Numerische Mathematik

Größe: px
Ab Seite anzeigen:

Download "Numerische Mathematik"

Transkript

1 Numerische Mathematik 0 Organisatorisches Version Thorsten Struckmann

2 0 Organisatorisches Numerische Mathematik Kursziele Kursinhalte Ablauf Literatur Numerische Mathematik WS Struckmann 2

3 Über mich Raum: F [email protected] Web: Sprechstunde: Do 14:00-15:00 Lehre Mathematik Numerische Mathematik Angewandte Informatik Physik F & E Elektrochemie Redox-Flow-Batterien Numerische Mathematik WS Struckmann 3

4 Quarks & Co Hintergrund Software & Finanzen ,00 World GDP scenarios 80000, , , ,00 0, Numerische Mathematik WS Struckmann 4

5 Numerische Mathematik? Beispiel Numerische Simulation der Strömung um Tragfläche Numerische Mathematik WS Struckmann 5

6 Numerik, Mathematik, Informatik, Technik, Computing, Numerische Mathematik Näherungsweise Berechnung von Gleichungslösungen, Funktionswerten, Integralen, auf Computern, weil die Größen nicht analytisch berechenbar sind die Rechnung von Hand auf Grund des Aufwands und der gewünschten Zuverlässigkeit nicht in Frage kommt. Numerische Mathematik WS Struckmann 6

7 Ziele der Numerischen Mathematik Geeignete Näherungs- bzw. Diskretisierungsmethoden für mathematische Probleme liefern Konvergenz der numerischen Lösung zur echten Lösung beurteilen Numerische Methoden in effiziente und stabile Algorithmen übersetzen Ergebnisse verifizieren Elemente der Mathematik und Informatik Numerische Mathematik WS Struckmann 7

8 Was will dieser Kurs? Dieser Kurs ist eine Einführung in die Grundlagen der Numerischen Mathematik. eine Darstellung von ausgewählten, numerischen Methoden und Algorithmen als Bausteine zur Lösung komplexer Probleme. Kompetenzen Sie können in typischen Anwendungssituationen eine geeignete Numerische Methode begründet auswählen. ausgewählte Numerische Methoden als Verfahren zur Lösung typischer Probleme des wissenschaftlichen Rechnens erläutern und anwenden. in einer höheren Programmiersprache (MATLAB) implementieren und anwenden. in Bezug auf Verfahrensfehler, Störungsempfindlichkeit (Stabilität) und Effekte in speziellen Situationen beschreiben. in Bezug auf deren Effizienz abschätzen. Rundungsfehler & Fortpflanzung von Rundungs- und Datenfehlern abschätzen. die Störungsempfindlichkeit (Kondition) typischer Numerischer Probleme abschätzen. Numerische Mathematik WS Struckmann 8

9 Kursinhalte 0 Organisatorisches Kursziele, Ablauf, Literatur 1 Grundlagen 1. Gleitpunktarithmetik 2. Fehlerfortpflanzung 2 Nichtlineare Gleichungen 1. Nullstellenbestimmung 2. Nichtlineare Gleichungssysteme 3 Lineare Gleichungssysteme 1. Direkte Verfahren 2. Iterative Verfahren 3. Eigenwerte und Eigenvektoren 4 Interpolation und Approximation 1. Interpolation mit Polynomen 2. Trigonometrische Interpolation 3. Ausgleichsrechnung 5 Differentiation und Integration 1. Numerische Differentiation 2. Numerische Integration 6 AWP für gewöhnliche Dgl 1. Euler-Verfahren 2. Runge-Kutta-Verfahren 7 Rückblick 1. Probeklausur und Wiederholung 2. Klausur Numerische Mathematik WS Struckmann 9

10 Workload: 5.0 Credit Points Präsenzstudium 3+1 SWS Selbststudium!!!!!!! Lehrveranstaltungstermine Kursablauf Sem. Unterricht: Donnerstag :15 Uhr Raum F 522 (F 328) Labor: Dienstag Uhr Raum F 341, ab Anwesenheit in 6 Vierteln erforderlich Vorstellung von Lösungen im Labor erforderlich Einteilung: Unterlagen EMIL-Lernraum: Numerische Mathematik (Str) W16 MuP-Homepage Übungsaufgaben: Skript, Laboraufgaben, Begleit-Literatur Prüfungsform Klausur Termin: Fr, , 08:30 (90 Minuten) Inhalt: Ähnlich den Übungs- und Laboraufgaben, Bestehen: Mindestens 50% Punkte Zugelassene Hilfsmittel Selbst erstellte Formelsammlung (6 Seiten) wiss. TR, keine programmierbaren oder CAS-Rechner Numerische Mathematik WS Struckmann 10

11 Termine SW KW Tag su su-nr Inhalt su Tag Labor L-Nr Gruppen Inhalt Labor Sep 1.1 Gleitpunktarithmetik Sep 1.2 Fehlerfortpflanzung Okt 2.1 Nullstellenbestimmung 04. Okt 1 A,B Okt 2.2 Nichtlin. Gleichungssysteme 11. Okt 1 C,D Okt 3.1 Direkte Verfahren 18. Okt 2 A,B Okt 3.2 Iterative Verfahren 25. Okt 2 C,D Nov 3.3 Eigenwerte und Vektoren 01. Nov 3 A,B Nov 4.1 Interpolation mit Polynomen 08. Nov 3 C,D Nov 4.2 Trigonom. Interpolation 15. Nov 4 A,B Nov 4.3 Ausgleichsrechnung 22. Nov 4 C,D Dez 5.1 Numerische Differentiation 29. Nov 5 A,B Dez 5.2 Numerische Integration 06. Dez 5 C,D Dez 6.1 Euler-Verfahren 13. Dez 6 A,B Dez 6.2 Runge-Kutta-Verfahren 20. Dez 6 C,D Jan 7.1 Probeklausur&Wiederholung 10. Jan 7 A,B Jan 7.1 Probeklausur&Wiederholung 17. Jan 7 C,D Feb 7.2 Klausur (08:30) Numerische Mathematik WS Struckmann 11

