Shift-Invarianz, periodische Funktionen, diskreter Logarithmus, hidden-subgroup-problem

Größe: px
Ab Seite anzeigen:

Download "Shift-Invarianz, periodische Funktionen, diskreter Logarithmus, hidden-subgroup-problem"

Transkript

1 Shift-Invarianz, periodische Funktionen, diskreter Logarithmus, hidden-subgroup-problem Quantencomputing SS Juni Juni 202 / 20

2 Shift-Invarianz der Fourier-Transformation Shift-Invarianz der Fourier-Transformation f (y) = 2π f (x) e iyx dx Ist (T z f ) (x) = f (x + z) die um z geshiftete Funktion, so hat diese die Fouriertransformierte (T z f )(y) = 2π = 2π f (x + z) e iyx dx f (x) e iy(x z) dx = e iyz f (y), d.h. f (y) und (T z f )(y) unterscheiden sich nur um einen Phasenfaktor, anders gesagt: f (y) = (T z f )(y) Analog gilt das für die diskrete Fouriertransformation 5. Juni / 20

3 Periodische Funktionen f : Z C ist eine periodische Funktion mit Periode r( Z), wenn f (x + r) = f (x) für alle x Z Meist bezeichnet man als Periode von f das kleinste positive r mit dieser Eigenschaft Beispiel: für f : x a x mod ist die Ordnung von a modulo, also ord (a), die Periode Sei f periodisch mit Periode r, für die diskrete FT der Ordnung r ist f (y) = r 0 x<r Dann gilt für (T z f ) (x) = f (x + z): ω yx r f (x) f (x) = r (T z f )(y) = ω yz r f (y) 0 y<r ω yx r f (y) 5. Juni / 20

4 Periodische Funktionen Interpretation im Kontext des Quantencomputing f : Z C sei periodische Funktion mit Periode r > 0 die f (x) (0 x < r) bestimmen f vollständig, sie seien O-Basisvektoren eines l-qubit-raumes mit r 2 l Betrachte unitäre (Shift-)Transformationen { f (x + z mod r) (0 x < r) U z : f (x) f (x) (r x < 2 l ) Betrachte Vektoren f (y) = r 0 x<r ω yx r f (x) f (x) = r f (y) ist Eigenvektor von U z mit Eigenwert ω yz r Periodenberechnung wie Ordnungsberechnung mittels Phasenschätzung! 0 y<r ω xy r f (y) 5. Juni / 20

5 Periodische Funktionen Algorithmus zur Periodenberechnung Initialisierung : 0 t 0 l mit t = O(l + /ε), T = 2 t Überlagerung : T x 0 U : x y x y f (x) Inverse QFT T : Messung : Kettenbruchapprox. : 0 x<t T rt r ỹ/r r 0 x<t x f (x) = 0 y<r 0 x<t 0 y<r ỹ/r f (y) ωr yx x f (y) 5. Juni / 20

6 Periodische Funktionen Zweidimenensionale diskrete Fouriertransformation der Ordnung für Funktionen f : Z Z C f (u, v) = f (x, y) = 0 x< 0 y< 0 u< 0 v< ω (ux+vy) f (x, y) ω ux+vy f (u, v) 5. Juni / 20

7 Periodische Funktionen f : Z Z C hat Periode (, s) modulo, falls Dann gilt insbesondere (x, y) Z Z : f (x +, y + s) = f (x, y) (x, y) Z Z : f (x, y) = f (0, y xs) Folgerung für die Fouriertransformierte f (u, v) = = 0 x< 0 y< 0 y< ω (ux+vy) f (x, y) f (0, y) 0 y< ω (ux+v(sx+y)) 5. Juni / 20

8 Periodische Funktionen und weiter f (u, v) = 0 y< f (0, y) ω vy 0 x< ω (u+sv)x wobei 0 x< ω (u+sv)x = { falls u + sv 0 mod 0 sonst und somit { f (u, v) = 0 y< ω vy f (0, y) falls u + sv 0 mod 0 sonst f (x, y) = ω svx+vy f ( sv, v) 0 v< 5. Juni / 20

9 Periodische Funktionen Ist f : Z Z C eine (, s)-periodische Funktion, so sind die von 0 verschiedenen Fourierkoeffizienten f (u, v) auf die Gerade u + sv 0 mod, also der Geraden mit Steigung /s durch den ullpunkt, konzentriert (und umgekehrt!) Etwas abstrakter formuliert: betrachte die Gruppe G = Z Z H s := {(x, y) G; sx = y} ist eine Untergruppe von G Hs := {(u, v) G; u = sv} = H /s ist die dazu komplementäre Untergruppe von G: G = H s H s G/H s H s f hat Periode (, s) f konstant auf den H s -ebenklassen f durch Werte auf einem Repräsentantensystem für die H s -ebenklassen, also auf Hs, eindeutig bestimmt f ist auf Hs konzentriert 5. Juni / 20

10 Diskreter Logarithmus Diskreter Logarithmus Sind a, b, > 0 ganze Zahlen, dann nennt man die kleinste positive Zahl s mit a s = b mod (falls sie existiert) den diskreten Logarithmus modulo von b zur Basis a : s = log a b mod Es sind keine effizienten klassischen Algorithmen (auch probabilistische) zur Berechnung von diskreten Logarithmen bekannt Die besten Algorithmen für diskrete Logarithmen modulo und zur Faktorisierung von haben die gleiche asymptotische Komplexität (das ist eine empirische Feststellung!) Die vermeintliche Schwierigkeit, diskrete Logarithmen zu berechnen, ist Sicherheitshypothese für Kryptosysteme, ebenso wie die vermeintliche Schwierigkeit des Faktorisierens 5. Juni / 20

