Prüfung zur Vorlesung Mathematik I/II

Größe: px
Ab Seite anzeigen:

Download "Prüfung zur Vorlesung Mathematik I/II"

Transkript

1 Dr. A. Caspar ETH Zürich, August 06 D-BIOL, D-CHAB, D-HEST Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle MC Total MC Total Total Vollständigkeit Bitte wenden!

2 Wichtige Hinweise zur Prüfung Prüfungsdauer: 3 Stunden. Erlaubte Hilfsmittel: 0 A4-Seiten (nicht Blätter!) mit persönlichen, von Hand geschriebenen Notizen. Keine (Taschen)Rechner. Wörterbuch für fremdsprachige Studierende. Bitte beachten Sie folgende Punkte: Tragen Sie jetzt Ihren Namen in das Deckblatt ein und geben Sie es am Ende der Prüfung als vorderstes Blatt Ihrer Arbeit ab. Legen Sie Ihre Legi offen auf den Tisch. Beginnen Sie jede Aufgabe auf einem neuen Blatt. Begründen Sie Ihre Lösungen, soweit nicht anders angegeben. Dabei können Sie bekannte Formeln aus der Vorlesung und den Übungen ohne Herleitung verwenden. Schreiben Sie nicht mit Bleistift und nicht mit roter oder grüner Farbe. Die Reihenfolge der Bearbeitung der Aufgaben ist Ihnen freigestellt. Ordnen Sie jedoch am Ende der Prüfung die Aufgaben für die Abgabe. Wir erwarten nicht, dass Sie alle Aufgaben lösen. Versuchen Sie einfach Ihr Bestes! Verweilen Sie nicht zu lange bei einer Aufgabe, die Ihnen Schwierigkeiten bereitet. Bei einer Multiple-Choice-Aufgabe (MC-Aufgabe) sind jeweils 4 Aussagen/Antworten angegeben, davon sind jeweils genau korrekt. Eine MC-Aufgabe ist genau dann korrekt gelöst, wenn Sie die korrekten Antworten mit richtig und die inkorrekten mit falsch kennzeichnen. Sie müssen also bei jeder MC- Aufgabe genau 4 Kreuze setzen und jedes muss jeweils an der richtigen Stelle sein. Zum Beispiel ist folgende MC-Aufgabe nur mit diesen 4 Kreuzen korrekt gelöst. richtig falsch Hier steht eine korrekte Aussage/Antwort. Hier steht eine korrekte Aussage/Antwort. Hier steht eine inkorrekte Aussage/Antwort. Hier steht eine inkorrekte Aussage/Antwort. Bei den MC-Aufgaben werden nur die Antworten auf den Aufgabenblättern bewertet. Die Antworten in den MC-Aufgaben müssen nicht begründet werden. Viel Erfolg! Siehe nächstes Blatt!

3 Aufgaben. ( Punkte) Die Antworten in dieser Aufgabe müssen Sie nicht begründen. Schreiben Sie die Antworten vollständig gekürzt und vereinfacht direkt auf das Aufgabenblatt. Antworten auf anderen Blättern werden nicht bewertet. a) Berechnen Sie die Ableitung der Funktion f mit f() = sin() cos(): f () =. Die Ableitung f hat im Intervall [0, π] zwei Fipunkte und mit = 0 und =. b) Berechnen Sie d =. Dabei können Sie die Integrationskonstante C = 0 wählen. Hinweis: Das geht auch ohne Partialbruchzerlegung. c) Bestimmen Sie das grösste c < 0, sodass die Funktion f : R \ { } R, + für alle < c streng monoton wachsend ist. c = d) Sei b R und sei f : R R gegeben durch b sin() f() = π 3 3 für π π für = π. Wie muss b gewählt werden, damit f eine stetige Funktion auf ganz R ist? b = Bitte wenden!

4 e) Die Entwicklung a n+ = a n + 3 a n besitzt zwei Fipunkte a und ã. Rechnen Sie die Fipunkte aus. Achten Sie beim Eintragen der Fipunkte auf dem Aufgabenblatt auf das angegebene Vorzeichen (einer der Fipunkte ist positiv, der andere ist negativ). a = > 0 und ã = < 0. f) MC-Aufgabe Kreuzen Sie Ihre Antworten direkt auf dem Aufgabenblatt an. Sei a n+ = a n + 3 die Entwicklung mit den Fipunkten a und ã aus Aufgabe e) und a n sei f die Reproduktionsfunktion der Entwicklung. Welche der folgenden Aussagen sind richtig? richtig falsch Für jeden Startwert a 0 nahe a gilt lim n a n = a. Für jeden Startwert a 0 nahe ã gilt lim n a n = ã. Die Gerade g zeigt die Tangente an den Graphen der Funktion f im Punkt a : 5 g f a 5 4 Die Gerade g zeigt die Tangente an den Graphen der Funktion f im Punkt a : 5 4 g f a 5 Siehe nächstes Blatt!

5 g) MC-Aufgabe Kreuzen Sie Ihre Antworten direkt auf dem Aufgabenblatt an. Wir betrachten die Funktion f mit f() =. Welche der folgenden Aussagen sind richtig? richtig falsch Der Graph von f ist Der Graph von f ist Die Funktion f ist in differenzierbar mit f () = 0. Die Funktion f ist in 0 differenzierbar mit f (0) =. h) Sei f wie in der obigen Aufgabe g) die Funktion mit f() =. Berechnen Sie 0 f() d =. Bitte wenden!

