlösung zu Blatt 1 der Vorlesung Analysis I WS08/09 Schriftliche Aufgaben Aufgabe 1. Beweisskizze a): Wir benutzen die Stetigkeit von sin und cos und sin π/) = 1, sinπ/) = 1, cos π/) = cosπ/) = 0,

Mehr

Extrema gebrochen rationaler Funktionen

Extrema gebrochen rationaler Funktionen Übungen zum Thema: Extrema gebrochen rationaler Funktionen Hier angewandte Lösungsmethode: Grenzwertmethode Versionsnummer: Version in Arbeit vom 6.09.007 / 19.00 Uhr Finde lokale Extrema der gebrochen

Mehr

Binomischer Satz. 1-E Vorkurs, Mathematik

Binomischer Satz. 1-E Vorkurs, Mathematik Binomischer Satz 1-E Vorkurs, Mathematik Terme Einer der zentralen Begriffe der Algebra ist der Term. Definition: Eine sinnvoll verknüpfte mathematische Zeichenreihe bezeichnet man als Term. Auch eine

Mehr

23 Integral. 1 Idee des Integrals

23 Integral. 1 Idee des Integrals 23 Integral Jörn Loviscach Versionsstand: 21. September 2013, 15:56 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.j3l7h.de/videos.html This work is licensed

Mehr

Kapitel 4: Variable und Term

Kapitel 4: Variable und Term 1. Klammerregeln Steht ein Plus -Zeichen vor einer Klammer, so bleiben beim Auflösen der Klammern die Vorzeichen erhalten. Bei einem Minus -Zeichen werden die Vorzeichen gewechselt. a + ( b + c ) = a +

Mehr

Zahlentheorie I - Tipps & Lösungen. Aktualisiert: 15. Oktober 2016 vers Teilbarkeit

Zahlentheorie I - Tipps & Lösungen. Aktualisiert: 15. Oktober 2016 vers Teilbarkeit Schweizer Mathematik-Olympiade smo osm Zahlentheorie I - Tipps & Lösungen Aktualisiert: 15. Oktober 2016 vers. 1.2.0 1 Teilbarkeit Einstieg 1.1 Zeige, dass 900 ein Teiler von 10! ist. Tipp: Schreibe 900

Mehr

Diplom Mathematiker Wolfgang Kinzner. 17. Oktober Technische Universität München. Die abc-formel. W. Kinzner. Problemstellung.

Diplom Mathematiker Wolfgang Kinzner. 17. Oktober Technische Universität München. Die abc-formel. W. Kinzner. Problemstellung. Diplom Mathematiker Wolfgang Kinzner Technische Universität München 17. Oktober 2013 1 / 9 Inhaltsverzeichnis 1 2 / 9 Inhaltsverzeichnis 1 2 2 / 9 Inhaltsverzeichnis 1 2 3 2 / 9 Inhaltsverzeichnis 1 2

Mehr

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.)

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.) 3. Untergruppen 19 3. Untergruppen Nachdem wir nun einige grundlegende Gruppen kennengelernt haben, wollen wir in diesem Kapitel eine einfache Möglichkeit untersuchen, mit der man aus bereits bekannten

Mehr

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0. Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ

Mehr

Polynome. Jörn Loviscach. Versionsstand: 22. November 2009, 15:10

Polynome. Jörn Loviscach. Versionsstand: 22. November 2009, 15:10 Polnome Jörn Loviscach Versionsstand: 22. November 2009, 5:0 Begriffe, Verlauf Ein Ausdruck der Art heißt Polnom [polnomial] in. Die Variable darf nur in ganzen Potenzen ab 0 aufwärts erscheinen. Vor den

Mehr

Klausur zur Mathematik für Maschinentechniker

Klausur zur Mathematik für Maschinentechniker SS 04. 09. 004 Klausur zur Mathematik für Maschinentechniker Apl. Prof. Dr. G. Herbort Aufgabe. Es sei f die folgende Funktion f(x) = 4x 4x 9x 6 x (i) Was ist der Definitionsbereich von f? Woistf differenzierbar,

Mehr

Werkstatt Euler und die Lösung der quadratischen Gleichung

Werkstatt Euler und die Lösung der quadratischen Gleichung Werkstatt Leonhard Euler und die Lösung der quadratischen Gleichungen Im Jahr 1767 hat der Mathematiker Leonhard Euler (1707 1783) das Buch Vollständige Anleitung zu Algebra im russischen Original veröffentlicht,

Mehr

$Id: reihen.tex,v /06/12 10:59:50 hk Exp $ unendliche Summe. a 1 + a 2 + a 3 +.