11 Diskreter Logarithmus Betrachte die Funktion f : Z Z Z : (x, y) b x a y mod Diese Funktion ist periodisch mit der Periode (, s), d.h. f (x + l, y ls) = b x+l a y ls = b x a y = f (x, y) mod Damit ergibt sich (Indices und Exponenten modr) f (x, y) = r 0 v<r ω svx+vy r f (sv, v) Die Berechnung von log a b mod setzt voraus, dass r = ord a bekannt ist Die unitäre Transformation U : x y z x y z f (x, y) für f : (x, y) b x a y mod muss realisierbar sein 5. Juni 202 / 20

12 Diskreter Logarithmus Shors Algorithmus zur Berechnung des diskreten Logarithmus Initialisierung : 0 t 0 t 0 l mit t = O(r + /ε) Überlagerung : x y 0 T U : Inverse QFT T T : Messung : Kettenbruchapprox. : T rt rt r 0 x,y<t 0 x,y<t 0 v<r 0 x,y<t 0 v<r 0 v<r ( sv/r, ṽ/r) s x y f (x, y) = 0 x<t ω svx+vy r x y f (sv, v) = ω svx r x sv/r ṽ/r f (sv, v) 0 y<t ω vy r y f (sv, v) 5. Juni / 20

13 Hidden subgroup -Problem hidden subgroup: die Problemstellung allgemein: G sei Gruppe, H unbekannte Untergruppe von G ρ : G R sei eine Funktion, die auf den ebenklassen von H konstant ist und diese diskriminiert x, y G : ρ(x) = ρ(y) x y H Aufgabe: bestimme ein Erzeugendensystem von H speziell: G = B m, H ein unbekannter Unterraum von G ρ : G R eine Funktion, die auf den ebenklassen von H konstant ist und diese diskriminiert Aufgabe: bestimme eine Basis von H 5. Juni / 20

14 Hidden subgroup -Problem Lösungsstrategie es genügt, effizient eine Basis von zu finden (dabei ist H = { y G ; y h = 0 ( h H) } (x,..., x m ) (y,..., y m ) := x y x 2 y 2 x m y n das übliche Skalarprodukt auf G). Daraus kann man mit klassischen Mitteln leicht eine Basis von H berechnen. es genügt, effizient Elemente von H gleichverteilt erzeugen zu können 5. Juni / 20

15 Hidden subgroup -Problem Zur Komplexität (vgl. Simons Algorithmus) Allgemein: wähle in B n unabhängig und gleichverteilt n + m (Spalten-)Vektoren v, v 2,..., v n+m und betrachte die Matrix.. V = v v n+m =.. w. w n = W n Die Matrix bestehend aus den ersten k Zeilen von V = W n sei w W k =. w k Dann gilt rang W k = k rang W k = k w k / L(W k ) wobei L(W k ) = Zeilenraum von W k 5. Juni / 20

16 Hidden subgroup -Problem (Forts.) Mit P[...] für Wahrscheinlichkeit von [... ] gilt ) P [rang W k = k] = P [rang W k = k ] ( 2k 2 n+m und somit per Induktion P [rang W k = k] = 0 j<k ) ( 2j 2 n+m ( k n) und schliesslich P [rang W n = n] = 0 j<n ( 2j 2 n+m ) ( 2 n+m + + ) 2 m+ 2 m 5. Juni / 20

17 Hidden subgroup -Problem Lemma: { h H ( )h y H falls y H = 0 sonst Beweis für y H ist die Aussage klar für y H gibt es ein k H mit k y 0, also h H( ) h y = h H( ) (h k) y = ( ) k y h H( ) h y = h H daher muss h H ( )h y = 0 sein T sei ein Repräsentantensystem für die ebenklassen von H (beachte: T H = G = 2 m ) ( ) h y 5. Juni / 20

18 Hidden subgroup -Problem Gleichverteilte Erzeugung von Elementen aus H mittels QC Initialisierung, H m : m b ρ(b) simultan : H m : Messung : 2 m 2 m b G t T b H b 0 b G b ρ(b) = 2 m 2 m t b ρ(t) t T b H ( ) (t b) y y ρ(t) y G = 2 m t T y G( ) t y ( ) b y y ρ(t) b H = H 2 m ( ) t y y ρ(t) t T y H y mit Wkeit ( ) 2 H ( )t y 2 m = t T T H2 2 2m = H 5. Juni / 20

19 Hidden subgroup -Problem Abschliessende Bemerkungen Deutsch-Josza, Ordnungs- und Periodenberechnung und diskreter Logarithmus lassen sich als hidden-subgroup-probleme auffassen Das Lösungsverfahren lässt sich auf beliebige abelsche Gruppen übertragen Der historische Startpunkt für diese Entwicklung wurde von D. S. Simon (994) gesetzt, der das hidden-subgroup-problem für eindimensionale Unterräume von B m betrachtet hat; P. Shor (994) hatte anschliessend die Idee, die Hadamard-Transformation über B m durch die Fourier-Transformation über Z für die Ordnungsberechnung (und damit für die Faktorisierung) zu verwenden 5. Juni / 20

20 Hidden subgroup -Problem D. R. Simon, On the power of quantum computation, IEEE Proc. 35th Ann. Symp. Foundations of Computer Science, Los Alamos, 994. D. R. Simon, On the power of quantum computation, SIAM J. Computing, 26(5): , 997. P. W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, IEEE Proc. 35th Ann. Symp. Foundations of Computer Science, Los Alamos, 994. P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Computing, 26(5): , Juni / 20

Shift-Invarianz, periodische Funktionen, diskreter Logarithmus, hi

Shift-Invarianz, periodische Funktionen, diskreter Logarithmus, hi Shift-Invaianz, peiodische Funktionen, diskete Logaithmus, hidden-subgoup-poblem Infomation und Codieung 2 SS 200 22. Juni 200 Shift-Invaianz de Fouie-Tansfomation f (y) = 2π f (x) e iyx dx Ist (T z f