6 . (4 Punkte) In den Aufgabe a) und b) bezeichnet i die imaginäre Einheit. Es gilt also i =. a) MC-Aufgabe Kreuzen Sie Ihre Antworten direkt auf dem Aufgabenblatt an. Das Resultat der Rechnung ist + i i + i i + i = z richtig falsch z = e i π. z = i. z = i. z = e i π 4. Bei den Aufgaben b) und c) müssen Sie Ihre Antworten nicht begründen. Schreiben Sie die Antworten vollständig gekürzt und vereinfacht direkt auf das Aufgabenblatt. Antworten auf anderen Blättern werden nicht bewertet. b) Die Gleichung z 4 4i = 0 besitzt im ersten Quadranten die Lösung z = e i π 8. Geben Sie die Polardarstellung z 3 = re iϕ (mit r > 0 und π < ϕ π) der Lösung z 3 im dritten Quadranten an (siehe Abbildung).. Quadrant. Quadrant 3. Quadrant 4. Quadrant Schreiben Sie Ihre Antwort direkt auf das Aufgabenblatt. z 3 =. Siehe nächstes Blatt!

7 c) Sei a R und A = a. i) Geben Sie die Eigenwerte von A direkt auf dem Aufgabenblatt an. λ = + + a λ = λ 3 = ii) Bestimmen Sie a R so, dass das homogene lineare Gleichungssstem A = 0 eine nicht-triviale Lösung 0 besitzt. Geben Sie a direkt auf dem Aufgabenblatt an. a = iii) Bestimmen Sie a R so, dass A zwei komplee Eigenwerte mit Betrag 3 hat. Geben Sie a direkt auf dem Aufgabenblatt an. a = d) Lösen Sie das lineare Gleichungssstem = 8 3 mit dem Gauss-Verfahren. n+ = n + n e) Gegeben sei das Entwicklungsmodell. n+ = n i) Sei v n = ( n ) R. n Geben Sie die Matri A an, mit der das Entwicklungsmodell in Matrischreibweise geschrieben werden kann, d.h. in der Form v n+ = Av n. b Bestimmen Sie zusätzlich b R so, dass der Vektor ein Eigenvektor von A ist. ( b Hinweis: Falls Sie die Matri A nicht gefunden haben, bestimmen Sie b so, dass ) / 3 ein Eigenvektor der Matri à = ist. 0 0 ii) Geben Sie einen Startvektor v 0 an, sodass die Folge der Vektoren v 0 0, v, v,... ( 0 zum Nullvektor v = konvergiert. 0) Hinweis: ( Falls) Sie Teilaufgabe i) nicht gelöst haben, nehmen Sie wieder die Matri / 3 à = und die Entwicklung v 0 n+ = Ãv n. Bitte wenden!

8 3. (0 Punkte) a) Das Richtungsfeld einer Differentialgleichung () = F (, ()) sei: 4 3 () Die Lösung () der Differentialgleichung zum Anfangswert (0) =.8 konvergiert für. Geben Sie die Antwort direkt auf dem Aufgabenblatt an. lim () = Sie müssen Ihre Antwort nicht begründen. Schreiben Sie diese vollständig gekürzt und vereinfacht direkt auf das Aufgabenblatt. Antworten auf anderen Blättern werden nicht bewertet. Siehe nächstes Blatt!

9 b) MC-Aufgabe Kreuzen Sie Ihre Antworten direkt auf dem Aufgabenblatt an. Wir betrachten das lineare Differentialgleichungssstem (DGL-Sstem) 6 5 (t) = (t) (t) mit (t) = und (t) (t) = (t) (t). Hinweis: Die Vektoren Welche der folgenden Aussagen sind richtig? ( und sind Eigenvektoren der Matri. ) richtig falsch Die allgemeine Lösung dieses Differentialgleichungssstems ist (t) = C e t + C 5 e 4t mit Konstanten C, C R. Die Lösung (t) des DGL-Sstems zum Anfangswert (0) = stabilisiert sich für t in Richtung des Vektors. 3 3 Die Lösung des DGL-Sstems zum Anfangswert (0) = 0 ist gegeben durch (t) = e t + 0 e 4t. 4 4 Die erste Komponente einer Lösung des DGL-Sstems erfüllt die Differentialgleichung. Ordnung () 5 () + 4 () = 0. c) Finden Sie die allgemeine Lösung von () = () +. Hinweis: Es gilt e d = e e + C. d) Lösen Sie das Anfangswertproblem () = (() ) mit (0) = 0. Hinweis: Es gilt = ( ). + Bitte wenden!

10 4. (0 Punkte) a) MC-Aufgabe Kreuzen Sie Ihre Antworten direkt auf dem Aufgabenblatt an. Sei f : R R mit f(, ) = Welche der folgenden Aussagen sind richtig? richtig falsch Der Punkt (0, 0) liegt auf der Niveaulinie von f zur Höhe 3. Der Gradient von f ist f(, ) = f (, ) = 3 3. f (, ) 3 Die Gleichung der Tangentialebene an den Graphen der Funktion f im Punkt (,, ) ist gegeben durch l(, ) = z = 3 5. Die Funktion f hat bei ( 3, 9 4) einen Sattelpunkt. b) Wir betrachten die Niveaulinie der Funktion f aus Aufgabe 4a) zur Höhe 0, also die Kurve in R, die gegeben ist durch f(, ) = 0. Diese Kurve hat drei Schnittpunkte mit der Geraden = +. Bestimmen Sie den Schnittpunkt mit negativem (< 0) -Wert. c) Wir betrachten wieder die Kurve in R, die gegeben ist durch f(, ) = 0 mit der Funktion f aus Aufgabe 4a). Rechnen Sie die Steigung dieser Kurve im Schnittpunkt aus Aufgabe 4b) aus. Hinweis: Falls Sie den Schnittpunkte nicht berechnen konnten, rechnen Sie die Steigung der Kurve im Punkt (0, ) aus. Siehe nächstes Blatt!