12 Literatur - Lehrbücher Als ebooks über HAW-Bibliothek oder online erhältlich M. Knorrenschild: Numerische Mathematik - Eine beispielorientierte Einführung. Hanser Verlag, 5. Auflage 2013 (14.90!!) A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB. Springer Verlag, 2005 W. Dahmen, A. Reusken: Numerik für Ingenieure und Naturwissenschaftler. Springer Verlag, 2. Auflage 2007 H. Schwarz, N. Köckler: Numerische Mathematik. Springer Verlag, 8. Auflage 2011 C. Moler, Numerical Computing with MATLAB. Electronic edition: The MathWorks, Inc., Natick, MA, Print edition: SIAM, Philadelphia, G.R. Lindfield, J.E.T. Penny: Numerical Methods Using MATLAB. Elsevier, 3rd Edition 2012 Numerische Mathematik WS Struckmann 12

13 1 Grundlagen 1.1 Gleitpunktarithmetik Datentypen Gleitpunktzahlen Rechengeschwindigkeit 1.2 Fehler und Fehlerfortpflanzung Fehlerquellen in der Modellierung Absoluter und Relativer Fehler Rundungsfehler und Maschinengenauigkeit Fehlerfortpflanzung bei ungenauen Eingabedaten Verfahrensfehler Numerische Mathematik WS Struckmann 13

14 2 Nichtlineare Gleichungen 2.1 Iterative Nullstellenbestimmung Gleichungen und Nullstellen Bisektion Fixpunktiteration Newton-Verfahren MATLAB fzero 2.2 Nichtlineare Gleichungssysteme Newton-Verfahren für Systeme Fixpunktiteration Numerische Mathematik WS Struckmann 14

15 3 Lineare Gleichungssysteme 3.1 Direkte Verfahren Rückblick Gauss-Verfahren Dreieckszerlegungen: LU-Zerlegung Pivotisierung Kondition und Fehlerfortpflanzung 3.2 Iterative Verfahren Jakobi, Gauss-Seidel, SOR Fixpunkt-Verfahren und Abbruchkriterien 3.3 Eigenwerte und Eigenvektoren Extreme Eigenwerte Potenzverfahren Alle Eigenwerte QR-Verfahren Numerische Mathematik WS Struckmann 15

16 4 Interpolation und Approximation 4.1 Interpolation mit Polynomen Polynominterpolation Splineinterpolation (Linear, Kubisch) 4.2 Trigonometrische Interpolation Periodische Funktionen und Fourier-Reihen Interpolation durch trigonometrische Funktionen Anwendungen 4.3 Ausgleichsrechnung - Approximation Ausgleichsproblem und Fehlerfunktional Lineares Ausgleichsproblem (Lineare Regression) Numerische Mathematik WS Struckmann 16

17 5 Numerische Differentiation und Integration 5.1 Differentiation Differenzenformeln für f höhere Ableitungen partielle Ableitungen Fehlerordnung 5.2 Integration Rechteck-, Trapez- und Simpsonregel Quadraturfehler Gauss-Quadratur Adaptive Quadratur Numerische Integration in MATLAB Numerische Mathematik WS Struckmann 17

18 6 AWP für gewöhnliche Dgl 6.1 Euler-Verfahren AWP und Richtungsfeld Euler-Verfahren Lokaler und globaler Fehler Systeme von Dgl und Dgl höherer Ordnung 6.2 Runge-Kutta-Verfahren Heun-Verfahren Varianten des Runge-Kutta-Verfahrens Schrittweitensteuerung Anfangswertprobleme in MATLAB Numerische Mathematik WS Struckmann 18

Algorithmische Mathematik und Programmieren

Algorithmische Mathematik und Programmieren Algorithmische Mathematik und Programmieren Martin Lanser Universität zu Köln WS 2016/2017 Organisatorisches M. Lanser (UzK) Alg. Math. und Programmieren WS 2016/2017 1 Ablauf der Vorlesung und der Übungen

Mehr

Numerische Mathematik für Ingenieure und Physiker

Numerische Mathematik für Ingenieure und Physiker Willi Törnig Peter Spellucci Numerische Mathematik für Ingenieure und Physiker Band 1: Numerische Methoden der Algebra Zweite, überarbeitete und ergänzte Auflage Mit 15 Abbildungen > Springer-Verlag Berlin

Mehr

MATHEMATIK. Numerische Mathematik. Hans-Görg Roos/Hubert Schwetlick. Das Grundwissen für jedermann. B. G. Teubner Stuttgart Leipzig

MATHEMATIK. Numerische Mathematik. Hans-Görg Roos/Hubert Schwetlick. Das Grundwissen für jedermann. B. G. Teubner Stuttgart Leipzig MATHEMATIK FÜR INGENIEURE UND NATURWISSENSCHAFTLER Hans-Görg Roos/Hubert Schwetlick Numerische Mathematik Das Grundwissen für jedermann B. G. Teubner Stuttgart Leipzig Begründer dieses Lehrwerkes: Prof.

Mehr

Numerische Integration und Differentiation

Numerische Integration und Differentiation Einführung Grundlagen Bemerkung (Numerische Mathematik) a) Im engeren Sinn: zahlenmäßige Auswertung mathematischer Zusammenhänge z B Lösung von linearen und nichtlinearen Gleichungssystemen Numerische

Mehr

Datum Wochen Band DVD Band eingelegt Protokoll kontr. Recovery kontr. Tag Nr. RW Sign. Sign. Sign.