Mehr

Ordnungsberechnung und Faktorisierung

Ordnungsberechnung und Faktorisierung sberechnung Information, Codierung, Komplexität 2 SS 2007 14. Juni 2007 Voraussetzungen: sberechnung U ist unitäre Transformation mit EV ψ zum EW e 2πiϕ kontrollierte U j -Operationen auf ψ sind durchführbar

Mehr

Quanten Fourier Transformation & Shors Faktorisierungs Algorithmus

Quanten Fourier Transformation & Shors Faktorisierungs Algorithmus Quanten Fourier Transformation & Shors Faktorisierungs Algorithmus Universität Siegen 4. Juli 2006 Inhaltsverzeichnis Quantenfouriertransformation 1 Quantenfouriertransformation Rechnen mit Qubits diskrete

Mehr

Quantenalgorithmus für die Faktorisierung ganzer Zahlen

Quantenalgorithmus für die Faktorisierung ganzer Zahlen Quantenalgorithmus für die Faktorisierung ganzer Zahlen Ausgehend von dem allgemeinen Algorithmus für das Hidden Subgroup Problem behandlen wir in diesem Abschnitt den Quantenalgorithmus für die Faktorisierung

Mehr

Motivation Phasenbestimmung

Motivation Phasenbestimmung Motivation Phasenbestimmung Problem Spezialfall der Phasenbestimmung Gegeben: Zustand z = 1 n y {0,1} n( 1)x y y Gesucht: x F n Für n = 1 ist der Zustand z = 1 ( 0 + ( 1) x 1 ) = H x. Es gilt H z = x,

Mehr

Fouriertransformation und Unschärfeprinzip

Fouriertransformation und Unschärfeprinzip Information, Codierung, Komplexität 2 SS 2007 24. April 2007 Das berühmte von Heisenberg in der Quantentheorie beruht, rein mathematisch betrachtet, auf einer grundlegenden Eigenschaft der der Dichtefunktionen

Mehr

Quanteninformation/ Quantencomputer

Quanteninformation/ Quantencomputer Quanteninformation/ Quantencomputer Jonas Heinze Proseminar SS 2013 Jonas Heinze (University of Bielefeld) Quanteninformation/ Quantencomputer 2013 1 / 20 Übersicht 1 Kurzer Einstieg in die Informatik

Mehr

Algorithmische Kryptographie

Algorithmische Kryptographie Algorithmische Kryptographie Walter Unger Lehrstuhl für Informatik I 16. Februar 2007 Public-Key-Systeme: Rabin 1 Das System nach Rabin 2 Grundlagen Körper Endliche Körper F(q) Definitionen Quadratwurzel

Mehr

Simulation eines Quantencomputers

Simulation eines Quantencomputers Simulation eines Quantencomputers J. Metzner, M. Schmittfull Simulation eines Quantencomputers p.1/34 Ziele des Projekts Entwicklung einer leistungsfähigen und effizienten Simulation eines Quantencomputers

Mehr

Vorlesungsmitschrift. Quantencomputer. 2002/2003 Prof. Dr. Grädel. Jan Möbius,David Bommes. 9. Dezember 2002

Vorlesungsmitschrift. Quantencomputer. 2002/2003 Prof. Dr. Grädel. Jan Möbius,David Bommes. 9. Dezember 2002 Vorlesungsmitschrift Quantencomputer WS /3 Prof. Dr. Grädel Jan Möbius,David Bommes 9. Dezember Inhaltsverzeichnis Einleitung. Historischer Überblick......................................... Experiment................................................

Mehr

Pseudo-Zufallsgeneratoren basierend auf dem DLP

Pseudo-Zufallsgeneratoren basierend auf dem DLP Seminar Codes und Kryptografie SS 2004 Struktur des Vortrags Struktur des Vortrags Ziel Motivation 1 Einleitung Ziel Motivation 2 Grundlegende Definitionen Zufallsgeneratoren 3 Generator Sicherheit 4 Generator

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,

Mehr

9.2 Die Klassen QP und BQP

9.2 Die Klassen QP und BQP Definition (r-universell): sei R eine Menge von reversieblen booleschen Funktionen, die auf einer konstanten Anzahl von Bits operieren. R heißt r-universell, falls jede reversible Funktion als Verknüpfung

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 15. April 2018 1/46 Die Dimension eines Vektorraums Satz 2.27 (Basisergänzungssatz) Sei V ein Vektorraum über einem Körper K. Weiter seien v 1,...,

Mehr

Seminar Quantencomputer - Peter Shor s Faktorisierungsalgorithmus

Seminar Quantencomputer - Peter Shor s Faktorisierungsalgorithmus Seminar Quantencomputer - Peter Shor s Faktorisierungsalgorithmus Fabian Lenhard 2474034 f.lenhard@tu-bs.de Sebastian Lorenz 2509048 s.lorenz@tu-bs.de 2001-06-22 Diese Ausarbeitung ist online verfügbar

Mehr

Grundlagen der Mathematik 1

Grundlagen der Mathematik 1 Fachbereich Mathematik Sommersemester 2010, Blatt 14 Thomas Markwig Stefan Steidel Grundlagen der Mathematik 1 Die Lösungen müssen nicht eingereicht werden und werden auch nicht korrigiert. Die Aufgaben

Mehr

12.2 Gauß-Quadratur. Erinnerung: Mit der Newton-Cotes Quadratur. I n [f] = g i f(x i ) I[f] = f(x) dx

12.2 Gauß-Quadratur. Erinnerung: Mit der Newton-Cotes Quadratur. I n [f] = g i f(x i ) I[f] = f(x) dx 12.2 Gauß-Quadratur Erinnerung: Mit der Newton-Cotes Quadratur I n [f] = n g i f(x i ) I[f] = i=0 b a f(x) dx werden Polynome vom Grad n exakt integriert. Dabei sind die Knoten x i, 0 i n, äquidistant

Mehr

Einführung in Quantencomputing

Einführung in Quantencomputing Einführung in Quantencomputing Proseminar v. F. Saphir..003 Zusammenfassung Dieser Teil der Einführung in Quantencomputing stellt die Vorteile gegenüber klassichen Computern vor, behandelt eine Reihe einfacher

Mehr

ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe.

ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe. ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe. Das heißt, um den ggt von zwei 1000-Bit-Zahlen zu ermitteln,

Mehr

In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0.

In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0. Kapitel 5: Die Einheitengruppe von Z/Z und Primitivwurzeln modulo In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0. 16

Mehr

Diskreter Logarithmus und Primkörper

Diskreter Logarithmus und Primkörper Diskreter Logarithmus und Primkörper Neben dem RSA-Verfahren ist die ElGamal-Verschlüsselung 8 ein weiteres klassische Public-Key-Verfahren, welches von Taher ElGamal auf der Konferenz CRYPTO 84 vorgestellt

Mehr

Probeklausur zu Mathematik 2 für Informatik

Probeklausur zu Mathematik 2 für Informatik Gunter Ochs Wintersemester 4/5 Probeklausur zu Mathematik für Informatik Lösungshinweise wie immer ohne Garantie auf Fehlefreiheit. Gegeben sei das Dreieck im R mit den Eckpunkten A a Berechnen Sie die

Mehr

Runde 9, Beispiel 57

Runde 9, Beispiel 57 Runde 9, Beispiel 57 LVA 8.8, Übungsrunde 9,..7 Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 3..7 Angabe Seien y, z C N und c, d C N ihre Spektralwerte. Außerdem bezeichne (x k ) k die N - periodische

Mehr

Eigenwerte. Vorlesung Computergestützte Mathematik zur Linearen Algebra. Lehrstuhl für Angewandte Mathematik Sommersemester 2009

Eigenwerte. Vorlesung Computergestützte Mathematik zur Linearen Algebra. Lehrstuhl für Angewandte Mathematik Sommersemester 2009 Eigenwerte Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Sommersemester 2009 25. Juni + 2.+9. Juli 2009 Grundlagen Definition Ist für A C n,n, Ax = λx

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 Unterschrift der Kandidatin/des Kandidaten 3 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Exponentiation: das Problem Gegeben: (multiplikative) Halbgruppe (H, ), Element a H, n N Aufgabe: berechne das Element

Exponentiation: das Problem Gegeben: (multiplikative) Halbgruppe (H, ), Element a H, n N Aufgabe: berechne das Element Problemstellung Banale smethode : das Problem Gegeben: (multiplikative) Halbgruppe (H, ), Element a H, n N Aufgabe: berechne das Element a n = } a a a {{ a } H n (schreiben ab jetzt a n statt a n ) Hinweis:

Mehr

Zuname: Vorname: KennNr: Matr.Nr: PRÜFUNG AUS MATHEMATIK 3. 1)(8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation.

Zuname: Vorname: KennNr: Matr.Nr: PRÜFUNG AUS MATHEMATIK 3. 1)(8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation. (8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation. y 7y + 10y = sin(2x), y(0) = 1, y (0) = 3. x ( ) Bemerkung: Für festes a gilt L(e ax ) = 1 und L sin(ax) = arctan a. s a x s Die auftretenden

Mehr

Seminarvortrag aus Reiner Mathematik Zweierpotenzen als Moduln und Satz von Wilson

Seminarvortrag aus Reiner Mathematik Zweierpotenzen als Moduln und Satz von Wilson Seminarvortrag aus Reiner Mathematik Zweierpotenzen als Moduln und Satz von Wilson Stefan Rosenberger November 16, 2009 1 Notationen und Vorbemerkungen 1.1 Erinnerung an bekannte Definitionen a) Für alle

Mehr

Volker Kaatz. Faktorisierung. Faktorisierung. Problem und Algorithmen. Relevanz in der Kryptographie

Volker Kaatz. Faktorisierung. Faktorisierung. Problem und Algorithmen. Relevanz in der Kryptographie Faktorisierung Problem und Algorithmen Relevanz in der Kryptographie Inhalt Begriff Faktorisierung Algorithmen (Übersicht) Strategie und Komplexität Pollard p-1 Algorithmus Pseudocode, mathematische Basis,

Mehr

Exponentiation: das Problem

Exponentiation: das Problem Problemstellung Exponentiation: das Problem Gegeben: (multiplikative) Halbgruppe (H, ), Element a H, n N Aufgabe: berechne das Element a n = } a a a {{ a } H n (schreiben ab jetzt a n statt a n ) Hinweis:

Mehr

v(x, y, z) = (1 z)x 2 + (1 + z)y 2 + z. Hinweis: Der Flächeninhalt der Einheitssphäre ist 4π; das Volumen der Einheitskugel

v(x, y, z) = (1 z)x 2 + (1 + z)y 2 + z. Hinweis: Der Flächeninhalt der Einheitssphäre ist 4π; das Volumen der Einheitskugel Aufgabe Gegeben sei das Gebiet G : { (x, y, z) R 3 x 2 + y 2 + z 2 < } und die Funktion Berechnen Sie das Integral v(x, y, z) ( z)x 2 + ( + z)y 2 + z. G n ds, wobei n der nach außen zeigende Normalenvektor

