Mensch-Maschine-Schnittstelle

Größe: px
Ab Seite anzeigen:

Download "Mensch-Maschine-Schnittstelle"

Transkript

1 Formeln und Notizen Mensch-Maschine-Schnittstelle Florian Franzmann 7. April 009, 3:53 Uhr Abbildungsverzeichnis. Trigonometrische Funktionen Tabellenverzeichnis. Teile von Einheiten Vielfache von Einheiten Trigonometrische Funktionen Funktionswerte besonderer Winkel Potenzen der imaginären Einheit Bekannte Reihen Inhaltsverzeichnis. Mensch-Maschine-Schnittstelle 5 A. Mathematische Grundlagen 5 A.. Frequenz A... Definition A... Kreisfrequenz A..3. Normierte Kreisfrequenz A..4. Die z-ebene A.. Lösungsformel für quadratische Gleichungen A.3. Geradengleichung siflfran@hawo.stw.uni-erlangen.de

2 A.3.. Gerade durch einen Punkt P (x 0, y 0 ) mit Steigung m A.3.. Gerade durch die Punkte P (x 0, y 0 ) und A(x, y ) A.3.3. Parameterform A.3.4. Allgemeine Form der Geradengleichung A.4. Additionstheoreme A.5. Rechenregeln des Logarithmus A.6. Differentiation A.6.. Regeln A.6... Quotientenregel A.6... Kettenregel A Produktregel A Logarithmische Differentiation A Differentiation eines parameterabhängigen Integrals... 8 A l Hospital sche Regel A.6.. Operatoren A.6... Laplace-Operator A.6... Divergenz-Operator div A Gradient-Operator A Rotations-Operator A Jacobi-Matrix (Funktionalmatrix) A Hesse-Matrix A Zusammengesetzte Operationen A.7. Integrationsregeln A.7.. Partielle Integration A.7.. Substitutionsregel A.7.3. Logarithmische Integration A.7.4. Integration der Umkehrfunktion A.8. Komplexe Zahlen A.8.. Komplexe Wurzel A.9. Binomialkoeffizient A.9.. Reihen A.0.Abschätzung mittels Union-Bound A..Bessel-Funktion erster Art A...Definition A...Eigenschaften

3 Tabelle : Teile von Einheiten Bezeichnung Präfix Faktor Faktor Faktor 3 yotto y zepto z atto a femto f pico p nano n micro µ milli m centi c deci d

4 Tabelle : Vielfache von Einheiten Bezeichnung Präfix Faktor Faktor Faktor 3 Deka da Hekto h Kilo k Mega M Giga G Tera T Peta P Exa E Zeta Z Yotta Y

5 . Mensch-Maschine-Schnittstelle. Mensch-Maschine-Schnittstelle A. Mathematische Grundlagen A.. Frequenz A... Definition f := T () T ist die Periode der Schwingung. A... Kreisfrequenz ω := πf () A..3. Normierte Kreisfrequenz Ω := ω f a (3) f a ist die Abtastfrequenz. A..4. Die z-ebene A.. Lösungsformel für quadratische Gleichungen z := e jω (4) A.3. Geradengleichung ax + bx + c = 0 (5) b ± b 4ac falls b 4ac 0 x, = a b ± j (b (6) 4ac) falls b 4ac < 0 a A.3.. Gerade durch einen Punkt P (x 0, y 0 ) mit Steigung m y = m(x x 0 ) + y 0 (7) A.3.. Gerade durch die Punkte P (x 0, y 0 ) und A(x, y ) y = y 0 + y y 0 x x 0 (x x 0 ) mit x x 0 (8) 5

6 cot tan sin cos Abbildung : Trigonometrische Funktionen A.3.3. Parameterform mit t ], [. x = x 0 + t cos α (9) y = y 0 + t sin α (0) A.3.4. Allgemeine Form der Geradengleichung A.4. Additionstheoreme Ax + By + C = 0 () sin α sin β = (cos(α β) cos(α + β)) () cos α cos β = (cos(α β) + cos(α + β)) (3) sin α cos β = (sin(α β) + sin(α + β)) (4) sin α = ( cos α) (5) cos α = ( + cos α) (6) sin α = sin α cos α = cos α (7) cos α = cos α sin α = sin α (8) 6

7 Tabelle 3: Trigonometrische Funktionen Funktionswerte besonderer Winkel 0 π 6 π 4 π 3 π 3 π π Quadrant ϕ I II III IV sin ϕ cos ϕ nicht tan ϕ definiert cot ϕ nicht definiert 3 nicht definiert 0 nicht definiert sin α = ejα e jα j cos α = ejα + e jα (9) (0) e jα = cos α + j sin α () e jα = cos α j sin α () A.5. Rechenregeln des Logarithmus log b (u v) = log b u + log b v ( u ) log b = log v b u log b v (3) A.6. Differentiation A.6.. Regeln log b u z = z log b u log b n u = n log b u (4) A.6... Quotientenregel A.6... Kettenregel ( u v ) = u v uv v (5) (u(v(x))) = u (v(x)) v (x) (6) 7

8 A Produktregel A Logarithmische Differentiation (u(x) v(x)) = u(x) v (x) + u (x) v(x) (7) y = u(x) v(x) mit u(x) > 0 (8) ( y = u(x) v(x) v (x) ln u(x) + v(x) ) u (x) (9) u(x) A Differentiation eines parameterabhängigen Integrals x b(x) a(x) f(t, x) dt = b(x) a(x) A l Hospital sche Regel x f(t, x) dt + f(b(x), x) b (x) f(a(x), x) a (x) (30) u(x) lim x a v(x) = lim u (x) x a v (x) (3) A.6.. Operatoren A.6... Laplace-Operator f := A.6... Divergenz-Operator div n i= f x i (3) = Sp (Hess f ( x)) (33) = f (34) Definition Rechenregeln divf := n i= f i x i = Sp(J v ) = f (35) A Gradient-Operator (φ v) = ( φ) v + φ( v) (36) ( v w) = w ( v) v ( w) (37) Definition gradf := f = (f x,, f xn ) T (38) 8