$Id: reihen.tex,v /06/12 10:59:50 hk Exp $ unendliche Summe. a 1 + a 2 + a 3 +. Mathematik für Informatiker B, SS 202 Dienstag 2.6 $Id: reihen.tex,v.8 202/06/2 0:59:50 hk Exp $ 7 Reihen Eine Reihe ist eine unendliche Summe a + a 2 + a 3 +. Die Summanden a i können dabei reell oder

Mehr

Gleichungsarten. Quadratische Gleichungen

Gleichungsarten. Quadratische Gleichungen Gleichungsarten Quadratische Gleichungen Normalform: Dividiert man die allgemeine Form einer quadratischen Gleichung durch a, erhält man die Normalform der quadratischen Gleichung. x 2 +px+q=0 Lösungsformel:

Mehr

Unter dem Symbol n! (gelesen n Fakultät) versteht man das Produkt der natürlichen Zahlen von 1 bis n.

Unter dem Symbol n! (gelesen n Fakultät) versteht man das Produkt der natürlichen Zahlen von 1 bis n. Die Fakultät Definition: Unter dem Symbol n! (gelesen n Fakultät) versteht man das Produkt der natürlichen Zahlen von 1 bis n. n! = 1 2 3... (n 2) (n 1) n Zusätzlich wird definiert 0! = 1 Wie aus der Definition

Mehr

Reihen/Partialsummenfolgen und vollständige Induktion. Robert Klinzmann

Reihen/Partialsummenfolgen und vollständige Induktion. Robert Klinzmann Reihen/Partialsummenfolgen und vollständige Induktion Robert Klinzmann 3. Mai 00 Reihen / Partialsummen 1 Inhaltsverzeichnis 1 Vorwort Das Prinzip der vollständigen Induktion 3 3 Herleitung der Gauß schen

Mehr

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007 Analysis-Klausuren in den ET-Studiengängen (Ba) ab 7 Im Folgenden finden Sie die Aufgabenstellungen der bisherigen Klausuren Analysis im Bachelorstudium der ET-Studiengänge sowie knapp gehaltene Ergebnisangaben.

Mehr

(Tipp: Formelbuch!) x3 dx?

(Tipp: Formelbuch!) x3 dx? Integralrechnung. bestimmte und unbestimmte Integrale (a) x ( + x ) dx =? (b) e x + e x dx =? (c) x 3 x + x x 6x + 9 dx =? (d) x cos x dx =?. Bestimmtes Integral x3 3x + 9 x dx =? 4 3. Bestimmtes Integral

Mehr

Fourier-Reihen: Definitionen und Beispiele

Fourier-Reihen: Definitionen und Beispiele Fourier-Reihen: Definitionen und Beispiele Die Fourieranalysis beschäftigt sich mit dem Problem Funktionen in Kosinus und Sinus zu entwickeln. Diese Darstellungen sind in der Mathematik sowie in der Physik

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Lösungen Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Kapitel I: Mengen Aufgabe

Mehr

Ferienkurs Analysis 3 für Physiker. Übung: Laurentreihe und Residuensatz

Ferienkurs Analysis 3 für Physiker. Übung: Laurentreihe und Residuensatz Ferienkurs Analysis 3 für Physiker Übung: Laurentreihe und Residuensat Autor: Benjamin Rüth, Korbinian Singhammer Stand: 3. Mär 05 Aufgabe Laurentreihe Entwickeln Sie die Funktion + 4 3 3 + 3 in Laurentreihen.

Mehr

Mathematik I Internationales Wirtschaftsingenieurwesen

Mathematik I Internationales Wirtschaftsingenieurwesen Mathematik I Internationales Wirtschaftsingenieurwesen Integralrechnung 03.12.08 Das unbestimmte Integral/Stammfunktion Das bestimmte Integral/Flächenberechnung Integral als Umkehrung der Ableitung Idee:

Mehr

eine Folge in R, für die man auch hätte schreiben können, wenn wir alle richtig raten, was auf dem Pünktchen stehen sollte.

eine Folge in R, für die man auch hätte schreiben können, wenn wir alle richtig raten, was auf dem Pünktchen stehen sollte. Analysis, Woche 5 Folgen und Konvergenz A 5. Cauchy-Folgen und Konvergenz Eine Folge in R ist eine Abbildung von N nach R und wird meistens dargestellt durch {x n } n=0, {x n} n N oder {x 0, x, x 2,...