Mehr

L 2 -Theorie und Plancherel-Theorem

L 2 -Theorie und Plancherel-Theorem L -Theorie und Plancherel-Theorem Seminar Grundideen der Harmonischen Analysis bei Porf Dr Michael Struwe HS 007 Vortrag von Manuela Dübendorfer 1 Wiederholung aus der L 1 -Theorie Um die Fourier-Transformation

Mehr

Lineare Abbildungen und Orthonormalsysteme

Lineare Abbildungen und Orthonormalsysteme KAPITEL Lineare Abbildungen und Orthonormalsysteme. Lineare Abbildungen und Koordinatendarstellungen.. Lineare Abbildungen und ihre Basisdarstellung. Seien V, W Vektorraume uber R. Mit einer Abbildung

Mehr

Einführung in Quantenalgorithmen

Einführung in Quantenalgorithmen Einführung in Quantenalgorithmen Inhalt: 1. Einleitung 2. Einteilung der Quantenalgorithmen 3. Vorteile von Quantenalgorithmen 4. Funktionsweise bzw. Aufbau von Quantenalgorithmen 5. Erste Beispiele: a.

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Eigenvektoren

Mehr

1 Calderón-Zygmund-Ungleichung

1 Calderón-Zygmund-Ungleichung CALDERÓN-ZYGMUND-UNGLEICHUNG Calderón-Zygmund-Ungleichung In unserem letzten Kaitel wollen wir die Calderón-Zygmund-Ungleichung beweisen. Sie besagt folgendes. THEOREM: Calderón-Zygmund Sei f eine C -Funktion

Mehr

3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen

3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen TEIL II: GRUPPEN In der modernen Algebra versucht man die Zahlen (Z, Q, R, ) durch die Konzentration auf Rechenoperationen (+,,... ), oder allgemeiner auf strukturelle Eigenschaften dieser Operationen,

Mehr

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010 Aufgabensammlung aus Mathematik 2 UMIT, SS 2, Version vom 7. Mai 2 I Aufgabe I Teschl / K 3 Zerlegen Sie die Zahl 8 N in ihre Primfaktoren. Aufgabe II Teschl / K 3 Gegeben sind die natürliche Zahl 7 und

Mehr

Public-Key-Verschlüsselung und Diskrete Logarithmen

Public-Key-Verschlüsselung und Diskrete Logarithmen Public-Key-Verschlüsselung und Diskrete Logarithmen Carsten Baum Institut für Informatik Universität Potsdam 10. Juni 2009 1 / 30 Inhaltsverzeichnis 1 Mathematische Grundlagen Gruppen, Ordnung, Primitivwurzeln

Mehr

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11 D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung Serie 11 1. Wir betrachten das überbestimmte Gleichungssystem Ax = y mit 1 1 1 1 A := 1 1 0 1 0 1, y := 2 3 0 0 1 4 Berechnen Sie die

Mehr

Abschnitt 5: Kryptographie. j (p j 1). 1 (p 1 1)p α 2

Abschnitt 5: Kryptographie. j (p j 1). 1 (p 1 1)p α 2 Abschnitt 5: Kryptographie. Zunächst wollen wir die Struktur von (Z/mZ) untersuchen. 5.1 Definition: Die Eulersche ϕ-funktion: ϕ : N N; ϕ(m) := (Z/mZ) 5.2 Bemerkung: (Z/mZ) {a {1,..., m 1} ggt(a, m) =

Mehr

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010 Aufgaben für die 4. Übung zur Vorlesung Mathematik für Informatiker: Analysis Sommersemester 4. Bestimmen Sie den Flächeninhalt der dreiblättrigen Kleeblattkurve γ für ein Kleeblatt. Die Polarkoordinaten-

Mehr

13. Der diskrete Logarithmus

13. Der diskrete Logarithmus 13. Der diskrete Logarithmus 13.1. Definition. Sei p eine Primzahl. Wie wir in 9 bewiesen haben, ist die multiplikative Gruppe F p des Körpers F p = Z/p zyklisch. Sei g ein erzeugendes Element von F p

Mehr

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1 24 14 Metrische Räume 14.1 R n als euklidischer Vektorraum Die Menge R n = {(x 1,..., x n ) x i R} versehen mit der Addition und der skalaren Multiplikation x + y = (x 1 + y 1,..., x n + y n ) λx = (λx

Mehr

Probeklausur - eine Lösung

Probeklausur - eine Lösung Probeklausur - eine Lösung Aufgabe 1 Sei p eine Primzahl, n N, q = p n und F q der Körper mit q Elementen. Sei G = GL 2 (F q ). a) Bestimmen Sie #G. 1 x b) Zeigen Sie, dass P = { : x F 1 q } eine p-sylowgruppe

Mehr

4: Algebraische Strukturen / Gruppen

4: Algebraische Strukturen / Gruppen Stefan Lucks Diskrete Strukturen (WS 2009/10) 120 4: Algebraische Strukturen / Gruppen Definition 46 Sei G eine nichtleere Menge. Eine Funktion : G G G bezeichnen wir als Verknüpfung auf G. Das Paar (G,

Mehr

Lineare Algebra für Physiker 11. Übungsblatt

Lineare Algebra für Physiker 11. Übungsblatt Lineare Algebra für Physiker 11. Übungsblatt Fachbereich Mathematik SS 01 Prof. Dr. Matthias Schneider./. Juli 01 Dr. Silke Horn Dipl.-Math. Dominik Kremer Gruppenübung Aufgabe G1 (Minitest) (a) Welche

Mehr

Miller-Rabin Test. Primzahl- und Zerlegbarkeitstests. Zeugen für die Zerlegbarkeit ganzer Zahlen

Miller-Rabin Test. Primzahl- und Zerlegbarkeitstests. Zeugen für die Zerlegbarkeit ganzer Zahlen Miller-Rabin Test Primzahl- und Zerlegbarkeitstests Sei N eine positive ganze Zahl. Wie kann man möglichst effizient feststellen, ob N eine Primzahl oder zerlegbar ist? Dies ist die Aufgabe von Primzahlund