Datum Wochen Band DVD Band eingelegt Protokoll kontr. Recovery kontr. Tag Nr. RW Sign. Sign. Sign. Monat: Januar Anzahl Bänder: 9 01.01.2015 Donnerstag Do DO 02.01.2015 Freitag Fr FR 03.01.2015 Samstag 04.01.2015 Sonntag 05.01.2015 Montag Mo1 MO 06.01.2015 Dienstag Di DI 07.01.2015 Mittwoch Mi MI 08.01.2015

Mehr

Höhere Mathematik für Naturwissenschaftler und Ingenieure

Höhere Mathematik für Naturwissenschaftler und Ingenieure Günter Bärwolff Höhere Mathematik für Naturwissenschaftler und Ingenieure unter Mitarbeit von Gottfried Seifert ELSEVIER SPEKTRUM AKADEMISCHER VERLAG Spekt rum K-/1. AKADEMISCHER VERLAG AKADEMISC Inhaltsverzeichnis

Mehr

Numerische Verfahren

Numerische Verfahren Numerische Verfahren Numerische Methoden von gewöhnlichen Differentialgleichungen (AWP) Prof. Dr.-Ing. K. Warendorf, Prof. Dr.-Ing. P. Wolfsteiner Hochschule für Angewandte Wissenschaften München Fakultät

Mehr

Mathematisch-algorithmische Grundlagen für Big Data

Mathematisch-algorithmische Grundlagen für Big Data Mathematisch-algorithmische Grundlagen für Big Data Numerische Algorithmen für Datenanalyse und Optimierung Prof. Dr. Peter Becker Fachbereich Informatik Hochschule Bonn-Rhein-Sieg Sommersemester 2016

Mehr

W. Oevel. Mathematik für Physiker I. Veranstaltungsnr: Skript zur Vorlesung, Universität Paderborn, Wintersemester 2003/2004

W. Oevel. Mathematik für Physiker I. Veranstaltungsnr: Skript zur Vorlesung, Universität Paderborn, Wintersemester 2003/2004 W. Oevel Mathematik für Physiker I Veranstaltungsnr: 172020 Skript zur Vorlesung, Universität Paderborn, Wintersemester 2003/2004 Zeit und Ort: V2 Di 11.15 12.45 D1.303 V2 Mi 11.15 12.45 D1.303 V2 Do 9.15

Mehr

Klausur zur Vordiplom-Prüfung

Klausur zur Vordiplom-Prüfung Technische Universität Hamburg-Harburg SS 25 Arbeitsbereich Mathematik Dr. Jens-Peter M. Zemke Klausur zur Vordiplom-Prüfung Numerische Verfahren 22. Juli 25 Sie haben 9 Minuten Zeit zum Bearbeiten der

Mehr

Analysis für Wirtschaftswissenschaftler und Ingenieure

Analysis für Wirtschaftswissenschaftler und Ingenieure Dieter Hoffmann 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Analysis für Wirtschaftswissenschaftler und Ingenieure

Mehr

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 14/15 Dr. Hanna Peywand Kiani 06.07.2015 Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Die ins Netz gestellten

Mehr

Modulnummer Modulname Verantwortlicher Dozent. Lineare Algebra und Analytische Geometrie

Modulnummer Modulname Verantwortlicher Dozent. Lineare Algebra und Analytische Geometrie MN-SEBS-MAT-LAAG (MN-SEGY-MAT-LAAG) (MN-BAWP-MAT-LAAG) Lineare Algebra und Analytische Geometrie Direktor des Instituts für Algebra n Die Studierenden besitzen sichere Kenntnisse und Fähigkeiten insbesondere

Mehr

Credits. Studiensemester. 1. Sem. Kontaktzeit 4 SWS / 60 h 2 SWS / 30 h

Credits. Studiensemester. 1. Sem. Kontaktzeit 4 SWS / 60 h 2 SWS / 30 h Modulhandbuch für den Lernbereich Mathematische Grundbildung im Studiengang Bachelor of Arts mit bildungswissenschaftlichem Anteil für die Studienprofile Lehramt an Grundschulen und Lehramt für sonderpädagogische

Mehr

Numerik und Simulation in der Geoökologie

Numerik und Simulation in der Geoökologie 1/49 Rekapitulation Das Euler-Verfahren für ODE-IVP Eigenschaften von Einschrittverfahren Numerik und Simulation in der Geoökologie Sylvia Moenickes VL 2 WS 2007/2008 2/49 Rekapitulation Das Euler-Verfahren

Mehr

Statistik für Biologen 1. Fachsemester Mono-Bachelor

Statistik für Biologen 1. Fachsemester Mono-Bachelor 1. Fachsemester Mono-Bachelor Prof. Dr. Britta Tietjen Wintersemester 2012/2013 Termin Vorlesung: Montags, 10:15-11:00 Uhr Termine Tutorien: Donnerstags/Freitags Botanisches Museum Königin-Luise-Str. 6-8,

Mehr

1 von :01

1 von :01 1 von 4 10.07.2015 07:01 Fakultät 1 Hochschuldozentur Optimierung Impressum Sitemap Kontakt Lageplan Suche Lehrstuhl Kontakt Lehre Forschung Links Personen Prüfungstermine Sprechzeiten Anschrift Lageplan

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 2 Nichtlineare Gleichungssysteme Problem: Für vorgegebene Abbildung f : D R n R n finde R n mit oder ausführlicher f() = 0 (21) f 1 ( 1,, n ) = 0, f n ( 1,, n ) = 0 Einerseits führt die mathematische

Mehr

1 ALLGEMEINE HINWEISE Das Fach Mathematik für Wirtschaftswissenschaftler Bisheriger Aufbau der Klausur...

1 ALLGEMEINE HINWEISE Das Fach Mathematik für Wirtschaftswissenschaftler Bisheriger Aufbau der Klausur... Grundlagen Mathe V Inhaltsverzeichnis 1 ALLGEMEINE HINWEISE... 1-1 1.1 Das Fach Mathematik für Wirtschaftswissenschaftler... 1-1 1.2 Bisheriger Aufbau der Klausur... 1-1 1.3 Zugelassene Hilfsmittel und

Mehr

Einführung in die höhere Mathematik 2

Einführung in die höhere Mathematik 2 Herbert Dallmann und Karl-Heinz Elster Einführung in die höhere Mathematik 2 Lehrbuch für Naturwissenschaftler und Ingenieure ab 1. Semester Mit 153 Bildern Friedr. Vieweg & Sohn Braunschweig /Wiesbaden

Mehr

STUDIENPLAN FÜR DEN DIPLOM-STUDIENGANG TECHNOMATHEMATIK an der Technischen Universität München. Übersicht Vorstudium

STUDIENPLAN FÜR DEN DIPLOM-STUDIENGANG TECHNOMATHEMATIK an der Technischen Universität München. Übersicht Vorstudium STUDIENPLAN FÜR DEN DIPLOM-STUDIENGANG TECHNOMATHEMATIK an der Technischen Universität München Übersicht Vorstudium Das erste Anwendungsgebiet im Grundstudium ist Physik (1. und 2. Sem.) Im 3. und 4. Sem.