11 ( ) e d) Gegeben Sei das Vektorfeld K mit K(, ) = +. sin() + Berechnen Sie div(k). e) Sei K das Vektorfeld aus Aufgabe 4d). Sei B R das Gebiet, welches durch die Gerade = 4 und die Parabel = begrenzt wird (siehe Abbildung). 4 B = Berechnen Sie das Integral div(k) da. B Hinweis: Falls Sie Aufgabe 4d) nicht gelöst haben, nehmen Sie an, dass div(k) = div(k)(, ) = +. Bitte wenden!

12 5. (4 Punkte) a) MC-Aufgabe Kreuzen Sie Ihre Antworten direkt auf dem Aufgabenblatt an. Welche der folgenden Aussagen sind richtig? richtig falsch Das Vektorfeld K mit K(, ) = e ist konservativ. e Das Vektorfeld K mit K(, ) = e + ist konservativ. e + Das Vektorfeld K mit K(, ) = sin() ist konservativ. cos() + sin ( 3 ) Das Vektorfeld K mit K(, ) = sin + 3 ist konservativ. 3 + sin( ) Siehe nächstes Blatt!

13 b) MC-Aufgabe Kreuzen Sie Ihre Antworten direkt auf dem Aufgabenblatt an. 5 + Sei K : R R das Vektorfeld K(, ) =. 3 Weiter sei folgende positiv orientierte Kurve γ gegeben, welche das Gebiet B in der (, )- Ebene umrandet (die Pfeile kennzeichnen die Durchlaufrichtung): B γ = B Welche der folgenden Aussagen sind richtig? richtig falsch Das Arbeitsintegral vom K entlang γ ist K dγ = 0. γ Der Fluss von K durch γ von innen nach aussen ist K n ds = 0. γ Das Gebietsintegral der konstanten Funktion über B ist da = 9. B Der Flächeninhalt von B ist 4. c) Gegeben seien das Vektorfeld K und die Funktion f mit + K(, ) = + f(, ) = a( + ) 3 3 mit einer Konstanten a R. Bestimmen Sie a so, dass K das Gradientenfeld von f ist, das heisst K = f. Bitte wenden!

14 d) Sei K das Vektorfeld aus Aufgabe 5c). Sei γ = γ + γ die Kurve in der (, )-Ebene, die zusammengesetzt ist aus = von (0, 0) bis (, ) und aus der geradlinigen Verbindung von (, ) bis (, 3) (siehe Abbildung, die Pfeile kennzeichnen die Durchlaufrichtung). 3 γ γ = Berechnen Sie das Kurvenintegral von K entlang der Kurve γ = γ + γ, also Hinweis: Das geht auch ohne Parametrisierungen. γ K dγ. e) Gegeben seien die drei Kurven γ, γ und γ 3, die den Rand des Dreiecks B mit Eckpunkten (0, 0), (, 0) und (, ) bilden (siehe Abbildung, die Pfeile kennzeichnen die Durchlaufrichtung). γ 3 B γ γ Geben Sie für γ, γ und γ 3 jeweils eine mögliche Parametrisierung an. Achten Sie dabei auf die Durchlaufrichtung. Schreiben Sie Ihre Antwort direkt auf das Aufgabenblatt. γ : t γ (t) = γ : t γ (t) = γ 3 : t γ 3 (t) = für 0 t für 0 t für 0 t Sie müssen Ihre Antworten nicht begründen. Schreiben Sie die Antworten vollständig gekürzt und vereinfacht direkt auf das Aufgabenblatt. Antworten auf anderen Blättern werden nicht bewertet. Siehe nächstes Blatt!

15 f) Sei K das Vektorfeld mit K(, ) = +. + Sei γ = γ +γ +γ 3 die Kurve in der (, )-Ebene, die zusammengesetzt ist aus den Kurven γ, γ und γ 3 aus Aufgabe 5e), welche das Dreieck B mit Eckpunkten (0, 0), (, 0) und (, ) begrenzen (siehe Abbildung). γ 3 B γ γ Berechnen Sie das Flussintegral von K durch die Kurve γ = γ + γ + γ 3 von innen nach aussen, also K n ds. Hinweis: Das geht auch ohne Berechnung des Vektors n. γ

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, Februar 07 D-BIOL, D-CHAB, D-HEST Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle MC Total MC Total 3

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August BIOL-B GES+T PHARM Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle MC Total MC Total 3 4 5 6 -

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, Januar 0 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 3 6 Total Vollständigkeit Bitte

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total

Mehr

Prüfung zur Vorlesung Mathematik III

Prüfung zur Vorlesung Mathematik III Dr. A. Caspar ETH Zürich, August 2013 Prof. N. Hungerbühler HST, Lehrdiplom D-MATH Prüfung zur Vorlesung Mathematik III Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, August 2009 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Bitte nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

Prüfung zur Vorlesung Mathematik III

Prüfung zur Vorlesung Mathematik III Dr. A. Caspar ETH Zürich, Febbruar 2017 Prof. N. Hungerbühler HST, Lehrdiplom D-MATH Prüfung zur Vorlesung Mathematik III Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle

Mehr

Klausur Lineare Algebra I & II

Klausur Lineare Algebra I & II Prof. Dr. G. Felder, Dr. Thomas Willwacher ETH Zürich, Sommer 2010 D MATH, D PHYS, D CHAB Klausur Lineare Algebra I & II Bitte ausfüllen! Name: Vorname: Studiengang: Bitte nicht ausfüllen! Aufgabe Punkte

Mehr

PROBEPRÜFUNG MATHEMATIK I UND II

PROBEPRÜFUNG MATHEMATIK I UND II PROBEPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften Für diese Probeprüfung sind ca 4 Stunden vorgesehen. Die eigentliche Prüfung wird signifikant

Mehr

BASISPRÜFUNG MATHEMATIK I UND II

BASISPRÜFUNG MATHEMATIK I UND II ETH Zürich Sommer 015 Dr. Ana Cannas BASISPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften 1. Sei a) Ist das System lösbar? b) Lösen Sie das System