Mehr

Musterlösungen für die Nachklausur in LinAlg vom

Musterlösungen für die Nachklausur in LinAlg vom Musterlösungen für die Nachklausur in LinAlg vom 10.10.16 1. Finden Sie mindestens ) zwei Dreh )Matrizen ) M R 2 2 mit der Eigenschaft 1 0 M = : M = ± 1 1 2 ±1 1 k k 1 k 2. Sei A R 3 3 die Matrix A = 0

Mehr

2008W. Vorlesung im 2008W Institut für Algebra Johannes Kepler Universität Linz

2008W. Vorlesung im 2008W   Institut für Algebra Johannes Kepler Universität Linz Mathematik Institut für Algebra Johannes Kepler Universität Linz Vorlesung im http://www.algebra.uni-linz.ac.at/students/win/ml Inhalt Definierende Eigenschaften Definition 0 ist eine natürliche Zahl;

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 21. Januar 2016 Definition 8.1 Eine Menge R zusammen mit zwei binären Operationen

Mehr

Analysis II. Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag

Analysis II. Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag Prof Dr H Garcke, D Depner SS 9 NWF I - Mathematik 1979 Universität Regensburg Aufgabe 1 Analysis II Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag i Erinnern Sie sich an die Konvergenzkriterien

Mehr

Vorbereitung für die Prüfung Mathematik II für Informatiker

Vorbereitung für die Prüfung Mathematik II für Informatiker Technische Universität Ilmenau SS 2010 Institut für Mathematik Inf Prof. Dr. Michael Stiebitz Vorbereitung für die Prüfung Mathematik II für Informatiker 1 Lineare Algebra Aufgabe 1 Schauen Sie sich die

Mehr

Übungen zu Zahlentheorie, SS 2008

Übungen zu Zahlentheorie, SS 2008 Übungen zu Zahlentheorie, SS 2008 Christoph Baxa 1) Finde alle positiven Teiler von a) 1799 b) 997. 2) Zeige (a b) (a n b n )für alle a, b Z und alle n N. 3) Zeige: Wenn m n dann (a m b m ) (a n b n )

Mehr

7. Die eindimensionale Wärmeleitungsgleichung

7. Die eindimensionale Wärmeleitungsgleichung H.J. Oberle Differentialgleichungen II SoSe 2013 7. Die eindimensionale Wärmeleitungsgleichung Als Beispiel für eine parabolische PDG betrachten wir die eindimensionale Wärmeleitungsgleichung u t (x, t)

Mehr

Institut für Analysis und Scientific Computing E. Weinmüller WS 2015

Institut für Analysis und Scientific Computing E. Weinmüller WS 2015 Institut für Analysis und Scientific Computing TU Wien E. Weinmüller WS L I N E A R E A L G E B R A F Ü R T P H, U E (3.64). Haupttest (MO, 8..6) / Gruppe (mit Lösung ) Ein einfacher Taschenrechner ist

Mehr

2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z).

2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z). 17 Wir setzen in diesem Buch die reellen Zahlen als gegeben voraus. Um auf sicherem Boden zu stehen, werden wir in diesem und den folgenden Paragraphen einige Axiome formulieren, aus denen sich alle Eigenschaften

Mehr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr TUM Ferienkurs Lineare Algebra WiSe 8/9 Dipl.-Math. Konrad Waldherr Musterlösung Relationen Aufgabe Auf R sei die Relation σ gegeben durch (a, b)σ(c, d) : a + b c + d. Ist σ reflexiv, symmetrisch, transitiv,

Mehr

Prüfer: Dr. M. Lenz, Prof. Dr. M. Rumpf. Klausurdauer: 180 Minuten. Bitte Namen, Vornamen und Matrikel-Nr. einsetzen. Name:... Vorname:...

Prüfer: Dr. M. Lenz, Prof. Dr. M. Rumpf. Klausurdauer: 180 Minuten. Bitte Namen, Vornamen und Matrikel-Nr. einsetzen. Name:... Vorname:... Klausur zum Modul Ingenieurmathematik II (B22) 20. März 2014 für den Bachelorstudiengang Geodäsie und Geoinformation In der Klausur können 10 Punkte pro Aufgabe, also insgesamt 100 Punkte erreicht werden.

Mehr

Beweis: Annahme: T (n) c n, wobei c = c(m) konstant ist. Die Annahme ist ok, falls T (n)

Beweis: Annahme: T (n) c n, wobei c = c(m) konstant ist. Die Annahme ist ok, falls T (n) Beweis: Annahme: T (n) c n, wobei c = c(m) konstant ist. Die Annahme ist ok, falls T (n) ( ( ) n 3 T + T m ) 4 n n 3 c + m 4 n c + n n + C m + cn; dies gilt, falls m 2 n m C m + n 2 (bis auf, ) c m + 3

Mehr

Ein RSA verwandtes, randomisiertes Public Key Kryptosystem

Ein RSA verwandtes, randomisiertes Public Key Kryptosystem Seminar Codes und Kryptographie WS 2003 Ein RSA verwandtes, randomisiertes Public Key Kryptosystem Kai Gehrs Übersicht 1. Motivation 2. Das Public Key Kryptosystem 2.1 p-sylow Untergruppen und eine spezielle

Mehr

Kapitel III Ringe und Körper

Kapitel III Ringe und Körper Kapitel III Ringe und Körper 1. Definitionen und Beispiele Definition 117 Eine Algebra A = S,,, 0, 1 mit zwei zweistelligen Operatoren und heißt ein Ring, falls R1. S,, 0 eine abelsche Gruppe mit neutralem