Mehr

Das wissen Sie: 6. Welche Möglichkeiten zur Darstellung periodischer Funktionen (Signalen) kennen Sie?

Das wissen Sie: 6. Welche Möglichkeiten zur Darstellung periodischer Funktionen (Signalen) kennen Sie? Das wissen Sie: 1. Wann ist eine Funktion (Signal) gerade, ungerade, harmonisch, periodisch (Kombinationsbeispiele)? 2. Wie lassen sich harmonische Schwingungen mathematisch beschreiben und welche Beziehungen

Mehr

Numerische Mathematik für Ingenieure

Numerische Mathematik für Ingenieure Numerische Mathematik für Ingenieure von Prof. Dr. Gisela Jordan-Engeln (jetzt Engeln-Müllges) Fachhochschule Aachen und o. Prof. em. Dr. Fritz Reutter Rheinisch-Westfälische Technische Hochschule Aachen

Mehr

Inhalt Kapitel I: Nichtlineare Gleichungssysteme

Inhalt Kapitel I: Nichtlineare Gleichungssysteme Inhalt Kapitel I: Nichtlineare Gleichungssysteme I Nichtlineare Gleichungssysteme I. Nullstellenbestimmung von Funktionen einer Veränderlichen I.2 I.3 Newton-Verfahren Kapitel I (UebersichtKapI) 3 Bisektionsverfahren

Mehr

Programm Praxis Band 3. Herausgegeben von: Walter Gander (ETH Zurich) Gerhard Jager (Universitat Bern)

Programm Praxis Band 3. Herausgegeben von: Walter Gander (ETH Zurich) Gerhard Jager (Universitat Bern) Programm Praxis Band 3 Herausgegeben von: Walter Gander (ETH Zurich) Gerhard Jager (Universitat Bern) Walter Gander Computermathematik Springer Basel AG Prof. Dr. Walter Gander Institut fur Wissenschaftliches

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Knut Sydsaeter Peter HammondJ Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 2., aktualisierte Auflage Inhaltsverzeichnis Vorwort 13 Vorwort zur zweiten Auflage 19 Kapitel 1 Einführung,

Mehr

Bemerkung: Termine und Orte für die einzelnen Lehrveranstaltungen sind dem Stundenplan zu entnehmen.

Bemerkung: Termine und Orte für die einzelnen Lehrveranstaltungen sind dem Stundenplan zu entnehmen. Allgemeine Modulbeschreibungen für das erste Semester Bachelor Informatik 1. Objektorientierte Programmierung Bestehend aus - Vorlesung Objektorientierte Programmierung (Prof. Zimmermann) - Übung zu obiger

Mehr

Euler-Verfahren. exakte Lösung. Euler-Streckenzüge. Folie 1

Euler-Verfahren. exakte Lösung. Euler-Streckenzüge. Folie 1 exakte Lösung Euler-Verfahren Folie 1 Euler-Streckenzüge Ein paar grundlegende Anmerkungen zur Numerik Die Begriffe Numerik bzw. Numerische Mathematik bezeichnen ein Teilgebiet der Mathematik, welches

Mehr

Numerik für ingenieur- und naturwissenschaftliche. Antje Franke-Börner (Skript nach M. Eiermann und O. Ernst)

Numerik für ingenieur- und naturwissenschaftliche. Antje Franke-Börner (Skript nach M. Eiermann und O. Ernst) Numerik für ingenieur- und naturwissenschaftliche Studiengänge Antje Franke-Börner (Skript nach M. Eiermann und O. Ernst) Numerik f. Ingenieure und Naturwissenschaftler INHALT 1. Einleitung 2. Einführung

Mehr

Computerorientiertes Problemlösen

Computerorientiertes Problemlösen 1 / 13 Computerorientiertes Problemlösen 22. 26. September 2014 Steffen Basting WS 2014-2015 2 / 13 Organisatorisches 22.09. 26.09. Zeit Mo Di Mi Do Fr 11:00 bis 13:00 13:00 bis 15:30 15:30 bis 18:00 Vorlesung:

Mehr

Kleine Formelsammlung zu Mathematik für Ingenieure IIA

Kleine Formelsammlung zu Mathematik für Ingenieure IIA Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................

Mehr

Lineare Algebra und Numerische Mathematik

Lineare Algebra und Numerische Mathematik Lineare Algebra und Numerische Mathematik Prof. Dr. P. Grohs Seminar for Applied Mathematics, ETH Zürich Vorlesung für D-BAUG Herbstsemester 2015 www.math.ethz.ch/education/bachelor/lectures/hs2015/other/linalgnum_baug

Mehr

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57 Vorwort... 13 Vorwort zur 3. deutschen Auflage... 17 Kapitel 1 Einführung, I: Algebra... 19 1.1 Die reellen Zahlen... 20 1.2 Ganzzahlige Potenzen... 23 1.3 Regeln der Algebra... 29 1.4 Brüche... 34 1.5

Mehr

Anwendungen der Linearen Algebra

Anwendungen der Linearen Algebra Anwendungen der Linearen Algebra mit MATLAB Bearbeitet von Günter M. Gramlich 1. Auflage 4. Buch. 179 S. Hardcover ISBN 978 3 446 22655 5 Format (B x L): 14,5 x 21 cm Gewicht: 265 g Weitere Fachgebiete

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SS 2012 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Alexander Breuer Dipl.-Math. Dipl.-Inf. Jürgen Bräckle Dr.-Ing. Markus

Mehr

Mathematische und statistische Hilfsmittel für Pharmazeuten

Mathematische und statistische Hilfsmittel für Pharmazeuten Mathematische und statistische Hilfsmittel für Pharmazeuten Dr. Helga Lohöfer Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Fassung vom September 2003 Inhaltsverzeichnis I Elementare

Mehr

1. Einführung. Umwelt-Campus Birkenfeld Numerische Mathematik

1. Einführung. Umwelt-Campus Birkenfeld Numerische Mathematik . Einführung Die numerische Mathematik, kur Numerik genannt, beschäftigt sich als Teilgebiet der Mathematik mit der Konstruktion und Analyse von Algorithmen für technisch-naturwissenschaftliche Probleme..