Mehr

D-MAVT & D-MATL Analysis I & II Sommer 2012 Prof. Dr. Giovanni Felder

D-MAVT & D-MATL Analysis I & II Sommer 2012 Prof. Dr. Giovanni Felder D-MAVT & D-MATL Analysis I & II Sommer 2012 Prof. Dr. Giovanni Felder Prüfung WICHTIG: Die Prüfung dauert 4 Stunden (240 Minuten). Verwenden Sie bitte für jede Aufgabe ein neues Blatt und schreiben Sie

Mehr

Serie 7: Kurvenintegrale

Serie 7: Kurvenintegrale D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 7: Kurvenintegrale Bemerkungen: Die Aufgaben der Serie 7 bilden den Fokus der Übungsgruppen vom 4./6. April.. Ordnen Sie den Kurven -8 die

Mehr

Klausur. Wir wünschen Ihnen viel Erfolg! Klausur Mathematik für Informatiker und Softwaretechniker

Klausur. Wir wünschen Ihnen viel Erfolg! Klausur Mathematik für Informatiker und Softwaretechniker Apl. Prof. Dr. W.-P. Düll Fachbereich Mathematik Universität Stuttgart Klausur für Studierende der Fachrichtungen inf, swt Bitte unbedingt beachten: Bitte beschriften Sie jeden Ihrer Zettel mit Namen und

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 4

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 4 D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie 4. MC-Aufgaben Online-Abgabe). Es sei f : [a, b] R eine Funktion. Welche der folgenden Aussagen ist richtig? a) b) f ist stetig f ist differenzierbar.

Mehr

Basisprüfung, Gruppe A Analysis I/II

Basisprüfung, Gruppe A Analysis I/II Offene Aufgaben. Jeder der folgenden sieben offenen Aufgaben ist eine einzelne thematisch verwandte Single Choice-Aufgabe vorangestellt. Beantworten Sie die Single Choice Aufgabe auf dem Antwortzettel.

Mehr

Höhere Mathematik III

Höhere Mathematik III Universität Stuttgart Fachbereich Mathematik Prof. Dr. J. Pöschel Dr. D. Zimmermann Dipl.-Math. K. Sanei Kashani Blatt 5 Höhere Mathematik III el, kb, mecha, phs Vortragsübungen (Musterlösungen) 7..4 Aufgabe

Mehr

Zwischenprüfung Winter 2016 Analysis I D-BAUG

Zwischenprüfung Winter 2016 Analysis I D-BAUG ETH Zürich Zwischenprüfung Winter 216 Analysis I D-BAUG Dr. Meike Akveld Wichtige Hinweise Prüfungsdauer: 9 Minuten. Zugelassene Hilfsmittel: Keine, ausser das verteilte Blatt mit Standardintegralen. Es

Mehr

Serie 4: Flächeninhalt und Integration

Serie 4: Flächeninhalt und Integration D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr. Ana Cannas Serie 4: Flächeninhalt und Integration Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom. und 4. Oktober.. Das Bild zeigt

Mehr

Serie 4: Gradient und Linearisierung

Serie 4: Gradient und Linearisierung D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 4: Gradient und Linearisierung Bemerkungen: Die Aufgaben der Serie 4 bilden den Fokus der Übungsgruppen vom 7./9. März.. Wir betrachten die

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

Analysis I & II Lösung zur Basisprüfung

Analysis I & II Lösung zur Basisprüfung FS 6 Aufgabe. [8 Punkte] (a) Bestimmen Sie den Grenzwert ( lim x x ). [ Punkte] log x (b) Beweisen Sie, dass folgende Reihe divergiert. n= + n + n + sin(n) n 3 + [ Punkte] (c) Finden Sie heraus, ob die

Mehr

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen Fachbereich Mathematik/Informatik 6. Juni 0 Prof. Dr. H. Brenner Mathematik für Anwender II Testklausur mit Lösungen Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Ein Skalarprodukt

Mehr

Klausur zu den Mathematischen Methoden in der Physik

Klausur zu den Mathematischen Methoden in der Physik Klausur zu den Mathematischen Methoden in der Phsik Regeln: i.) Außer Schreibutensilien sind keine weiteren Hilfsmittel erlaubt. Verwenden Sie dokumentenechtes Schreibwerkzeug (kein Bleistift!). ii.) Bitte

Mehr

Analysis II - 2. Klausur

Analysis II - 2. Klausur Analysis II - 2. Klausur Sommersemester 25 Vorname: Name: Aufgabe Aufgabe 2 Aufgabe 3 Aufgabe 4 Aufgabe 5 Aufgabe 6 Aufgabe 7 Summe Analysis II - 2. Klausur 6.7.25 Aufgabe 6 Punkte Betrachten Sie die C

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

12. Übungsblatt zur Analysis II

12. Übungsblatt zur Analysis II Fachbereich Mathematik Prof. Dr. Steffen Roch Nada Sissouno Benno van den Berg WS 9/1 1.1.1 1. Übungsblatt zur Analysis II Gruppenübung Aufgabe G1 Kreuzen Sie die richtigen Aussagen an. Sei V C 1 (R n,

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen

Mehr

Mathematik B Prüfung Frühjahrssemester 2017

Mathematik B Prüfung Frühjahrssemester 2017 Mathematik B Prüfung Frühjahrssemester 2017 Dr. Reto Schuppli 26. Juni 2017 Mathematik B: Prüfung Frühjahrssemester 2017 1 phantom Teil I: Oene Fragen (50 Punkte) Allgemeine Anweisungen für oene Fragen:

Mehr

Selbsteinschätzungstest Auswertung und Lösung

Selbsteinschätzungstest Auswertung und Lösung Selbsteinschätzungstest Auswertung und Lösung Abgaben: 46 / 587 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: Durchschnitt: 7 Frage (Diese Frage haben ca. 0% nicht beantwortet.) Welcher Vektor

Mehr

Prüfung Modul A, Teil 2 (Mathematik 2) (Fernstudium Bauingenieurwesen)

Prüfung Modul A, Teil 2 (Mathematik 2) (Fernstudium Bauingenieurwesen) Name: Vorname: Matrikelnummer: TU Dresden, Fachrichtung Mathematik, Dr. N. Koksch 6. Februar 8 Prüfung Modul A, Teil (Mathematik ) (Fernstudium auingenieurwesen) ewertet werden nur solche Lösungsschritte,

Mehr

Lösungsvorschläge zur Klausur

Lösungsvorschläge zur Klausur Prüfung in Höhere Mathematik 3 5. September 3 Lösungsvorschläge zur Klausur für bau, ernen, fmt, IuI, mach, tema, umw, verf, geod und so weiter ; Aufgabe : Punkte Im R 3 wird eine Fläche T durch die Abbildung

Mehr

Lösungsvorschlag Klausur MA9802

Lösungsvorschlag Klausur MA9802 Lehrstuhl für Numerische Mathematik Garching, den 3.8.22 Prof. Dr. Herbert Egger Dr. Matthias Schlottbom Lösungsvorschlag Klausur MA982 Aufgabe [3 + 3 Punkte] Berechnen Sie, falls existent, die folgenden

Mehr

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld Bitte wenden! 1. Die unten stehende Figur wird beschrieben durch... (a) { (x, y) R 2 x + y 1 }. Richtig! (b) { (x,

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 2 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Mittsemesterprüfung HS, Typ A Name a a Note Vorname Leginummer Datum 29..2 2 4 6 Total

Mehr

D-ITET Analysis II FS 13 Prof. Horst Knörrer. Musterlösung 1. 3xy 2 = 2 x 2. y y. 3 y y. 3 x v x + v = 2 3 v v.

D-ITET Analysis II FS 13 Prof. Horst Knörrer. Musterlösung 1. 3xy 2 = 2 x 2. y y. 3 y y. 3 x v x + v = 2 3 v v. D-ITET Analysis II FS 3 Prof. Horst Knörrer Musterlösung. a) Es gilt: dy d 3 + y 3 3y 3 y + y 3. Dies ist eine homogene Differentialgleichung, das heisst y hängt nur von y ab. Setze v : y y() v() y v +

Mehr

Serie 8. D-BAUG Analysis II FS 2015 Dr. Meike Akveld. 1. Berechnen Sie für das Vektorfeld (siehe Abbildung 1) Abbildung 1: Aufgabe 1

Serie 8. D-BAUG Analysis II FS 2015 Dr. Meike Akveld. 1. Berechnen Sie für das Vektorfeld (siehe Abbildung 1) Abbildung 1: Aufgabe 1 D-BAUG Analsis II FS 5 Dr. Meike Akveld Serie 8. Berechnen Sie für das Vektorfeld (siehe Abbildung ) 3 - -3 3 3 Abbildung : Aufgabe F : (, ) ( +, ) die Arbeit entlang der folgenden Wege C, wobei P = (,

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I... ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient Vorlesung: Analysis II für Ingenieure Wintersemester 07/08 Michael Karow Themen: Niveaumengen und Gradient Wir betrachten differenzierbare reellwertige Funktionen f : R n G R, G offen Zur Vereinfachung

Mehr

Klausur zur Höheren Mathematik 1/2

Klausur zur Höheren Mathematik 1/2 Stroppel/Knarr 07. 09. 009 Klausur zur Höheren Mathematik / für Ingenieurstudiengänge Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 80 Minuten Erlaubte Hilfsmittel: Vier Seiten DIN A4 eigenhändig

Mehr

BERGISCHE UNIVERSITÄT WUPPERTAL Fachbereich C Mathematik und Naturwissenschaften

BERGISCHE UNIVERSITÄT WUPPERTAL Fachbereich C Mathematik und Naturwissenschaften Musterl osung BERGISCHE UNIVERSITÄT WUPPERTAL Fachbereich C Mathematik und Naturwissenschaften Analysis II Klausur WS 211/212 Prof. Dr. Hartmut Pecher 3.2.212, 9:15 Uhr Name Matr.Nr. Studienfach Fachsemester

Mehr

Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 1

Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 1 Studiengang: Matrikelnummer: 3 4 5 6 Z Punkte Note Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 8. 7. 6, 8. -. Uhr Zugelassene Hilfsmittel: A4-Blätter eigene, handschriftliche Ausarbeitungen

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13

Mathematischer Vorkurs für Physiker WS 2012/13 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Übungsblatt 2 Wichtige Formeln aus der Vorlesung: Basisaufgaben Beispiel 1: 1 () grad () = 2 (). () () = ( 0 ) + grad ( 0 ) ( 0 )+

Mehr

Mathematik für Wirtschaftswissenschaftler II (Analysis) 2. Klausur SoSe 2010 Hamburg,

Mathematik für Wirtschaftswissenschaftler II (Analysis) 2. Klausur SoSe 2010 Hamburg, Mathematik für Wirtschaftswissenschaftler II (Analysis) 2. Klausur SoSe 2010 Hamburg, 08.10.2010 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:...................................................................