Mehr

6. Lineare DGL-Systeme erster Ordnung

6. Lineare DGL-Systeme erster Ordnung HJ Oberle Differentialgleichungen I WiSe 22/3 6 Lineare DGL-Systeme erster Ordnung A Allgemeines Wir betrachten ein lineares DGL System erster Ordnung y (t = A(t y(t + b(t (6 und setzen voraus, dass die

Mehr

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen)

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen) WS 2015/16 Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

III Das Symmetrische Eigenwertproblem (SEP)

III Das Symmetrische Eigenwertproblem (SEP) III Das Symmetrische Eigenwertproblem (SEP) III3 Algorithmen für symmetrische tridiagonale Eigenwertprobleme Sei im folgenden a b A = b a b b n a n b n b n a n R n n, zb nach Householder- oder Lanczos(im

Mehr

9 Metrische und normierte Räume

9 Metrische und normierte Räume 9 Metrische und normierte Räume Idee: Wir wollen Abstände zwischen Punkten messen. Der Abstand soll eine reelle Zahl 0 sein (ohne Dimensionsangabe wie Meter...). 9.1 Definition Sei X eine Menge. Eine Metrik

Mehr

Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7

Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7 1 Kürzeste Pfade Woche 6 7 Hier arbeiten wir mit gewichteten Graphen, d.h. Graphen, deren Kanten mit einer Zahl gewichtet werden. Wir bezeichnen die Gewichtsfunktion mit l : E R. Wir wollen einen kürzesten

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen

Zentralübung zur Vorlesung Diskrete Strukturen WS 2010/11 Zentralübung zur Vorlesung Diskrete Strukturen Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2010ws/ds/uebung/ 1. Dezember 2010 ZÜ DS ZÜ VI Übersicht: 1.

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

Übungsblatt 14. Lineare Algebra II, Prof. Dr. Plesken, WS 2008/09

Übungsblatt 14. Lineare Algebra II, Prof. Dr. Plesken, WS 2008/09 Übungsblatt 14 Lineare Algebra II, Prof. Dr. Plesken, WS 2008/09 Aufgabe 3. (Symmetrisches Produkt. 4 Punkte.) Sei V ein n-dimensionaler K-Vektorraum mit Basis B V n und ϕ: V K[x 1,...,x n ] 1 der Isomorphismus,

Mehr

Der Quantencomputer. Unterschiede zum Digitalrechner und Nutzungsmöglichkeiten. Dresden, Simon Willeke

Der Quantencomputer. Unterschiede zum Digitalrechner und Nutzungsmöglichkeiten. Dresden, Simon Willeke Fakultät Informatik Institut für Technische Informatik, Professur für VLSI-Entwurfssysteme, Diagnostik und Architketur Der Quantencomputer Unterschiede zum Digitalrechner und Nutzungsmöglichkeiten Simon

Mehr

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 14: Ferienserie

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 14: Ferienserie D-MAVT Lineare Algebra I HS 7 Prof. Dr. N. Hungerbühler Lösungen Serie 4: Ferienserie . Finden Sie ein Erzeugendensystem des Lösungsraums L R 5 des Systems x + x x 3 + 3x 4 x 5 = 3x x + 4x 3 x 4 + 5x 5

Mehr

Die Ringe Z n. Invertierbare Elemente ( Einheiten ) für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: n : Z n Z n Z n : (a, b) (a b) mod n

Die Ringe Z n. Invertierbare Elemente ( Einheiten ) für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: n : Z n Z n Z n : (a, b) (a b) mod n Definitionen Die Ringe Z n für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: Beispiel n = 15 + n : Z n Z n Z n : (a, b) (a + b) mod n n : Z n Z n Z n : (a, b) (a b) mod n 9 + 15 11 = 5 9 15 11 = 9

Mehr

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit 3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate

Mehr

Wie man Diophantische Gleichungen löst. Anna-Maria Chiavetta Seminar 28. Oktober 2013

Wie man Diophantische Gleichungen löst. Anna-Maria Chiavetta Seminar 28. Oktober 2013 Wie man Diophantische Gleichungen löst Anna-Maria Chiavetta Seminar 28. Oktober 2013 Inhaltsverzeichnis 1. Einführung in das Thema 2. Lösbarkeit Diophantischer Gleichungen - Beispielgleichung 3. Ein anderer

Mehr

3.3 Das Abtasttheorem

3.3 Das Abtasttheorem 17 3.3 Das Abtasttheorem In der Praxis kennt man von einer zeitabhängigen Funktion f einem Signal meist nur diskret abgetastete Werte fn, mit festem > und ganzzahligem n. Unter welchen Bedingungen kann

Mehr

Der kleine Satz von Fermat

Der kleine Satz von Fermat Der kleine Satz von Fermat Luisa-Marie Hartmann 5. Mai 2017 Inhaltsverzeichnis 1 Einleitung 3 2 Hauptteil 4 2.1 Prime Restklassengruppen............................ 4 2.2 Ordnung von Gruppenelementen........................

Mehr

Euklidische Algorithmus, Restklassenringe (Z m,, )

Euklidische Algorithmus, Restklassenringe (Z m,, ) Euklidische Algorithmus, Restklassenringe (Z m,, ) Manfred Gruber http://www.cs.hm.edu/~gruber SS 2008, KW 14 Gröÿter gemeinsamer Teiler Denition 1. [Teiler] Eine Zahl m N ist Teiler von n Z, wenn der

Mehr

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009 I. (4 Punkte) Gegeben sei die Menge Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 9 G := { a c b a, b, c R }. (a) Zeigen Sie, dass G zusammen mit der Matrizenmultiplikation eine Gruppe

Mehr

Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS Grundlegende Definitionen (Wiederholung)

Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS Grundlegende Definitionen (Wiederholung) Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS2017 Kapitel I. Gruppen 1 Grundlegende Definitionen (Wiederholung) 1.1 Definition. Eine Gruppe ist ein Paar

Mehr

Geometriekalküle. Rechnen mit projektiver Geometrie. Michael Schmid. 3. März Berufliche Oberschule Rosenheim

Geometriekalküle. Rechnen mit projektiver Geometrie. Michael Schmid. 3. März Berufliche Oberschule Rosenheim Geometriekalküle Rechnen mit projektiver Geometrie Michael Schmid Berufliche Oberschule Rosenheim 3. März 2016 Michael Schmid (BOS Rosenheim) Geometriekalküle 3. März 2016 1 / 34 1 Axiomatische Grundlagen

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min. cos(x), y(0) = 1.