Mehr

Modulhandbuch. der Mathematisch-Naturwissenschaftlichen Fakultät. der Universität zu Köln. für den Lernbereich Mathematische Grundbildung

Modulhandbuch. der Mathematisch-Naturwissenschaftlichen Fakultät. der Universität zu Köln. für den Lernbereich Mathematische Grundbildung Modulhandbuch der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln für den Lernbereich Mathematische Grundbildung im Studiengang Bachelor of Arts mit bildungswissenschaftlichem Anteil

Mehr

Aufgabensammlung mit Lösungen zur Mathematik für Nichtmathematiker

Aufgabensammlung mit Lösungen zur Mathematik für Nichtmathematiker Aufgabensammlung mit Lösungen zur Mathematik für Nichtmathematiker Grundbegriffe - Funktionen einer und mehrerer Veränderlicher - Folgen und Reihen, Zinsrechnung - Differential- und Integralrechnung-Vektorrechnung

Mehr

Mathematik anschaulich dargestellt

Mathematik anschaulich dargestellt Peter Dörsam Mathematik anschaulich dargestellt für Studierende der Wirtschaftswissenschaften 15. überarbeitete Auflage mit zahlreichen Abbildungen PD-Verlag Heidenau Inhaltsverzeichnis 1 Lineare Algebra

Mehr

Nichtlineare Gleichungen in einer Unbekannten

Nichtlineare Gleichungen in einer Unbekannten Nichtlineare Gleichungen in einer Unbekannten 1. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 20. Februar 2014 Clemens Brand und Erika Hausenblas

Mehr

Beitrag AM zum Lehrveranstaltungsplan SoSe 2010 (Stand: 30. November 2009)

Beitrag AM zum Lehrveranstaltungsplan SoSe 2010 (Stand: 30. November 2009) Beitrag AM zum Lehrveranstaltungsplan SoSe 2010 (Stand: 30. November 2009) A. Mathematik I. BACHELOR (MATHEMATIK, WIRTSCHAFTSMATHEMATIK, MATHEMATIK LEHRAMT AN GYMNASIEN UND LEHRAMT AN BERUFLICHEN SCHULEN)

Mehr

Beschluss AK-Mathematik 01/

Beschluss AK-Mathematik 01/ TU Berlin Marchstraße 6 10587 Berlin Auszug aus dem (noch nicht genehmigten) Protokoll der 02. Sitzung der Ausbildungskommission Mathematik im Jahr 2013 am Dienstag, den 28. Mai 2013, Raum MA 415 Beschluss

Mehr

MNF-math-phys Semester, Dauer: 1 Semester Prof. Dr. Walter Bergweiler Telefon 0431/ ,

MNF-math-phys Semester, Dauer: 1 Semester Prof. Dr. Walter Bergweiler Telefon 0431/ , Modulnummer Semesterlage / Dauer Verantwortliche(r) Studiengang / -gänge Lehrveranstaltungen Arbeitsaufwand Leistungspunkte Voraussetzungen Lernziele Lehrinhalte Prüfungsleistungen Mathematik für Physiker

Mehr

Modulverzeichnis - Mathematik Anlage 2

Modulverzeichnis - Mathematik Anlage 2 1 Modulverzeichnis - Mathematik Anlage 2 : Grstrukturen Einführung, Reflexion Vertiefung grlegender mathematischer Begriffe Strukturen keine Abschlussklausur 6 240 8.1: Einführung in Grstrukturen.2: Seminar

Mehr

MATHEMATISCHE AUFGABENSAMMLUNG

MATHEMATISCHE AUFGABENSAMMLUNG MATHEMATISCHE AUFGABENSAMMLUNG Arithmetik Algebra und Analysis Zweite verbesserte Auflage 1956 VEB DEUTSCHER VERLAG DER WISSENSCHAFTEN BERLIN VII INHALT ERSTER ABSCHNITT Rechnen mit natürlichen Zahlen

Mehr

B-P 11: Mathematik für Physiker

B-P 11: Mathematik für Physiker B-P 11: Mathematik für Physiker Status: freigegeben Modulziele Erwerb der Grundkenntnisse der Analysis, der Linearen Algebra und Rechenmethoden der Physik Modulelemente Mathematik für Physiker I: Analysis

Mehr

Modulhandbuch Studiengang Bachelor of Arts (Kombination) Mathematik Prüfungsordnung: 2013 Nebenfach

Modulhandbuch Studiengang Bachelor of Arts (Kombination) Mathematik Prüfungsordnung: 2013 Nebenfach Modulhandbuch Studiengang Bachelor of Arts (Kombination) Mathematik Prüfungsordnung: 2013 Nebenfach Sommersemester 2016 Stand: 14. April 2016 Universität Stuttgart Keplerstr. 7 70174 Stuttgart Inhaltsverzeichnis

Mehr

Polynominterpolation

Polynominterpolation Polynominterpolation In der numerischen Mathematik versteht man unter Polynominterpolation die Suche nach einem Polynom, welches exakt durch vorgegebene Punkte (z. B. aus einer Messreihe) verläuft. Dieses

Mehr

W. Oevel. Mathematik II für Informatiker. Veranstaltungsnr: Skript zur Vorlesung, Universität Paderborn, Sommersemester 2002

W. Oevel. Mathematik II für Informatiker. Veranstaltungsnr: Skript zur Vorlesung, Universität Paderborn, Sommersemester 2002 W. Oevel Mathematik II für Informatiker Veranstaltungsnr: 172010 Skript zur Vorlesung, Universität Paderborn, Sommersemester 2002 Inhalt 1 Komplexe Zahlen 1 1.1 Definitionen..............................