9 Rechenregeln (A + B) = A + B (39) (A B) = A B + A B (40) Hierbei bedeutet eines der Produkte, oder und A bedeutet, daß nur auf A angewandt wird. Damit folgt: A Rotations-Operator (φψ) = φ( ψ) + ( φ)ψ (4) (φ v) = v ( φ) + φ( v) (4) ( v w) = ( v) T w + ( w) T v (43) (φf) = ( φ) f + φ f (44) Definition Rechenregeln rotv := v 3 x v x 3 v x 3 v 3 x v x v x = V (45) (φ v) = ( φ) v + φ( v) (46) ( v w) = ( w) v + v w ( v) w w v Hierbei ist v w die Richtungsableitung von v in Richtung von w, d. h. w = w. (47) A Jacobi-Matrix (Funktionalmatrix) f = f x = J f = f x. f m x f x n.... f m x n = f (48) 9

10 A Hesse-Matrix Hess φ ( x) = φ x = φ x φ x x φ x 3 x A Zusammengesetzte Operationen A.7. Integrationsregeln φ x x φ x φ x 3 x φ x x 3 φ x x 3 φ x 3 (49) = grad(gradφ) = φ (50) ( v) = 0 (5) ( φ) = 0 (5) ( v) = ( v) v (53) A.7.. Partielle Integration u(x)v (x) dx = u(x)v(x) u (x)v(x) dx (54) A.7.. Substitutionsregel x = u(t) bzw. t = v(x). u und v seien zueinander Umkehrfunktionen. f(x) dx = f(u(t))u (t) dt bzw. (55) f(x) dx = f(u(t)) v dt (u(t)) (56) A.7.3. Logarithmische Integration f (x) dx = ln f(x) + c (57) f(x) f (x) f(x) dx = f (x) + c (58) A.7.4. Integration der Umkehrfunktion u und v seien zueinander Umkehrfunktionen. Dann ist u(x) dx = xu(x) F (u(x)) + c (59) mit F (x) = v(x) dx + c (60) 0

11 Tabelle 4: Potenzen der imaginären Einheit n 0 3 j (n mod 4) j j A.8. Komplexe Zahlen z = a + jb (6) = ρ(cos ϕ + j sin ϕ) (6) arg z = ϕ + kπ ( π < ϕ +π k Z) (63) a = ρ cos ϕ (64) b = ρ sin ϕ (65) ρ = a + b (66) arccos a ρ für b 0 ρ > 0 ϕ = arccos ρ für b < 0 ρ > 0 (67) unbestimmt für ρ = 0 arctan b a für a > 0 + π für a = 0 b > 0 ϕ = π für a = 0 b < 0 (68) arctan b a arctan b a π für a < 0 b < 0 z = ρ e jϕ (69) e jϕ = cos ϕ + j sin ϕ (70) e a+jb = e a cos b + je a sin b (7) A.8.. Komplexe Wurzel n ( ( ) ( )) z = n ψ + πk ψ + πk z cos + j sin n n mit k = 0,..., n und ψ = arg(z). (7)

12 Tabelle 5: Bekannte Reihen Formel Anmerkung n= k=0 n k q k k=k 0 n ( ) n n= n= divergiert q k q n qk0 qk+ q ln π 6 ( ) falls q < n α konvergiert für α > m n n= m n= m (m + ) n m (m + ) (n + ) 6 A.9. Binomialkoeffizient (n ) = k ( ) n = n k n! k!(n k)! (73) A.9.. Reihen Für konvergente Reihen gilt (αa n + βb n ) = α a n + β b n (74) n= n= n= Harmonische Reihe Geometrische Reihe

13 Literatur A.0. Abschätzung mittels Union-Bound P (A B) = P (A) + P (B) P (A B) P (A) + P (B) (75) A.. Bessel-Funktion erster Art A... Definition J ν (η) = π A... Eigenschaften π π e j(η sin x νx) dx (76) ( x ) n n! ( x ) n+ (n + )! falls x (77) n gerade J n (x) = J n ( x) = J n (x) = J n ( x) n ungerade J n (x) = J n ( x) = J n (x) = J n (x) Literatur [] Furlan, Peter: Das Gelbe Rechenbuch. Lineare Algebra, Differentialrechnung für Ingenieure, Naturwissenschaftler und Mathematiker. Dortmund : Verlag Martina Furlan, 995. ISBN [] Huber, Johannes: Nachrichtenübertragung. Erlangen : Vorlesungsskript zur gleichnamigen Veranstaltung, 006 [3] Kammeyer, Karl-Dirk: Nachrichtenübertragung. Stuttgart : Teubner, 004. ISBN [4] Konstantin Adolfowitsch Semendjajew, Ilja Nikolajewitsch B.: Taschenbuch der Mathematik. Thun und Frankfurt am Main : Verlag Harri Deutsch, 00. ISBN [5] Paul Mühlbauer, Friedrich B.: Mathematische Formeln und Definitionen. München : Bayerischer Schulbuchverlag, 998. ISBN X [6] Rabenstein, Rudolf: Mensch-Maschine-Schnittstelle. Erlangen : Vorlesungsskript zur gleichnamigen Veranstaltung, 007 3