Mehr

Mathematik für Anwender II

Mathematik für Anwender II Prof. Dr. H. Brenner Osnabrück SS 212 Mathematik für Anwender II Vorlesung 58 Der Satz von Green Wir betrachten eine kompakte eilmenge R 2, deren Rand R sich stückweise durch reguläre Kurven parametrisieren

Mehr

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J}

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J} 9 Der Satz über implizite Funktionen 41 9 Der Satz über implizite Funktionen Wir haben bisher Funktionen g( von einer reellen Variablen immer durch Formelausdrücke g( dargestellt Der Zusammenhang zwischen

Mehr

Aufgabe 2 (5 Punkte) y = 1 x. y + 3e 3x+2 x. von f. (ii) Für welches u in R 2 gilt f(u) = [3, 3, 4] T? x 2 + a x 3 x 1 4x 2 + a x 3 2x 4

Aufgabe 2 (5 Punkte) y = 1 x. y + 3e 3x+2 x. von f. (ii) Für welches u in R 2 gilt f(u) = [3, 3, 4] T? x 2 + a x 3 x 1 4x 2 + a x 3 2x 4 Prof. Dr. B. Billhardt Wintersemester 4/5 Klausur zur Vorlesung Höhere Mathematik II (BNUW) 4.3.5 Aufgabe (a) Ermitteln Sie die Nullstellen des Polynoms p(z) = z 4 4z 3 + 3z + 8z. Tipp: p( + i) =. (b)

Mehr

Gymnasium Muttenz Maturitätsprüfung 2016 Mathematik Profile A und B

Gymnasium Muttenz Maturitätsprüfung 2016 Mathematik Profile A und B Gymnasium Muttenz Maturitätsprüfung 2016 Mathematik Profile A und B Name, Vorname:... Hinweise: Klasse:... Die Prüfung dauert 4 Stunden. Es können maximal 48 Punkte erreicht werden. Es werden alle Aufgaben

Mehr

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 8: Satz von Green und Oberflächenintegrale

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 8: Satz von Green und Oberflächenintegrale D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 8: Satz von Green und Oberflächenintegrale Bemerkungen: Die Aufgaben der Serie 8 bilden den Fokus der Übungsgruppen vom./3. April.. Den Satz

Mehr

Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes

Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes Themen des Tutoriums am 03.06.2015: Wiederholung: Ein glattes Flächenstück ist eine Menge M R 3, die eine reguläre Parametrisierung

Mehr

Aufgabenkomplex 4: Vektorfunktionen, Differenzialgleichungen, Eigenwertprobleme

Aufgabenkomplex 4: Vektorfunktionen, Differenzialgleichungen, Eigenwertprobleme Technische Universität Chemnitz 3. Mai Fakultät für Mathematik Höhere Mathematik I. Aufgabenkomple 4: Vektorfunktionen, Differenzialgleichungen, Eigenwertprobleme Letzter Abgabetermin:. Juni (in Übung

Mehr

KLAUSUR. Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.:

KLAUSUR. Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.: KLAUSUR Lineare Algebra (E-Techniker/Mechatroniker/W-Ingenieure/Informatiker).3. (W. Koepf) Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.: Für jede Aufgabe gibt es Punkte. Zum Bestehen der Klausur

Mehr

FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK

FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK Sommersemester 006 Zahl der Blätter: 5 Blatt 1 s. unten Hilfsmittel: Literatur, Manuskript, keine Taschenrechner und sonstige elektronische Rechner Zeit:

Mehr

Wiederholungsklausur zur Analysis II

Wiederholungsklausur zur Analysis II Wiederholungsklausur zur Analysis II Prof. Dr. C. Löh/M. Blank 11. April 2012 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob Sie alle Seiten erhalten

Mehr

Analysis II. 8. Klausur mit Lösungen

Analysis II. 8. Klausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis II 8. Klausur mit en 1 2 Aufgabe 1. Definiere die folgenden kursiv gedruckten) Begriffe. 1) Eine Metrik auf einer Menge M. 2) Die Kurvenlänge

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 13. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 13. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Andreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.de Department Biologie II Telefon: 89-8-748 Großhadernerstr. Fax:

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Abitur 2014 Mathematik Infinitesimalrechnung I

Abitur 2014 Mathematik Infinitesimalrechnung I Seite http://www.abiturloesung.de/ Seite 2 Abitur 204 Mathematik Infinitesimalrechnung I Die Abbildung zeigt den Graphen einer Funktion f. Teilaufgabe Teil A (5 BE) Gegeben ist die Funktion f : x x ln

Mehr

Berechnen Sie für die folgenden Funktionen die Fourier-Reihe in komplexer Darstellung.

Berechnen Sie für die folgenden Funktionen die Fourier-Reihe in komplexer Darstellung. 0. Übung zur Höheren Mathematik 3 Abgabe: KW 41 Aufgabe 3-0a: Berechnen Sie für die folgenden Funktionen die Fourier-Reihe in kompleer Darstellung. c) Aufgabe 3-0b: Berechnen Sie die Fourier-ransformierte

Mehr

Aufgaben für Klausuren und Abschlussprüfungen

Aufgaben für Klausuren und Abschlussprüfungen Grundlagenwissen: Ableitungen, Flächen unter Kurven, Nullstellen, Etremwerte, Wendepunkte.. Bestimmen Sie die Stammfunktion F() der folgenden Funktionen. Die Konstante C darf weggelassen werden. a) f()

Mehr

Mathematik I für MB und ME

Mathematik I für MB und ME Übungsaufgaben Aufgaben zur Wiederholung Mathematik I für MB und ME Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 06/07 a) Stellen Sie die Gleichung a b 3+c = a +c, a, b > 0, nach

Mehr

Universität Ulm Abgabe: Donnerstag,

Universität Ulm Abgabe: Donnerstag, Universität Ulm Abgabe: Donnerstag,.5.03 Prof. Dr. W. Arendt Stephan Fackler Sommersemester 03 Punktzahl: 0 Lösungen Elemente der Differenzialgleichungen: Blatt 4. Gradientenfelder. Welche der folgenden

Mehr

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen MATHEMATISCHES INSTITUT SoSe 24 DER UNIVERSITÄT MÜNCHEN Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen Musterlösung Prof. Dr. P. Pickl Aufgabe Zeigen Sie, dass