Mehr

Inhaltsverzeichnis Kapitel X: Funktionen von mehreren Variablen Kapitel XI: Gew ohnliche Differentialgleichungen 135

Inhaltsverzeichnis Kapitel X: Funktionen von mehreren Variablen Kapitel XI: Gew ohnliche Differentialgleichungen 135 Inhaltsverzeichnis Kapitel X: Funktionen von mehreren Variablen 1 x1. Differentialrechnung für Funktionen von mehreren Variablen....... 1 1.1 Einführung und Beispiele.............................. 1 1.2

Mehr

Operations Research I

Operations Research I Operations Research I Lineare Programmierung Prof. Dr. Peter Becker Fachbereich Informatik Hochschule Bonn-Rhein-Sieg Sommersemester 2015 Peter Becker (H-BRS) Operations Research I Sommersemester 2015

Mehr

Semester: Studiengang: Dozent: Termine:

Semester: Studiengang: Dozent: Termine: 1 Semester: Studiengang: Dozent: Termine: Winter 2011/12 Mathematik (Bachelor) Prof. Dr. Wolfgang Lauf Mo., 15:15 16:45 Uhr, E204 Di., 13:30 15:00 Uhr, E007 2 Erwartungen / Vorlesung Vorstellung Daten

Mehr

Problem lokaler Minima

Problem lokaler Minima Optimierung Optimierung Häufige Aufgabe bei Parameterschätzung: Minimierung der negativen log-likelihood-funktion F(a) oder der Summe der quadratischen Abweichungen S(a) und Berechnung der Unsicherheit

Mehr

ADS. 1. Vorlesung. Techniken der Programmentwicklung Prof. Dr. Wolfgang Schramm

ADS. 1. Vorlesung. Techniken der Programmentwicklung Prof. Dr. Wolfgang Schramm ADS 1. Vorlesung Techniken der Programmentwicklung Prof. Dr. Wolfgang Schramm 6.10.2016 ORGANISATORISCHES Algorithmen & Datenstrukturen Prof. Dr. Wolfgang Schramm Der Dozent 2 Prof. Dr. Wolfgang Schramm

Mehr

1 Studienpläne bis zum Vordiplom und Bachelor-Abschluss

1 Studienpläne bis zum Vordiplom und Bachelor-Abschluss 1 Studienpläne bis zum Vordiplom und Bachelor-Abschluss Die Pflichtvorlesungen für das Studium Lehramt Mathematik an Gymnasien (LG) stimmen in den ersten Semestern weitgehend mit denen des Studiengangs

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Informationen zur Lehrveranstaltung [email protected] Institute for Mathematics and Scientific Computing Karl-Franzens-Universität Graz Graz, July 19, 2016 Übersicht Motivation Motivation für

Mehr

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

Statistik 1 WS 2013/2014 Universität Hamburg

Statistik 1 WS 2013/2014 Universität Hamburg Statistik 1 WS 2013/2014 Universität Hamburg Dozent: J. Heberle Lehrstuhl für Betriebswirtschaftslehre, insbesondere Mathematik und Statistik in den Wirtschaftswissenschaften Lehrstuhlinhaber: Prof. Dr.

Mehr

Numerische Mathematik

Numerische Mathematik Günther Hämmerlin Karl-Heinz Hoffmann Numerische Mathematik Vierte, nochmals durchgesehene Auflage Mit 72 Abbildungen Springer-Verlag Berlin Heidelberg New York London Paris Tokyo HongKong Barcelona Budapest

Mehr

Teil II: Konzepte imperativer Sprachen

Teil II: Konzepte imperativer Sprachen Teil II: Konzepte imperativer Sprachen Imperative Konzepte und Techniken Eine Einführung am Beispiel von Java K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16 Version: 2. Nov. 2015 II. Konzepte

Mehr

Dirk Hachenberger Mathematik für Informatiker

Dirk Hachenberger Mathematik für Informatiker Dirk Hachenberger Mathematik für Informatiker ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney Mexico City Madrid Amsterdam Inhaltsverzeichnis Vorwort

Mehr

Großes Lehrbuch der Mathematik für Ökonomen

Großes Lehrbuch der Mathematik für Ökonomen Großes Lehrbuch der Mathematik für Ökonomen Von Professor Dr. Karl Bosch o. Professor für angewandte Mathematik und Statistik an der Universität Stuttgart-Hohenheim und Professor Dr. Uwe Jensen R. Oldenbourg

Mehr

Ingenieurinformatik. Einführung in die Programmiersprache C

Ingenieurinformatik. Einführung in die Programmiersprache C Ingenieurinformatik Einführung in die Programmiersprache C 1 Bachelorstudiengänge Maschinenbau, Fahrzeugtechnik, Luft- und Raumfahrt (Studienplan ab WS2013/14) Teil 1: Einführung in die Programmiersprache

Mehr

Mathematische Begriffe visualisiert mitmaplev

Mathematische Begriffe visualisiert mitmaplev T. Westermann W. Buhmann L. Diemer E. Endres M. Laule G. Wilke Mathematische Begriffe visualisiert mitmaplev für Lehrer und Dozenten 0» Springer Inhaltsverzeichnis 1. Einführung 1 1.1 Systemvoraussetzungen

Mehr

Übungsbuch Mathematik für Fachschule Technik und Berufskolleg

Übungsbuch Mathematik für Fachschule Technik und Berufskolleg Übungsbuch Mathematik für Fachschule Technik und Berufskolleg Heinz Rapp Jörg Matthias Rapp Übungsbuch Mathematik für Fachschule Technik und Berufskolleg Anwendungsorientierte Aufgaben mit ausführlichen

Mehr

Kurstage Geprüfte(r) Technischer Fachwirt(-in) IHK

Kurstage Geprüfte(r) Technischer Fachwirt(-in) IHK Kurstage Geprüfte(r) Technischer Fachwirt(-in) IHK 16.04.2016 Samstag H 22.10.2016 Samstag H 23.04.2016 Samstag H 05.11.2016 Samstag H 24.04.2016 Sonntag H 19.11.2016 Samstag H 30.04.2016 Samstag H 26.11.2016

Mehr

Mathematik. Merkur. Haarmann Wolpers. zur Erlangung der allgemeinen Hochschulreife Technische Fachrichtungen Band 1.