14 Index Symbole, 8 j,, 8 A Ableitungsoperator Nabla, 8 Divergenz, 8 Gradient, 8 Laplace, 8 Rotation, 9 zusammengesetzte Operationen, 0 Additionstheoreme, 6 atto, 3 B Bessel-Funktion, 3 Binomialkoeffizient ( n k), C centi, 3 cos-, 6 D deci, 3 Deka, 4 Differentialoperator, siehe Ableitungsoperator Differentiation, 7 Kettenregel, 7 logarithmische, 8 parameterabhängiges Integral, 8 Produktregel, 8 Quotientenregel, 7 Divergenz, 8 E Exa, 4 F femto, 3 Funktion trigonometrische, 6, 7 Funktionalmatrix, 9 G Geradengleichung allgemeine Form, 6 durch Punkt und Steigung, 5 durch zwei Punkte, 5 Parameterform, 6 Giga, 4 Gradiend, 8 H Hekto, 4 I Integration logarithmische, 0 partielle, 0 Substitutionsregel, 0 Umkehrfunktion, 0 J Jakobimatrix, 9 K Kettenregel, 7 Kilo, 4 Komplexe Zahlen, L Laplace-Operator, 8 l Hospitalsche Regel, 8 Logarithmus Rechenregeln, 7 4

15 M Matrix Funktional, 9 Hesse, 0 Jakobi, 9 Mega, 4 micro, 3 milli, 3 N nano, 3 P Peta, 4 pico, 3 Produktregel, 8 Q Quadratische Gleichung, 5 Quotientenregel, 7 R Reihe geometrische, harmonische, Reihen, Rotation rot, 9 S sin-, 6 T Tera, 4 U Union-Bound, 3 W Wurzel komplexe, Index Y Yotta, 4 yotto, 3 Z Zahl komplexe, Wurzel, zepto, 3 Zeta, 4 5

Formeln und Notizen. Informationstheorie. Florian Franzmann. 7. April 2009, 23:53 Uhr. 1. Trigonometrische Funktionen... 20

Formeln und Notizen. Informationstheorie. Florian Franzmann. 7. April 2009, 23:53 Uhr. 1. Trigonometrische Funktionen... 20 Formeln und Notizen Informationstheorie Florian Franzmann 7. April 2009, 23:53 Uhr Abbildungsverzeichnis. Trigonometrische Funktionen......................... 20 Tabellenverzeichnis. Notation in der Informationstheorie.....................

Mehr

Formeln und Notizen. Algorithmik III. Florian Franzmann. 7. April 2009, 23:51 Uhr

Formeln und Notizen. Algorithmik III. Florian Franzmann. 7. April 2009, 23:51 Uhr Formeln und Notizen Algorithmik III Florian Franzmann 7. April 009, 3:5 Uhr Abbildungsverzeichnis. Trigonometrische Funktionen......................... 6. rect- und sinc-funktion............................

Mehr

Kleine Formelsammlung zu Mathematik für Ingenieure III/A

Kleine Formelsammlung zu Mathematik für Ingenieure III/A Kleine Formelsammlung zu Mathematik für Ingenieure III/A Florian Franzmann 5. August 005 Inhaltsverzeichnis Grundlagen 3. Lösungsformel für quadratische Gleichungen................. 3. Invertieren einer

Mehr

Technische Informatik IV

Technische Informatik IV Formeln und Notizen Technische Informatik IV Florian Franzmann 7. April 2009, 23:55 Uhr Abbildungsverzeichnis 1. Aufbau eines UDP-Segments......................... 8 2. Trigonometrische Funktionen.........................

Mehr

Mathematik für Ingenieure III/A

Mathematik für Ingenieure III/A Formeln und Notizen Mathematik für Ingenieure III/A Florian Franzmann 7. April 2009, 23:53 Uhr Inhaltsverzeichnis. Vektoren und Matrizen 5.. Invertieren einer 2 2-Matrix......................... 5.2. Kreuzprodukt..................................

Mehr

Kleine Formelsammlung zu Mathematik für Ingenieure IIA

Kleine Formelsammlung zu Mathematik für Ingenieure IIA Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................

Mehr

Entwurf Integrierter Schaltungen I

Entwurf Integrierter Schaltungen I Formeln und Notizen Entwurf Integrierter Schaltungen I Florian Franzmann 7. April 009, 3:5 Uhr Abbildungsverzeichnis. Grundschaltungen in CMOS-Technik.................... 6. Ausbeute Y W (A, D 0 ) guter

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Propädeutikum 3: Funktionen und Ableitungen Dr. Daniel Bick 21. Oktober 2015 Daniel Bick Physik für Biologen und Zahnmediziner 21. Oktober 2015 1 / 48 Hinweise zur

Mehr

Physik: Größen und Einheiten

Physik: Größen und Einheiten Physik: Größen und Einheiten Daniel Kraft 2. März 2013 CC BY-SA 3.0, Grafiken teilweise CC BY-SA Wikimedia Größen in der Physik Größen Eine physikalische Größe besteht aus: G = m [E] Maßzahl Die (reelle)

Mehr

Klausur Mathematik I

Klausur Mathematik I Klausur Mathematik I (E-Techniker/Mechatroniker/Informatiker/W-Ingenieure). September 7 (Hans-Georg Rück) Aufgabe (6 Punkte): a) Berechnen Sie alle komplexen Zahlen z mit der Eigenschaft Re(z) = und (z

Mehr

Inhalt. Lineare Algebra 1. Dr. Donat Adams. Fachhochschule Nordwest-Schweiz Technik, Brugg. 10. Oktober 2017