Mehr

Höhere Mathematik I. Variante A

Höhere Mathematik I. Variante A Prof. Dr. E. Triesch Höhere Mathematik I SoSe 06 Variante A Hinweise zur Bearbeitung: Benutzen Sie zur Beantwortung aller Aufgaben ausschließlich das in der Klausur ausgeteilte Papier! Es werden nur die

Mehr

f(x, y) = x 2 4x + y 2 + 2y

f(x, y) = x 2 4x + y 2 + 2y 7. Februar Lösungshinweise Theorieteil Aufgabe : Bestimmen Sie die Niveaumengen (Höhenlinien) der Funktion f(x, y) = x 4x + y + y und skizzieren Sie das zugehörige Höhenlinienbild im kartesischen Koordinatensystem

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 23 (5.8.23). Gegeben seien die Matrizen A = 2 3 3 und B = 5 2 5 (a) Bestimmen Sie die Eigenwerte von A und B sowie die

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 4.3.25, 2min Aufgabe ( Punkte) Es sei S := {(x, y, z) R 3 z = x 2 + y 2, z 2}. (a) (6 Punkte) Berechnen Sie den Flächeninhalt von S. (b) (4 Punkte) Berechnen Sie die

Mehr

Repetitorium Analysis II für Physiker

Repetitorium Analysis II für Physiker Technische Universität München Larissa Hammerstein Vektoranalysis und Fourier-Transformation Lösungen Repetitorium Analysis II für Physiker Analysis II Aufgabe Skalarfelder Welche der folgenden Aussagen

Mehr

Didaktik der Mathematik der Sekundarstufe II

Didaktik der Mathematik der Sekundarstufe II Didaktik der Mathematik der Sekundarstufe II Teil 8: Satz von Rolle - Mittelwertsatz - Monotoniekriterium Humboldt-Universität zu Berlin, Institut für Mathematik Sommersemester 2010/11 Internetseite zur

Mehr

Vermischte Aufgaben zu Mathematische Grundlagen der Ökonomie

Vermischte Aufgaben zu Mathematische Grundlagen der Ökonomie Aufgabe : Vermischte Aufgaben zu Mathematische Grundlagen der Ökonomie Bilden die Lösungsmengen der folgenden linearen Gleichungssysteme jeweils einen Unterraum des IR 3? Begründen Sie. (i) (ii) + 3 =

Mehr

Übungen zum Ferienkurs Analysis II 2014

Übungen zum Ferienkurs Analysis II 2014 Übungen zum Ferienkurs Analysis II 4 Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar zu begründen. Schreiben

Mehr

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis) Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben

Mehr

Bachelor-Prüfung. Prüfung: Klausur zur Höheren Mathematik II Prof. Dr. E. Triesch Termin: Fachrichtung:... Matr.-Nr.:... Name:...

Bachelor-Prüfung. Prüfung: Klausur zur Höheren Mathematik II Prof. Dr. E. Triesch Termin: Fachrichtung:... Matr.-Nr.:... Name:... RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN Lehrstuhl II für Mathematik Bachelor-Prüfung Höhere Mathematik II Prüfung: Klausur zur Höheren Mathematik II Prüfer: Prof. Dr. E. Triesch Termin: 24.02.2009

Mehr

Klausur zu Analysis II - Lösungen

Klausur zu Analysis II - Lösungen Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf Dr. Axel Grünrock WS 1/11 11..11 Klausur zu Analysis II - Lösungen 1. Entscheiden Sie, ob die folgenden Aussagen richtig oder falsch sind.

Mehr

Vorname: Name: Matrikel-Nr.: USB-Stick-Nr.: Abgabezeit: Uhr Rechner-Nr.: Unterschrift:

Vorname: Name: Matrikel-Nr.: USB-Stick-Nr.: Abgabezeit: Uhr Rechner-Nr.: Unterschrift: Hochschule Bochum Fachbereich Mechatronik und Maschinenbau Klausurdeckblatt Prüfung: Prüfung: GMA Dauer: 0 Minuten Datum: 08.09.04. Prüfer/ in (verantwortlich): Frohn-Schauf/Fulst. Prüfer/ in: Frohn-Schauf/Fulst

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion Übungen zur Ingenieur-Mathematik III WS 11/1 Blatt 8 3.11.11 Aufgabe 5: Berechnen Sie den kritischen Punkt der Funktion fx, y 3x 5xy y + 3 und entscheiden Sie, ob ein Maximum, Minimum oder Sattelpunkt

Mehr

Grundzüge der Vektoranalysis

Grundzüge der Vektoranalysis KAPITEL 7 Grundzüge der Vektoranalysis 7. Satz von Green................................... 2 7.2 Satz von Stokes................................... 22 7.2. Zirkulation und Wirbelstärke..........................

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

I 1. Ermittle von den folgenden Funktionen jeweils Stammfunktionen: (d) 4cosxdx (e) 3e x dx (f) ( e x + x 2) dx

I 1. Ermittle von den folgenden Funktionen jeweils Stammfunktionen: (d) 4cosxdx (e) 3e x dx (f) ( e x + x 2) dx Integralrechnung: I. Ermittle von den folgenden Funktionen jeweils Stammfunktionen: (a) y =,5 (b) y = + (c) y = 5 (d) y = 3 (e) y = (f) y = (g) y = 3 (h) y = (i) y = 3 4 4 (j) y = 6 + 3 (k) y = 3 + 4 (l)

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung (

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Probeklausur zur Analysis II

Probeklausur zur Analysis II Probeklausur zur Analysis II Prof. Dr. C. Löh/M. Blank 3. Februar 2012 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob Sie alle Seiten erhalten

Mehr

Vorbereitung für die Prüfung Mathematik II für Informatiker

Vorbereitung für die Prüfung Mathematik II für Informatiker Technische Universität Ilmenau SS 2010 Institut für Mathematik Inf Prof. Dr. Michael Stiebitz Vorbereitung für die Prüfung Mathematik II für Informatiker 1 Lineare Algebra Aufgabe 1 Schauen Sie sich die

Mehr

1. Integrieren Sie die Funktion f(x, y, z) := xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) Hinweis: Verwenden Sie Symmetrien.