Mathematik. Merkur. Haarmann Wolpers. zur Erlangung der allgemeinen Hochschulreife Technische Fachrichtungen Band 1. Haarmann Wolpers Mathematik zur Erlangung der allgemeinen Hochschulreife Technische Fachrichtungen Band 1 Merkur Verlag Rinteln Wirtschaftswissenschaftliche Bücherei für Schule und Praxis Begründet von

Mehr

Übersicht über die mathematischen Module der Bachelor- und Masterstudiengänge Mathematik, Wirtschaftsmathematik und Technomathematik

Übersicht über die mathematischen Module der Bachelor- und Masterstudiengänge Mathematik, Wirtschaftsmathematik und Technomathematik Übersicht über die mathematischen Module der Bachelor- und Masterstudiengänge Mathematik, Wirtschaftsmathematik und Technomathematik Modul LP Prüfungsform 1 Pflichtmodule Bachelor Mathematik, Wirtschaftsmathematik

Mehr

Algorithmen und Datenstrukturen (AuD) Prof. Dr. Claudia Eckert und Dr. Thomas Stibor

Algorithmen und Datenstrukturen (AuD) Prof. Dr. Claudia Eckert und Dr. Thomas Stibor Algorithmen und Datenstrukturen (AuD) Prof. Dr. Claudia Eckert und Dr. Thomas Stibor Organisatorisches: Vorlesung 4 SWS, Zentralübung 2 SWS: 6 Credit Points Mi 9:45 11:15 Raum 1200 (Vorlesung) Do 8:00

Mehr

Mathematik im Betrieb

Mathematik im Betrieb Heinrich Holland/Doris Holland Mathematik im Betrieb Praxisbezogene Einführung mit Beispielen 7, überarbeitete Auflage GABLER Inhaltsverzeichnis Vorwort 1 Mathematische Grundlagen 1.1 Zahlbegriffe 1.2

Mehr

Kurstage IT Fachwirt(-in) IHK

Kurstage IT Fachwirt(-in) IHK Kurstage IT Fachwirt(-in) IHK 21.05.2016 Samstag H 23.09.2016 Freitag H Vertiefungstag 28.05.2016 Samstag H 24.09.2016 Samstag H Vertiefungstag 11.06.2016 Samstag H 25.09.2016 Sonntag H Vertiefungstag

Mehr

Mathematik in der Biologie

Mathematik in der Biologie Erich Bohl Mathematik in der Biologie 4., vollständig überarbeitete und erweiterte Auflage Mit 65 Abbildungen und 16 Tabellen ^J Springer Inhaltsverzeichnis Warum verwendet ein Biologe eigentlich Mathematik?

Mehr

Veranstaltung Pr.-Nr.: Modul Wirtschaftsinformatik für Wirtschaftswissenschaftler. Organisatorisches. Veronika Waue WS 2007/2008

Veranstaltung Pr.-Nr.: Modul Wirtschaftsinformatik für Wirtschaftswissenschaftler. Organisatorisches. Veronika Waue WS 2007/2008 Veranstaltung Pr.-Nr.: 101023 Modul Wirtschaftsinformatik für Wirtschaftswissenschaftler Organisatorisches Veronika Waue WS 2007/2008 Hallo Dr. Veronika Waue Zimmer: 214 E-mail: [email protected] Sprechstunde:

Mehr

Sporthalle_Federseeschule_Wochenplan_ KW. Montag Dienstag Mittwoch Donnerstag Freitag Samstag Sonntag

Sporthalle_Federseeschule_Wochenplan_ KW. Montag Dienstag Mittwoch Donnerstag Freitag Samstag Sonntag 31. KW 1. Aug. 2. Aug. 3. Aug. 4. Aug. 5. Aug. 6. Aug. 7. Aug. SVB-Zeiten ab Oktober Ferien w C/ Turnen Kinderferienprogramm 08:00 32. KW 8. Aug. 9. Aug. 10. Aug. 11. Aug. 12. Aug. 13. Aug. 14. Aug. SVB-Zeiten

Mehr

Analysis und Lineare Algebra mit MuPAD

Analysis und Lineare Algebra mit MuPAD Analysis und Lineare Algebra mit MuPAD Dehling/Kubach Mögliche Themen für Abschlussprojekte 1 Fourier-Reihen Zu einer integrierbaren Funktion f : [0,2π] R definieren wir die Fourier-Reihe wobei a 0 = 1

Mehr

FACHCURRICULUM KL. 9. Raum und Form Figuren zentrisch strecken Üben und Festigen. Strahlensätze. Rechtwinklige Dreiecke.

FACHCURRICULUM KL. 9. Raum und Form Figuren zentrisch strecken Üben und Festigen. Strahlensätze. Rechtwinklige Dreiecke. MATHEMATIK Schönbuch-Gymnasium Holzgerlingen Seite 1/5 Ähnliche Figuren - Strahlensätze Figuren zentrisch strecken Eigenschaften der zentrischen Streckung kennen und Zentrische Streckung anwenden Strahlensätze

Mehr

Springer Studium Mathematik Bachelor

Springer Studium Mathematik Bachelor Springer Studium Mathematik Bachelor Herausgegeben von M. Aigner, Freie Universität Berlin, Berlin, Germany H. Faßbender, Technische Universität Braunschweig, Braunschweig, Germany B. Gentz, Universität

Mehr

Inhaltsverzeichnis. 2 Anwendungsfelder und Software Problemklassen Kommerzielle Software 12

Inhaltsverzeichnis. 2 Anwendungsfelder und Software Problemklassen Kommerzielle Software 12 Bernd Klein FEM Grundlagen und Anwendungen der Finite-Element-Methode im Maschinen- und Fahrzeugbau 8., verbesserte und erweiterte Auflage Mit 230 Abbildungen, 12 Fallstudien und 20 Übungsaufgaben STUDIUM