Inhalt. Lineare Algebra 1. Dr. Donat Adams. Fachhochschule Nordwest-Schweiz Technik, Brugg. 10. Oktober 2017 Inhalt Lineare Algebra 1 Dr. Donat Adams Fachhochschule Nordwest-Schweiz Technik, Brugg 10. Oktober 2017 1 / 20 Inhalt Teil 2 / 20 Inhalt Inhaltsverzeichnis I 3 / 20 Inhalt Bibliographie I F. Bachmann,

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Propädeutikum 3: Funktionen und Ableitungen Dr. Daniel Bick 26. Oktober 2016 Daniel Bick Physik für Biologen und Zahnmediziner 26. Oktober 2016 1 / 55 Hinweise zur

Mehr

(1 + z 2j ) = 1 z2n+2. 1 z. (1 + z)(1 z) 1 z. 1 z. (1 + z 2j ) = 1 z. 1 z 1 z

(1 + z 2j ) = 1 z2n+2. 1 z. (1 + z)(1 z) 1 z. 1 z. (1 + z 2j ) = 1 z. 1 z 1 z Aufgabe Zeigen Sie mit vollständiger Induktion: Für alle n N gilt (8 Punkte) n ( + z 2j ) = 2n+, wobei z C, z, eine komplexe Zahl ist Lösung [8 Punkte] Induktionsanfang: n = : ( + z 2j ) = ( + z 2 ) =

Mehr

H. Schmidli Mathematik für Physiker WS 10/11. Lösung der Klausur

H. Schmidli Mathematik für Physiker WS 10/11. Lösung der Klausur H. Schmidli Mathematik für Physiker WS / Lösung der Klausur. a) Zähler und Nenner konvergieren gegen. Somit verwenden wir die Regel von L Hospital e sin x x x e cos x (cos x)e sin x x (sin x)e cos x x

Mehr

- 1 - Eine Funktion f(x) heißt differenzierbar an der Stelle x 0, wenn der Grenzwert (siehe Kap. 3)

- 1 - Eine Funktion f(x) heißt differenzierbar an der Stelle x 0, wenn der Grenzwert (siehe Kap. 3) - 1-4 Differentialrechnung 4.1 Ableitung einer Funktion Eine Funktion f() ist in einer Umgebung definiert. Abb.: Differenzenquotient Man kann immer einen Quotienten bilden, ( + ) f ( + h) f ( ) f h f +

Mehr

C Aufgabe 1 [6 Punkte] Bestimmen Sie den Winkel α im Trapez ABCD. 5. = 4 + i, z 2. = i

C Aufgabe 1 [6 Punkte] Bestimmen Sie den Winkel α im Trapez ABCD. 5. = 4 + i, z 2. = i ETH-Aufnahmeprüfung Herbst 18 Mathematik I (Analysis) D C Aufgabe 1 [6 Punkte] Bestimmen Sie den Winkel α im Trapez ABCD. 5 α. A 1 Aufgabe [1 Punkte] Geben Sie die Lösungsmenge folgender Gleichungen in!

Mehr

Vorlesungsprüfung Differential- und Integralrechnung (PHY.C30) Fragenkatalog

Vorlesungsprüfung Differential- und Integralrechnung (PHY.C30) Fragenkatalog Vorlesungsprüfung Differential- und Integralrechnung (PHY.C30) Fragenkatalog Im folgenden finden Sie eine Liste von typischen Prüfungsfragen für die Vorlesungsprüfung Differential- und Integralrechnung

Mehr

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Prof. C. Greiner, Dr. H. van Hees Wintersemester 2012/2013 Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Aufgabe 1: Bruchrechnung Lösen Sie die folgenden Gleichungen nach x auf (a) x x 2 1

Mehr

Einführung in die Algebra

Einführung in die Algebra 1 Einführung in die Algebra 1.1 Wichtige Formeln Formel Symbol Definition Wert Bedingungen n Fakultät n! k = 1 2 3 n n N Binomialkoeffizient Binomische Formeln Binomischer Lehrsatz Potenzen ( ) n k Definition

Mehr

Vorkurs Mathematik (Allgemein) Übungsaufgaben

Vorkurs Mathematik (Allgemein) Übungsaufgaben Justus-Liebig-Universität Gießen Fachbereich 07 Mathematisches Institut Vorkurs Mathematik (Allgemein) Übungsaufgaben PD Dr. Elena Berdysheva Aufgabe. a) Schreiben Sie die folgenden periodischen Dezimalzahlen

Mehr

Tutorium: Analysis und Lineare Algebra

Tutorium: Analysis und Lineare Algebra Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 25.06.2018 20. Juni 2018 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2018 Steven Köhler 20. Juni 2018 Konvergenz

Mehr

8.2. Integrationsregeln

8.2. Integrationsregeln 8.. Integrationsregeln Jeder Differentiationsregel entspricht wegen der Beziehung F ( x ) f( x ) F( x ) + C f( x ) dx eine Integrationsregel. Wir kennen schon die Additionsregel c f( x ) + d g( x )

Mehr

Mathematik I Herbstsemester 2018 Kapitel 3: Differentialrechnung

Mathematik I Herbstsemester 2018 Kapitel 3: Differentialrechnung Mathematik I Herbstsemester 2018 Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 39 3. Differentialrechnung Einführung Ableitung elementarer Funktionen Ableitungsregeln Kettenregel Ableitung

Mehr

13. WEITERE INTEGRATIONSMETHODEN

13. WEITERE INTEGRATIONSMETHODEN 06 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch

Mehr

13. WEITERE INTEGRATIONSMETHODEN

13. WEITERE INTEGRATIONSMETHODEN 22 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr

7 Integralrechnung für Funktionen einer Variablen

7 Integralrechnung für Funktionen einer Variablen 7 Integralrechnung für Funktionen einer Variablen In diesem Kapitel sei stets D R, und I R ein Intervall. 7. Das unbestimmte Integral (Stammfunktion) Es sei f : I R eine Funktion. Eine differenzierbare

Mehr

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz.