1. Integrieren Sie die Funktion f(x, y, z) := xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) Hinweis: Verwenden Sie Symmetrien. 1. Integrieren Sie die Funktion f(x, y, z) : xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) inweis: Verwenden Sie Symmetrien. Lösung: Betrachte den Diffeomorphismus j : B 1 () B 1

Mehr

D-MATH, D-PHYS, D-CHAB Analysis II FS 2017 Prof. Manfred Einsiedler. Übungsblatt 5 A := u = Au, u(0) = 1. 1

D-MATH, D-PHYS, D-CHAB Analysis II FS 2017 Prof. Manfred Einsiedler. Übungsblatt 5 A := u = Au, u(0) = 1. 1 D-MATH, D-PHYS, D-CHAB Analysis II FS 2017 Prof. Manfred Einsiedler Übungsblatt 5 1. Gegeben sei die Matrix 1 1 0 A := 0 1 0 0 0 2 a) Bestimmen Sie ein Fundamentalsystem (das heisst eine Basis des Lösungsraums)

Mehr

Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker

Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker TECHNISCHE UNIVERSITÄT BERLIN WS 2/2 Fachbereich 3 - Mathematik Seiler / Rambau Prüfungs-/Übungsschein-Klausur (Rechenteil Lineare Algebra für Ingenieure/E-Techniker Name:................................................................................

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 10

Technische Universität München Zentrum Mathematik. Übungsblatt 10 Technische Universität München Zentrum Mathematik Mathematik 2 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt Hausaufgaben Aufgabe. Sei f : R 2 R gegeben durch x 2 y für (x, y)

Mehr

BMS Mathematik T1 Abschlussprüfung_11 Seite: 1/7. Der Teil 1 der Prüfung ist ohne Hilfsmittel (Formelsammlung, Taschenrechner usw.) zu lösen.

BMS Mathematik T1 Abschlussprüfung_11 Seite: 1/7. Der Teil 1 der Prüfung ist ohne Hilfsmittel (Formelsammlung, Taschenrechner usw.) zu lösen. BMS Mathematik T Abschlussprüfung_ Seite: /7 Abschlussprüfung Mathematik technische BMS Teil Prüfungsdauer 0 Minuten Der Teil der Prüfung ist ohne Hilfsmittel (Formelsammlung, Taschenrechner usw.) zu lösen.

Mehr

Klausur zur HM3 (vertieft) für LRT und MaWi

Klausur zur HM3 (vertieft) für LRT und MaWi Prof. M. Eisermann Höhere Mathematik 3 (vertieft) 1. September 016 Klausur zur HM3 (vertieft) für LRT und MaWi Aufgabe 1. Bitte füllen Sie folgendes aus! (1 Punkt) Name: Matrikelnummer: Vorname: Studiengang:

Mehr

Mathematische Methoden für Informatiker

Mathematische Methoden für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 8.12.2016 20. Vorlesung Differentialgleichungen n-ter Ordnung Lösung einer Differentialgleichung Veranschaulichung der Lösungsmenge Anfangswertprobleme Differentialgleichungen

Mehr

Brückenkurs Mathematik. Mittwoch Freitag

Brückenkurs Mathematik. Mittwoch Freitag Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs

Mehr

Übungen zur Vorlesung MATHEMATIK II

Übungen zur Vorlesung MATHEMATIK II Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom

Mehr

Mathematik IT 3 (Analysis)

Mathematik IT 3 (Analysis) Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof. Dr. L. Cromme Mathematik IT (Analysis) für die Studiengänge Informatik, IMT und ebusiness im Wintersemester 0/04 Geben Sie

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

Übungsaufgaben zu Mathematik III (ohne Lösungen)

Übungsaufgaben zu Mathematik III (ohne Lösungen) Übungsaufgaben zu Mathematik III (ohne Lösungen) 1. Lösen Sie intuitiv (d.h. ohne spezielle Verfahren) die folgenden DGLn (allgemeine Lösung): = b) =! c) = d)!! = e at. Prüfen Sie, ob die gegebenen Funktionen

Mehr

Klausur der Modulprüfung / Diplomvorprüfung

Klausur der Modulprüfung / Diplomvorprüfung Klausur der Modulprüfung / Diplomvorprüfung für B.Sc. aer / B.Sc. mawi / Dipl. aer / Dipl. geod. / Dipl. autip Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 120 Minuten Erlaubte Hilfsmittel:

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG. Sommer 2016

Lineare Algebra und Numerische Mathematik für D-BAUG. Sommer 2016 P. Grohs T. Welti F. Weber Herbstsemester 2015 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Name a a Note Vorname Leginummer Datum 19.08.2016 1 2 3 4 5 6 Total 7P 11P 10P 11P

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Fakultät II Institut für Mathematik WS /5 G. Bärwol, A. Gündel-vom-Hofe..5 Februar Klausur Analysis II für Ingenieurswissenschaften Lösungsskizze. Aufgabe 6Punkte Bestimmen

Mehr

A 1 A 2 A 3 A 4 A 5 A 6 A 7

A 1 A 2 A 3 A 4 A 5 A 6 A 7 Institut für Geometrie und Praktische Mathematik Numerisches Rechnen für Informatiker WS 7/8 Prof. Dr. H. Esser J. Grande, Dr. M. Larin Klausur Numerisches Rechnen für Informatiker Hilfsmittel: keine (außer

Mehr