Mehr

Ergänzungsseminar zu "Rechenmethoden für Studierende der Chemie"

Ergänzungsseminar zu Rechenmethoden für Studierende der Chemie Ergänzungsseminar zu "Rechenmethoden für Studierende der Chemie" VAK 02-03-2-RM-3 Johannes Ranke Ergänzungsseminar zu "Rechenmethoden für Studierende der Chemie" p.1/13 Programm 18.4. Überblick über Software

Mehr

Mathematik für Biologen und Biotechnologen (240109)

Mathematik für Biologen und Biotechnologen (240109) Mathematik für Biologen und Biotechnologen (240109) Dr. Matthieu Felsinger Sommersemester 2014 Kontakt Matthieu Felsinger [email protected] Homepage: www.math.uni-bielefeld.de/~matthieu

Mehr

Mathematik mit MATH. Hans Benker. Arbeitsbuch für Studierende, Ingenieure und Naturwissenschaftler. Springer

Mathematik mit MATH. Hans Benker. Arbeitsbuch für Studierende, Ingenieure und Naturwissenschaftler. Springer 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Hans Benker Mathematik mit MATH Arbeitsbuch für Studierende, Ingenieure

Mehr

Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik'

Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik' Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik' 1. Diskretisierung in der Zeit: Die Evolutionsgleichung Kurzzusammenfassung Zur Erprobung der Verfahren zur zeitlichen Diskretisierung

Mehr

Interpolation und Approximation

Interpolation und Approximation Interpolation und Approximation Fakultät Grundlagen Mai 2006 Fakultät Grundlagen Interpolation und Approximation Übersicht 1 Problemstellung Polynominterpolation 2 Kubische Fakultät Grundlagen Interpolation

Mehr

Studienverlaufspläne M.Sc. Computational Science. 19. Juli 2011

Studienverlaufspläne M.Sc. Computational Science. 19. Juli 2011 Studienverlaufspläne M.Sc. Computational Science 19. Juli 2011 1 Vertiefungsfach Wissenschaftliches Rechnen Specialization Scientific Computing Zusatzpraktikum Modellierung und Simulation I P2 4 Modellierung

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

Numerische Methoden I FEM/REM

Numerische Methoden I FEM/REM Numerische Methoden I FEM/REM Dr.-Ing. Markus Kästner ZEU 353 Tel.: 035 463 32656 E-Mail: [email protected] Dresden, 27.0.206 Klausur Datum: 2.3.206 Numerische Methoden RES, SM, MT (DPO 203),

Mehr

Formelsammlung für Wirtschaftswissenschaftler

Formelsammlung für Wirtschaftswissenschaftler Fred Böker Formelsammlung für Wirtschaftswissenschaftler Mathematik und Statistik PEARSON.. ;. ; ; ; *:;- V f - - ' / > Щ DtUClllirn ein Imprint von Pearson Education München Boston San Francisco Harlow,

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik Wintersemester 2016/2017 2V, Mittwoch, 12:00-13:30 Uhr, F303 2Ü, Dienstag, 12:00-13:30 Uhr, BE08 2Ü, Dienstag, 15:00-16:30 Uhr, B212 2Ü, Mittwoch, 8:30-10:00 Uhr, B312 Fachprüfung:

Mehr

Kern- und Schulcurriculum Mathematik Klasse 11/12. Stand Schuljahr 2012/13

Kern- und Schulcurriculum Mathematik Klasse 11/12. Stand Schuljahr 2012/13 Kern- und Schulcurriculum Mathematik Klasse 11/12 Stand Schuljahr 2012/13 UE 1 Wiederholung Funktionen Änderungsrate Ableitung Ableitung berechnen Ableitungsfunktion Ableitungsregeln für Potenz, Summe

Mehr

Box. Mathematik ZU DEN KERNCURRICULUM-LERNBEREICHEN:

Box. Mathematik ZU DEN KERNCURRICULUM-LERNBEREICHEN: Box Mathematik A B Schülerarbeitsbuch C D Niedersachsen Analysis ZU DEN KERNCURRICULUM-LERNBEREICHEN: Kurvenanpassung Interpolation Von der Änderung zum Bestand Integralrechnung Wachstumsmodelle Exponentialfunktion

Mehr

Mathematik für BWL-Bachelor: Übungsbuch

Mathematik für BWL-Bachelor: Übungsbuch Heidrun Matthäus Wolf-Gert Matthäus Mathematik für BWL-Bachelor: Übungsbuch Ergänzungen für Vertiefung und Training STUDIUM VIEWEG+ TEUBNER Inhaltsverzeichnis AI Mathematisches Handwerkszeug: Beispiele

Mehr

Lineare Algebra und Numerische Mathematik

Lineare Algebra und Numerische Mathematik Lineare Algebra und Numerische Mathematik Prof. Ralf Hiptmair Seminar for Applied Mathematics, ETH Zürich Vorlesung für D-BAUG Herbstsemester 2014 www.math.ethz.ch/education/bachelor/lectures/hs2014/other/linalgnum_baug

Mehr

Ein Beispiel für eine lineare Abbildung

Ein Beispiel für eine lineare Abbildung Inhaltsverzeichnis Ein Beispiel für eine lineare Abbildung Lothar Melching Vorbemerkungen 2 Ein Beispiel 2 2 Definition der Abbildung f 2 22 Die Abbildungsmatrix 3 23 Anwendung 3 Eigenwerte 3 Die neue

Mehr

Kurstage Geprüfte(r) Technischer Fachwirt(-in) IHK

Kurstage Geprüfte(r) Technischer Fachwirt(-in) IHK Kurstage Geprüfte(r) Technischer Fachwirt(-in) IHK 06.10.2012 Samstag MD 15.02.2013 Freitag MD Vertiefungstag 20.10.2012 Samstag MD 16.02.2013 Samstag MD Vertiefungstag 03.11.2012 Samstag MD 17.02.2013

Mehr