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz. FH Gießen-Friedberg, Sommersemester 010 Skript 9 Diskrete Mathematik (Informatik) 30. April 010 Prof. Dr. Hans-Rudolf Metz Funktionen Einige elementare Funktionen und ihre Eigenschaften Eine Funktion f

Mehr

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09)

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09) Vorlesung Mathematik für Ingenieure (Wintersemester 2008/09) Kapitel 6: Differenzialrechnung einer Veränderlichen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 9. November 2008) Die

Mehr

Wirtschaftsmathematik Formelsammlung

Wirtschaftsmathematik Formelsammlung Wirtschaftsmathematik Formelsammlung Binomische Formeln Stand März 2019 (a + b) 2 = a 2 + 2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b) (a b) = a 2 b 2 Fakultät (Faktorielle) n! = 1 2 3 4 (n 1) n Intervalle

Mehr

Komplexe Zahlen. elektret.github.io 16. Mai 2014

Komplexe Zahlen. elektret.github.io 16. Mai 2014 Komplexe Zahlen elektret.github.io 16. Mai 2014 1 Definition i Der Körper R,, ist ein Unterkörper von C. ii Es gibt ein Element, sodass i 2 1 ist. iii C ist der kleinste Körper der den Eigenschaften i

Mehr

Mathematischer Vorkurs

Mathematischer Vorkurs Mathematischer Vorkurs Dr. Agnes Lamacz Mathematischer Vorkurs TU Dortmund Seite / 50 Kapitel 5 Mathematischer Vorkurs TU Dortmund Seite 54 / 50 Scheitel S Schenkel α Winkelbereich Winkel werden in Grad

Mehr

Konvergenz und Stetigkeit

Konvergenz und Stetigkeit Mathematik I für Biologen, Geowissenschaftler und Geoökologen 12. Dezember 2007 Konvergenz Definition Fourierreihen Obertöne Geometrische Reihe Definition: Eine Funktion f : D R d heißt beschränkt, wenn

Mehr

10 Differenzierbare Funktionen

10 Differenzierbare Funktionen 10 Differenzierbare Funktionen 10.1 Definition: Es sei S R, x 0 S Häufungspunkt von S. Eine Funktion f : S R heißt im Punkt x 0 differenzierbar, wenn der Grenzwert f (x 0 ) := f(x 0 + h) f(x 0 ) lim h

Mehr

1 Übungen zu Kapitel 1 (Mengen)

1 Übungen zu Kapitel 1 (Mengen) Übungen zu Kapitel (Mengen Aufgabe.: Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: a {x N 0 < x < 4, 8} b {z Z z ist positiv, durch 3 teilbar und kleiner als } c {x R x = 0} d {x Q (x =

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 6: Differenzialrechnung einer Veränderlichen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 22. Dezember 2011)

Mehr

Wirtschaftsmathematik: Formelsammlung (V1.40)

Wirtschaftsmathematik: Formelsammlung (V1.40) Wirtschaftsmathematik: Formelsammlung (V.40) Grundlagen n! = 2 3... n = 0! = n i für n N, n 0, i= pq-formel Lösung von x 2 + px + q = 0 x /2 = p p 2 ± 2 4 q abc-formel Lösung von ax 2 + bx + c = 0 Binomische

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Grundlagen der Mathematik Vorkurs Mathe WS 017/18 Diesen Taschenrechner braucht ihr: 10.10.017 Vorkurs Grundlagen der Mathematik Seite

Mehr

Die Funktion f (x) = e ix

Die Funktion f (x) = e ix Die Funktion f (x) = e ix Wir wissen e ix = 1, liegt also auf dem Einheitskreis. Mit wachsendem x läuft e ix immer wieder um den Einheitskreis herum. Die Laufrichtung ist gegen den Uhrzeigersinn (mathematisch

Mehr

Skriptum zum Praktikum Einführung in die Mathematik 2

Skriptum zum Praktikum Einführung in die Mathematik 2 Skriptum zum Praktikum Einführung in die Mathematik Tobias Hell & Georg Spielberger Letzte Änderung:. Februar 0 Universität Innsbruck WS 00/ Inhaltsverzeichnis Präliminarien 4 Rechnen mit Potenzen und

Mehr

4. Lösung linearer Gleichungssysteme

4. Lösung linearer Gleichungssysteme 4. Lösung linearer Gleichungssysteme a x + : : : + a m x m = b a 2 x + : : : + a 2m x m = b 2 : : : a n x + : : : + a nm x m = b n in Matrix-Form: A~x = ~ b (*) mit A 2 R n;m als Koe zientenmatrix, ~x

Mehr

Abitur 2014 Mathematik Infinitesimalrechnung I

Abitur 2014 Mathematik Infinitesimalrechnung I Seite http://www.abiturloesung.de/ Seite 2 Abitur 204 Mathematik Infinitesimalrechnung I Die Abbildung zeigt den Graphen einer Funktion f. Teilaufgabe Teil A (5 BE) Gegeben ist die Funktion f : x x ln

Mehr

Mathematik I Herbstsemester 2018 Kapitel 5: Integralrechnung

Mathematik I Herbstsemester 2018 Kapitel 5: Integralrechnung Mathematik I Herbstsemester 208 Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas / 70 5. Integralrechnung Grundbegriffe Das bestimmte Integral als Flächeninhalt Der Fundamentalsatz Partielle