Mehr

1 Rechnen mit 2 2 Matrizen

1 Rechnen mit 2 2 Matrizen 1 Rechnen mit 2 2 Matrizen 11 Produkt Wir berechnen das allgemeine Produkt von A = Für das Produkt gilt AB = a11 a 12 a 21 a 22 a11 b 11 + a 12 b 21 a 11 b 12 + a 12 b 22 a 21 b 11 + a 22 b 21 a 21 b 12

Mehr

( ) als den Punkt mit der gleichen x-koordinate wie A und der

( ) als den Punkt mit der gleichen x-koordinate wie A und der ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der

Mehr

Grundlagen der Arithmetik und Zahlentheorie

Grundlagen der Arithmetik und Zahlentheorie Grundlagen der Arithmetik und Zahlentheorie 1.0 Teilbarkeit In diesem Abschnitt werden wir einerseits die ganzen Zahlen an sich studieren und dabei besonders wichtige Zahlen, die Primzahlen, entsprechend

Mehr

Modulformen, Teil 1. 1 Schwach modulare Funktionen

Modulformen, Teil 1. 1 Schwach modulare Funktionen Vortrag zum Seminar zur Funktionentheorie, 3.3.2 Robin Blöhm Dieser Vortrag führt uns zur Definition von Modulformen. Gemeinsam mit einem ersten Beispiel, den bereits bekannten Eisenstein-Reihen, ist sie

Mehr

Teil 2. Ganzrationale und Gebrochen rationale Funktionen. Unbestimmte Integrale und Stammfunktionen auch mit Substitution

Teil 2. Ganzrationale und Gebrochen rationale Funktionen. Unbestimmte Integrale und Stammfunktionen auch mit Substitution Teil Ganzrationale und Gebrochen rationale Funktionen ANALYSIS Einführung in die Integralrechnung Unbestimmte Integrale und Stammfunktionen auch mit Substitution Kurze Theorie und dann Viel Praxis Datei

Mehr

Kleine Formelsammlung zu Mathematik für Ingenieure IIA

Kleine Formelsammlung zu Mathematik für Ingenieure IIA Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................

Mehr

Mathematik für Informatiker II Übungsblatt 7

Mathematik für Informatiker II Übungsblatt 7 Mathematik für Informatiker II Übungsblatt 7 Vincent Blaskowitz Übungsblatt 7 vom 03.06.20 Aufgabe Aufgabenstellung Berechnen Sie die folgenden Logarithmen ohne Taschenrechner: i log 0,008 ii log 2 Lösung

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

3 Vom Zählen zur Induktion

3 Vom Zählen zur Induktion 7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,

Mehr

5 Potenzreihenansatz und spezielle Funktionen

5 Potenzreihenansatz und spezielle Funktionen 5 Potenzreihenansatz und spezielle Funktionen In diesem Kapitel betrachten wir eine Methode zur Lösung linearer Differentialgleichungen höherer Ordnung, die sich anwenden läßt, wenn sich alle Koeffizienten

Mehr

6 Gewöhnliche Differentialgleichungen

6 Gewöhnliche Differentialgleichungen 6 Gewöhnliche Differentialgleichungen Differentialgleichungen sind Gleichungen in denen nicht nur eine Funktion selbst sondern auch ihre Ableitungen vorkommen. Im einfachsten Fall gibt es eine unabhängige

Mehr

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen:

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen: Klausur zur Analysis I svorschläge Universität Regensburg, Wintersemester 013/14 Prof. Dr. Bernd Ammann / Dr. Mihaela Pilca 0.0.014, Bearbeitungszeit: 3 Stunden 1. Aufgabe [ Punte] Seien X, Y zwei nicht-leere

Mehr

24.1 Überblick. 24.2 Beispiele. A. Bestimmen einer ganzrationalen Funktion. 24. Interpolation mit Ableitungen

24.1 Überblick. 24.2 Beispiele. A. Bestimmen einer ganzrationalen Funktion. 24. Interpolation mit Ableitungen 4. Interpolation mit Ableitungen 4. Interpolation mit Ableitungen 4.1 Überblick Die Interpolationsaufgabe haben wir bereits in Kapitel 7 (Band Analysis 1) untersucht. Als Auffrischung: Zu n vorgegebenen

Mehr