Apl. Prof. Dr. N. Knarr Musterlösung , 120min. cos(x), y(0) = 1. Apl. Prof. Dr. N. Knarr Musterlösung.9.6, min Aufgabe ( Punkte) Lösen Sie das folgende Anfangswertproblem: y = e y cos(x), y() =. Sei y : I R die maximale Lösung des gegebenen Anfangswertproblems (diese

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwerte und Eigenvektoren Siehe Analysis (von der Hude, Folie 20: Definition 2.3. Ein Vektor x R n heißt Eigenvektor der quadratischen n n-matrix A zum Eigenwert λ R, wenn gilt Ax = λx Die Eigenwerte

Mehr

Exponentialabbildung für Matrizen und Systeme von Differentialgleichungen

Exponentialabbildung für Matrizen und Systeme von Differentialgleichungen Proseminar Lineare Algebra SS10 Exponentialabbildung für Matrizen und Systeme von Differentialgleichungen Simon Strahlegger Heinrich-Heine-Universität Betreuung: Prof. Dr. Oleg Bogopolski Inhaltsverzeichnis:

Mehr

Klausurtermin. Klausur Diskrete Mathematik I Do stündig

Klausurtermin. Klausur Diskrete Mathematik I Do stündig Klausurtermin Klausur Diskrete Mathematik I Do. 28.02.2008 3-stündig 07.12.2007 1 Wiederholung Komplexität modularer Arithmetik Addition: O(n) Multiplikation: O(n 2 ) bzw. O(n log 2 3 ) Exponentiation:

Mehr

1.8 Endlich erzeugte kommutative Gruppen

1.8 Endlich erzeugte kommutative Gruppen 1.8 Endlich erzeugte kommutative Gruppen 23 1.8 Endlich erzeugte kommutative Gruppen Im folgenden sei (G, +) stets eine endlich erzeugte kommutative Gruppe. G ist direkte Summe der Untergruppen H 1,...,H

Mehr

Algorithmus für Quantencomputer, die Quanten Fourier Transformation

Algorithmus für Quantencomputer, die Quanten Fourier Transformation III.3. Der Shor Algorithmus Durchbruch: h Pi Primzahlzerlegung l einer Zhl Zahl in polynomialer l Zi Zeit. Bedeutung: Eines der wenigen Probleme, an dem Mathematiker, Bankiers und Militärs gleichzeitig

Mehr

Aufwand und Komplexität Vorlesung vom Komplexität und Effizienz

Aufwand und Komplexität Vorlesung vom Komplexität und Effizienz Aufwand und Komplexität Vorlesung vom 15.12.17 Komplexität und Effizienz Aufwand: Anzahl dominanter Operationen (worst-case). Beispiel. Landau-Symbol O(n). Beispiel. Definition: Aufwand eines Algorithmus.

Mehr

Lineare Algebra I. Probeklausur - Lösungshinweise

Lineare Algebra I. Probeklausur - Lösungshinweise Institut für Mathematik Wintersemester 2012/13 Universität Würzburg 19. Dezember 2012 Prof. Dr. Jörn Steuding Dr. Anna von Heusinger Frederike Rüppel Lineare Algebra I Probeklausur - Lösungshinweise Aufgabe

Mehr

Lineare Algebra II Lösungen der Klausur

Lineare Algebra II Lösungen der Klausur Prof Dr K Doerk 673 Jens Mandavid Christian Sevenheck Lineare Algebra II Lösungen der Klausur (a Diese Aussage ist richtig, sie stimmt nämlich für k = Sei nämlich n N beliebig und bezeichne N die Menge

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel V SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

4.4 Hermitesche Formen

4.4 Hermitesche Formen 44 Hermitesche Formen Wie üblich bezeichnen wir das komplex konjugierte Element von ζ = a + bi C (a, b R) mit ζ = a bi Definition 441 Sei V ein C-Vektorraum Eine hermitesche Form (HF) auf V ist eine Abbildung

Mehr

Anzahl der Generatoren

Anzahl der Generatoren Anzahl der Generatoren Satz Anzahl Generatoren eines Körpers Sei K ein Körper mit q Elementen. Dann besitzt K genau φ(q 1) viele Generatoren. Beweis: K ist zyklisch, d.h. K besitzt einen Generator a mit

Mehr

5 Lineare Algebra (Teil 3): Skalarprodukt

5 Lineare Algebra (Teil 3): Skalarprodukt 5 Lineare Algebra (Teil 3): Skalarprodukt Der Begriff der linearen Abhängigkeit ermöglicht die Definition, wann zwei Vektoren parallel sind und wann drei Vektoren in einer Ebene liegen. Daß aber reale

Mehr

Blatt 10 Lösungshinweise

Blatt 10 Lösungshinweise Lineare Algebra und Geometrie I SS 05 Akad. Rätin Dr. Cynthia Hog-Angeloni Dr. Anton Malevich Blatt 0 Lösungshinweise 0 0 Aufgabe 0. Es seien die Vektoren u =, v = und w = in R gegeben. a # Finden Sie

Mehr