Mehr

10 Komplexe Zahlen. 2. Februar Komplexe Multiplikation: Für zwei Vektoren. z 1 =

10 Komplexe Zahlen. 2. Februar Komplexe Multiplikation: Für zwei Vektoren. z 1 = 2. Februar 2009 66 0 Komplexe Zahlen 0. Komplexe Multiplikation: Für zwei Vektoren [ [ a a2 z =, z 2 = in R 2 wird neben der üblichen Addition die komplexe Multiplikation [ a a z z 2 := 2 b b 2 a b 2 +

Mehr

Lösung zur Prüfung HM 1,2 el+phys+kyb+geod, Teil 2

Lösung zur Prüfung HM 1,2 el+phys+kyb+geod, Teil 2 Lösung zur Prüfung HM, el+phys+kyb+geod, Teil Universität Stuttgart Fachbereich Mathematik Institut für Analysis, Dynamik und Modellierung 9.7.6 Name Vorname Matr.-nummer Raum Anmerkungen zur Korrektur:...

Mehr

Jörg Gayler, Lubov Vassilevskaya

Jörg Gayler, Lubov Vassilevskaya Integralrechnung: Aufgaben Jörg Gayler, Lubov Vassilevskaya ii Contents 1. Unbestimmtes Integral: Aufgaben............................. 1 1.1. Grund- oder Stammintegrale (Tabelle 1.....................

Mehr

1 Definition und Konstruktion vektorwertiger Funktionen und Funktionen mehrerer Variabler

1 Definition und Konstruktion vektorwertiger Funktionen und Funktionen mehrerer Variabler Zusammenfassung Kapitel IV: Funktionen mehrerer Veränderlicher und vektorwertige Funktionen 1 Definition und Konstruktion vektorwertiger Funktionen und Funktionen mehrerer Variabler Definition vektorwertige

Mehr

19. Weitere elementare Funktionen

19. Weitere elementare Funktionen 19. Weitere elementare Funktionen 1. Der Arcussinus Die Sinusfunktion y = f(x) = sin x (mit y = cos x) ist im Intervall [ π, π ] streng monoton wachsend und somit existiert dort eine Umkehrfunktion. f

Mehr

Klausur Mathematik I

Klausur Mathematik I Technische Universität Dresden 10. Februar 2016 Institut für Numerische Mathematik Prof. Dr. G. Matthies, Dr. G. Scheithauer Klausur Mathematik I für Studierende der Fakultät Maschinenwesen Name: Matrikelnummer:

Mehr

Zusammenfassung Abitursstoff Mathematik

Zusammenfassung Abitursstoff Mathematik Zusammenfassung Abitursstoff Mathematik T. Schneider, J. Wirtz, M. Blessing 2015 Inhaltsverzeichnis 1 Analysis 2 1.1 Monotonie............................................ 2 1.2 Globaler Verlauf........................................

Mehr

Kleine Mathezusammenfassung

Kleine Mathezusammenfassung Kleine Mathezusammenfassung Cornelius Poth. Januar 008 Dieses Dokument habe ich zum einen erstellt um ein wenig L A TEXzu lernen bzw. zu üben und natürlich auch um mich mit Mathe auseinander zu setzten.

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler. (a) Bestimmen Sie die kartesische Form von Wintersemester 7/8 (..8) z = ( + i)( i) + ( + i). (b) Bestimmen Sie sämtliche komplexen Lösungen

Mehr

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg Komplexe Funktionen für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Universität Hamburg SS 2006 Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen

Mehr

Klausur Mathematik I

Klausur Mathematik I Klausur Mathematik I E-Techniker/Mechatroniker/Informatiker/W-Ingenieure). März 007 Hans-Georg Rück) Aufgabe 6 Punkte): a) Berechnen Sie alle komplexen Zahlen z mit der Eigenschaft z z = und z ) z ) =.

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Propädeutikum 3: Funktionen und Ableitungen, Vektoren Dr. Daniel Bick 27. Oktober 2017 Daniel Bick Physik für Biologen und Zahnmediziner 27. Oktober 2017 1 / 35 Inhalt

Mehr

12 3 Komplexe Zahlen. P(x y) z = x + jy

12 3 Komplexe Zahlen. P(x y) z = x + jy 2 3 Komplexe Zahlen 3 Komplexe Zahlen 3. Grundrechenoperationen Definition Die Menge C = {z = a + jb a, b IR; j 2 = } heißt Menge der komplexen Zahlen; j heißt imaginäre Einheit. (andere Bezeichnung: i)

Mehr

Integralrechnung. integral12.pdf, Seite 1

Integralrechnung. integral12.pdf, Seite 1 Integralrechnung Beispiel Zusammenhang WegGeschwindigkeit: Ist F (t) der zur Zeit t zurückgelegte Weg und v(t) die Geschwindigkeit, so ist v(t) = F (t) Geometrisch: Steigung der Tangente an der Kurve y

Mehr

Elementare Funktionen. Analysis I November 28, / 101

Elementare Funktionen. Analysis I November 28, / 101 Elementare Funktionen Analysis I November 28, 2017 76 / 101 Exponentialfunktion Buch Kap. 2.3 Exponentialfunktionen f(x) = a x, a > 0, D = R. Ist a = e (Eulerzahl e = 2, 71828...), sprechen wir von der

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Propädeutikum 3: Funktionen und Ableitungen Dr. Daniel Bick 22. Oktober 2014 Daniel Bick Physik für Biologen und Zahnmediziner 22. Oktober 2014 1 / 66 Hinweise zur

Mehr

Vorlesung Mathematik für Ingenieure 2 (Sommersemester 2009)

Vorlesung Mathematik für Ingenieure 2 (Sommersemester 2009) 1 Vorlesung Mathematik für Ingenieure 2 (Sommersemester 2009) Kapitel 10: Differenzialrechnung R n R m Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 27. März 2009) Differenzialrechnung

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

Mathematik zum Mitnehmen

Mathematik zum Mitnehmen Mathematik zum Mitnehmen Zusammenfassungen und Übersichten aus Arens et al., Mathematik Bearbeitet von Tilo Arens, Frank Hettlich, Christian Karpfinger, Ulrich Kockelkorn, Klaus Lichtenegger, Hellmuth

Mehr

Die trigonometrischen Funktionen

Die trigonometrischen Funktionen Die trigonometrischen Funktionen Betrachte die Funktion f(x) = 1 x auf dem Intervall [ 1, 1]. Für x = 1 erhält man den Punkt P 1 = ( 1, ), für x = den Punkt P = (, 1) und für x = 1 den Punkt P 1 = (1,

Mehr

Vorlesung Mathematik für Ingenieure II (Sommersemester 2008)

Vorlesung Mathematik für Ingenieure II (Sommersemester 2008) Vorlesung Mathematik für Ingenieure II (Sommersemester 8) Kapitel : Differenzialrechnung R n R m Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 8. Mai 8) Differenzialrechnung R R 4

Mehr

Konvergenz und Stetigkeit

Konvergenz und Stetigkeit Mathematik I für Biologen, Geowissenschaftler und Geoökologen 10. Dezember 2008 Konvergenz Definition Fourierreihen Obertöne Geometrische Reihe Definition: Eine Funktion f : D R d heißt beschränkt, wenn

Mehr

Mathematik 1 Übungsserie 3+4 ( )

Mathematik 1 Übungsserie 3+4 ( ) Technische Universität Ilmenau WS 2017/2018 Institut für Mathematik Thomas Böhme BT, EIT, II, MT, WSW Aufgabe 1 : Mathematik 1 Übungsserie 3+4 (23.10.2017-04.11.2017) Sei M eine Menge. Für eine Teilmenge

Mehr

(3) Wurzelfunktionen. Definition Sei f : D R eine Funktion. Eine Funktion g : D R heißt Umkehrfunktion von f, wenn für alle (x, y) R 2 die Äquivalenz

(3) Wurzelfunktionen. Definition Sei f : D R eine Funktion. Eine Funktion g : D R heißt Umkehrfunktion von f, wenn für alle (x, y) R 2 die Äquivalenz (3) Wurzelfunktionen Definition Sei f : D R eine Funktion. Eine Funktion g : D R heißt Umkehrfunktion von f, wenn für alle (x, y) R 2 die Äquivalenz Definition y = f (x) g(y) = x gilt. Für jedes k N ist

Mehr

Vorlesung Analysis I WS 07/08

Vorlesung Analysis I WS 07/08 Vorlesung Analysis I WS 07/08 Erich Ossa Vorläufige Version 07/12/04 Ausdruck 8. Januar 2008 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Elementare Logik.................................. 1 1.1.A Aussagenlogik................................

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Propädeutikum 3: Funktionen und Ableitungen Dr. Daniel Bick 26. Oktober 2016 Daniel Bick Physik für Biologen und Zahnmediziner 26. Oktober 2016 1 / 55 Hinweise zur

Mehr

Analysis I. Arbeitsblatt 25. Übungsaufgaben. π x sin x 2 dx.

Analysis I. Arbeitsblatt 25. Übungsaufgaben. π x sin x 2 dx. Prof. Dr. H. Brenner Osnabrück WS 23/24 Analysis I Arbeitsblatt 25 Übungsaufgaben Aufgabe 25.. Berechne das bestimmte Integral π x sin x 2 dx. In den folgenden Aufgaben, bei denen es um die Bestimmung

Mehr

Vorkurs Mathematik-Physik, Teil 2 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 2 c 2016 A. Kersch Differentialrechnung. Definition Vorkurs Mathematik-Physik, Teil c 06 A. Kersch Geometrische Interpretation Die Ableitung einer Funktion f() an einer Stelle = 0 ist über den Grenzwert des Differenzenquotienten

Mehr

fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt 1 für beliebiges k N und x 0. a 2 x 1 x 3 y 2 ) 2

fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt 1 für beliebiges k N und x 0. a 2 x 1 x 3 y 2 ) 2 fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt Aufgabe Induktion). a) Beweisen Sie, dass + 3 + 5 +... + n )) ein perfektes Quadrat genauer n ) ist. b) Zeigen Sie: + + +...

Mehr

Oberstufenmathematik leicht gemacht

Oberstufenmathematik leicht gemacht Peter Dörsam Oberstufenmathematik leicht gemacht Band 1: Differential- und Integralrechnung 5. überarbeitete Auflage mit zahlreichen Abbildungen und Beispielaufgaben PD-Verlag Heidenau Inhaltsverzeichnis

Mehr

Brückenkurs Mathematik zum Sommersemester 2015

Brückenkurs Mathematik zum Sommersemester 2015 HOCHSCHULE HANNOVER UNIVERSITY OF APPLIED SCIENCES AND ARTS Dipl.-Math. Xenia Bogomolec Brückenkurs Mathematik zum Sommersemester 2015 Übungsblatt 1 (Grundlagen) Aufgabe 1. Multiplizieren Sie folgende

Mehr

Mathematik 2 für Wirtschaftsinformatik

Mathematik 2 für Wirtschaftsinformatik für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg : Gliederung 1 Folgen und Reihen 2 Komplexe Zahlen 3 Reelle Funktionen 4 Differenzieren 1 5 Differenzieren 2 6 Integration 7 Zinsen 8

Mehr

Vorkurs Physik Mathematische Grundlagen

Vorkurs Physik Mathematische Grundlagen Vorkurs Physik 2016 Mathematische Grundlagen Die im Vorkurs behandelten mathematischen Grundlagen sind in dieser kommentierten Formelsammlung zusammengefasst. Es wurden folgende Themen behandelt: 1. Trigonometrie

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759.

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759. (4) Exponential- und Logarithmusfunktionen Satz Für jedes b > 1 gibt es eine eindeutig bestimmte Funktion exp b : R R + mit folgenden Eigenschaften. exp b (r) = b r für alle r Q Die Funktion exp b ist

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Propädeutikum : Noch mehr Funktionen Dr. Daniel Bick 5. Oktober 17 Daniel Bick Physik für Biologen und Zahnmediziner 5. Oktober 17 1 / 45 Inhalt 1 Wiederholung Potenzfunktionen

Mehr

1 Partielle Differentiation

1 Partielle Differentiation Technische Universität München Christian Neumann Ferienkurs Analysis 2 Vorlesung Dienstag SS 20 Thema des heutigen Tages sind Differentiation und Potenzreihenentwicklung Partielle Differentiation Beim

Mehr

Crash-Kurs Komplexe Zahlen

Crash-Kurs Komplexe Zahlen 1 Definitionen: j, C, z Im Körper R der reellen Zahlen besitzt die lineare Gleichung ax + b = 0 (a, bεr; a 0) stets eine Lösung. Die quadratische Gleichung ax 2 + bx + c = 0 führt zu der Lösungsformel

Mehr

Signale und Systeme I

Signale und Systeme I TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Signale und Systeme I Formelsammlung v.5 Inhaltsverzeichnis Mathematische Formeln. Trigonometrische

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 13 Dr. Ana Cannas Serie 13: Online Test Einsendeschluss: 31. Januar 214 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

SPEZIELLE KAPITEL DER MATHEMATIK TEIL 1

SPEZIELLE KAPITEL DER MATHEMATIK TEIL 1 Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik SPEZIELLE KAPITEL DER MATHEMATIK TEIL 1 13. Fourier-Reihen Prof. Dr. Gunar Matthies Wintersemester 216/17

Mehr

11 Spezielle Funktionen und ihre Eigenschaften

11 Spezielle Funktionen und ihre Eigenschaften 78 II. ANALYSIS 11 Spezielle Funktionen und ihre Eigenschaften In diesem Abschnitt wollen wir wichtige Eigenschaften der allgemeinen Exponentialund Logarithmusfunktion sowie einiger trigonometrischer Funktionen

Mehr

SBP Mathe Grundkurs 2 # 0 by Clifford Wolf. SBP Mathe Grundkurs 2

SBP Mathe Grundkurs 2 # 0 by Clifford Wolf. SBP Mathe Grundkurs 2 SBP Mathe Grundkurs 2 # 0 by Clifford Wolf SBP Mathe Grundkurs 2 # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das

Mehr

Klausur zur Analysis I WS 01/02

Klausur zur Analysis I WS 01/02 Klausur zur Analysis I WS 0/0 Prof. Dr. E. Kuwert. Februar 00 Aufgabe (4 Punkte) Berechnen Sie unter a) und b) jeweils die Ableitung von f für x (0, ): a) f(x) = e sin x b) f(x) = x α log x a) f (x) =

Mehr

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2)

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2) Prof. Hesse Höhere Mathematik I und II Musterlösung 7. 0. 0, 80min Aufgabe (3 Punkte) Zeigen Sie mit vollständiger Induktion: Für alle n N gilt n k= k k k(k + ) = n+ n +. Induktionsanfang: k= Induktionsschluss

Mehr

Integral- und Differentialrechnungen für USW Lösungen der Beispiele des 9. Übungsblatts

Integral- und Differentialrechnungen für USW Lösungen der Beispiele des 9. Übungsblatts Integral- und Differentialrechnungen für USW Lösungen der Beispiele des 9. Übungsblatts. Bestimmtes Integral durch Grenzwert: (a) Das bestimmte Integral ist gegeben durch den Grenzwert der Riemannschen

Mehr

Technische Universität München Fakultät für Mathematik Prof. Dr. Brigitte Forster-Heinlein. Inhaltsverzeichnis

Technische Universität München Fakultät für Mathematik Prof. Dr. Brigitte Forster-Heinlein. Inhaltsverzeichnis Technische Universität München Fakultät für Mathematik Prof. Dr. Brigitte Forster-Heinlein Inhaltsverzeichnis Einführung in die mathematische Behandlung der Naturwissenschaften I Vo(4),Ue(2) 1 Vektoren

Mehr

Mathematik anschaulich dargestellt

Mathematik anschaulich dargestellt Peter Dörsam Mathematik anschaulich dargestellt für Studierende der Wirtschaftswissenschaften 15. überarbeitete Auflage mit zahlreichen Abbildungen PD-Verlag Heidenau Inhaltsverzeichnis 1 Lineare Algebra

Mehr

Dezimalzahlen. Analysis 1

Dezimalzahlen. Analysis 1 Dezimalzahlen Definition. Eine endliche Dezimalzahl besteht aus - einem Vorzeichen +,, oder 0 - einer natürlichen Zahl d 0 - einer endlichen Folge von Ziffern d 1,...,d l von 0 bis 9. Die Länge l kann

Mehr

Vortragsübung am 25. April 2014

Vortragsübung am 25. April 2014 Seite von 6 Termin: 5. April 04 Vortragsübung am 5. April 04.. Berechnen Sie den Grenzwert lim n ( n + + n + + + ), n indem Sie ihn als Riemann-Summe eines Integrals auffassen... Bestimmen Sie folgende

Mehr